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Abstract: - Critical infrastructures play a central role in the welfare of contemporary societies and they should 
properly function 24/7. Since their role is so important, they regularly become targets of malicious parties, 
terrorists, industrial spies, and even hostile governments. In this paper, the scenario of cyber or physical attacks 
to CIs from tiny autonomous malicious drones is analyzed. In particular, this work focuses on indoor spaces, 
protected by mini-drones. The mini-drones are equipped with harmonic radar and run a novel algorithm, which 
guides them to scan the whole area. Assuming that the malicious drones behave as non-linear systems, the 
mini-drones transmit signals and analyze the received signals, creating a non-linear system 3D location map for 
the whole space. In the consecutive scans, any changes on the 3D location map indicate that the malicious 
drone has changed location. Simulated results and comparisons to state-of-the-art approaches exhibit the cost-
effectiveness and time efficiency of the proposed scheme as well as its limitations. 
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1   Introduction 
Critical infrastructures (CIs) are the backbone of 
modern societies, encompassing vital sectors such 
as energy, transportation, communication, and water 
supply. Their proper functioning is crucial for 
economic stability, public safety, and national 
security. Any disruption or compromise of these 
infrastructures could have far-reaching and severe 
consequences, impacting not only the economy but 
also the well-being of citizens. Recognizing and 
safeguarding CIs is essential to ensure resilience 
against potential threats, both natural and man-made 

and to maintain the overall stability and 
functionality of a nation. 

On the other hand, CIs can be subjected to cyber 
or physical attacks by tiny malicious drones. In the 
scenario of this paper, a malicious staff member of 
the CI brings the tiny autonomous malicious drone 
within the premises (indoors) of the CI and places it 
at an unattended location. During the night (or other 
circumstances), when the CI operates in low 
capacity with a minimum number of personnel, the 
tiny malicious drone may move to specific offices 
and record (for a specific timeframe) sensitive 
conversations (industrial espionage), interfere with 
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various critical systems and devices of the CI and/or 
install malicious software (electronic war), destroy 
parts of the CI by e.g. setting fire (physical damage), 
etc. In other words, it is like a virus inside a human 
body. After completing its mission, the tiny 
malicious drone may autonomously leave the CI and 
return to its base, or it may be picked up by the 
malicious staff member. 

As it can be understood, such threats are very 
serious and should be efficiently tackled. Our 
previous research has focused on the physical 
security of CIs. In particular, in [1] a real-time threat 
assessment framework has been proposed to protect 
CIs from trucks carrying explosive substances. In 
[2] an innovative screening architecture has been 
introduced to protect CIs from various threats, such 
as guns, explosives, and radioactive substances. The 
current work extends our previous research by 
detecting tiny autonomous malicious drones. The 
proposed scheme focuses on indoor spaces of CIs. 
More specifically, it is assumed that the CI is 
protected by a mini-drone. The mini-drone is 
equipped with a harmonic radar and runs the 
proposed algorithm, which guides the mini-drone to 
scan the whole indoor space by moving on a 3D 
grid. It is also assumed that the tiny malicious drone 
behaves as a non-linear system. Each time the mini-
drone visits a new node of the grid, it transmits a 
signal and analyses the received signal. After 
visiting all nodes, the mini-drone creates a non-
linear system location map for the whole indoor 
space. The 3D location map contains all non-linear 
devices, including the malicious drone. In the next 
scans, any changes on the 3D location map indicate 
that the malicious drone has moved to a new 
location. Experimental results and comparisons to 
state-of-the-art approaches exhibit the advantages of 
the proposed scheme. 

To summarize, this paper offers the following 
major contributions: 
 It examines the case of tiny autonomous 

malicious drones, which may not send or 
receive signals. This case has not been 
thoroughly studied in the literature. 

 It investigates the protection of indoorCI spaces 
by mini-drones equipped with harmonic radar, 
an approach that is much more efficient and 
flexible compared to the state-of-the-art. 

 It proposes a novel algorithm, which guides the 
mini-drone to scan the whole indoor space and 
create a 3D location map. 

 Through extensive simulations, the study not 
only validates the effectiveness of the proposed 
algorithm but also compares it with state-of-the-
art approaches, highlighting its advantages and 

limitations, thereby contributing valuable 
insights for future research in drone detection 
technology. 

 
The rest of the paper is organized as follows: 

Section 2 provides related work and Section  3 
describes the proposed scheme. Simulated results 
and extensive comparison to state-of-the-art 
methods are presented in Section  4. Finally, Section  
5 concludes this paper. 
 

 

2   Related Work 
In the literature, there are some works related to 
malicious drones. In particular, [3] introduces an 
approach for identifying critical drones by 
leveraging distributed features, communication 
intensity, and communication scale. Initially, a 
dynamic communication prediction network is 
constructed for drone swarms. Then, a dynamic 
giant connected component-based scale-intensity 
centrality method is proposed. In [4] an anti-RF 
solution that possesses the capability to identify, 
detect, and disrupt the communication link between 
a miniature drone and its remote controller is 
presented. This countermeasure has been seamlessly 
integrated into a Software Defined Radio platform 
to secure No Fly Zones (airports, public events, 
etc.). In [5] various cybercrime usages of drones are 
examined and the requirements of future security 
systems are discussed. In [6] a computer vision-
powered monitoring system employs a supervised 
machine intelligence model and SqueezeNet, a deep 
neural network-based image embedder, to identify a 
malevolent UAV carrying an extraneous payload. In 
[7] detection of malicious UAVs is achieved by a 
machine-learning algorithm. Initially, sensor nodes 
deployed in a Wireless Sensor Network gather 
environmental data and send them to the UAV. To 
ensure data security, a proxy re-encryption scheme 
encrypts the feedback packet containing the sensed 
input data. Finally, the feedback packet undergoes 
decryption at the base station, revealing the actual 
input information. In [8] the viability of employing 
wireless localization methods for identifying drones 
engaged in location spoofing attacks is explored. 
GhostBuster, a modular solution designed to detect 
rogue RID-enabled drones is introduced and a 
comprehensive experimental campaign, utilizing 
open-source data derived from real drone flights is 
carried out. In [9] a dataset encompassing five 
classes, including images of airplanes, birds, drones, 
helicopters, and malicious UAVs is utilized. 
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Fig. 1: Overview of the proposed scheme 

 
Three distinct CNN models are employed to 

extract features from the images and the extracted 
features are classified using various machine 
learning methods. In [10] a protective framework 
designed to mitigate threats posed by malicious 
actors and to recover control of rogue UAVs is 
proposed. The framework implements a dynamic 
conceptual grid system overlaid on real-world 
geographical deployment, where the grid undergoes 
periodic shuffling or configurations based on 
abnormal behavior. In [11] unauthorized drones in 
an urban setting are detected through RF-based 
sensing, employing evenly distributed sensors. The 
study evaluates detection performance using the 
Neyman-Pearson criterion combined with Bayesian 
inference. In [12] a drone detection system designed 
for minimal prior configuration is introduced, 
utilizing affordable off-the-shelf hardware to 
identify privacy invasion attacks. By employing a 
model of the attack structure, statistical metrics for 
movement and proximity are derived and applied to 
the communication signals exchanged between a 
drone and its controller. 

Additionally, there are several other works 
focusing on the detection of drones, [13], [13], [13], 
[13], [13], [13], [13], [13], [13], [13], [13], [24]. 
Most of them use computer vision techniques and 
may incorporate 3D depth maps, multi-spectral 
imaging, electro-optical sensors, multi-camera 
fields, and other approaches. Even though 
interesting, most of the aforementioned methods do 
not consider indoor spaces. Furthermore, they do 
not propose specific area scanning methods. 
Moreover, they cannot solve the problem of “silent” 
drones, which do not move (or move under cover) 
and do not receive or transmit signals. This paper 
confronts the aforementioned issues, by proposing a 

novel algorithm to scan indoor CIs and detect tiny 
malicious drones. The method is based on harmonic 
radar-equipped mini-drones and incorporates the 
concept of a 3D non-linear device location map. 
 
 

3  The Proposed Scheme 
 

3.1  Problem Formulation 
Harmonic radar technology is a specialized radar 
system that functions through the transmission of a 
specific radio frequency signal and the detection of 
its harmonics, which are multiples of the original 
frequency that bounce back from a tagged object. 
Tags embedded with non-linear elements such as 
diodes produce these harmonic frequencies upon 
being struck by the radar's signal. This approach is 
distinguished by its ability to decrease 
environmental noise and clutter, given that natural 
reflections seldom imitate these exact frequency 
multiples. Therefore, harmonic radar proves to be 
highly efficient in monitoring small, tagged objects 
with precision and minimal disruption, rendering it 
well-suited for wildlife observation and other 
delicate tracking tasks. An overview of the proposed 
scheme is provided in Figure 1. 

According to [25] and [26] many non-linear 
systems can be modeled by a power series. Let us 
assume that the malicious drone behaves as a non-
linear system. Then the output of the system can be 
modeled by a power series: 
𝐸𝑟 = ∑ 𝑐𝑖𝐸𝑡

𝑖∞
𝑖=1                                                        (1) 

 
If the input contains only one frequency, then 

the power series indicates that harmonics of that 
frequency will be generated by the non-linear 
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system. If: 
𝐸𝑡 = 𝐸0cos(𝜗0𝑡 + 𝜑)                                         (2) 
 

then the response of the non-linear system can be 
written as: 
𝐸𝑟 = 𝑐0 + 𝑐1𝐸0 cos(𝜗0𝑡 + 𝜑)

+ 𝑐2𝐸0
2 𝑐𝑜𝑠2(𝜗0𝑡 + 𝜑) + 

+𝑐3𝐸03 𝑐𝑜𝑠3(𝜗0𝑡 + 𝜑) + …                   (3) 
where: 
 
𝑐𝑜𝑠2(𝜗0𝑡 + 𝜑) =

1

2
+

1

2
cos(2𝜗0𝑡 + 2𝜑)         (4) 

 
𝑐𝑜𝑠3(𝜗0𝑡 + 𝜑) =

3

4
cos(𝜗0𝑡 + 𝜑) +

1

4
cos(3𝜗0𝑡 +

3𝜑)                                 (5) 
 
Let us assume that ci = 0, i ≥ 4 and E0 is small. 

Then the output Er can be written as: 
𝐸𝑟 = 𝑐0 + 𝑐1𝐸0 cos(𝜗0𝑡 + 𝜑)

+
1

2
𝑐2𝐸0

2 cos(2𝜗0𝑡 + 2𝜑) + 

+1
4
𝑐3𝐸0

3 𝑐𝑜𝑠(3𝜗0𝑡 + 3𝜑)             (6) 
 

 
Fig. 2: The mini-drone’s harmonic radar transmits a 
signal and receives its response from the malicious 
drone 
 

Let us now examine Figure 2. In this figure the 
signal is transmitted from point 1, and it arrives at 
point 2 (target at a distance equal to r from the mini-
drone’s harmonic radar). The malicious drone 
behaves as a non-linear system and transmits back a 
signal from point 3. Finally, the mini-drone’s 
harmonic radar receives the signal that returns back 
at point 4. The power at point “1” is: 
𝑃1 = 𝑃𝑡𝑟𝑔𝑡𝑟                                                            (7) 

 
where Ptr is the power of the transmitted signal, 

while gtr is the gain of the mini-drones harmonic 
radar transmitter. Assuming that the signal spreads 
homogeneously (spherically) the power at point “2” 
is: 
𝑃2 =

𝑃1

4𝜋𝑟2
=

𝑃𝑡𝑟𝑔𝑡𝑟

4𝜋𝑟2
                                                 (8) 

 
By modeling the relationship between the input 

and output signals that the non-linear malicious 
drone receives and transmits, according to Eq. (1) 
we have: 

𝑃3 = ∑ 𝑓𝑎𝑖𝑃2,𝑖𝑛
𝑖∞

𝑖=1                                                (9) 
 

where 𝑃2,𝑖𝑛𝑖  is the input power received by the 
non-linear malicious drone (point “2”) and P3 is the 
output power of the non-linear malicious drone 
(point “3”). Furthermore, fai is a factor, scaling i-th 
harmonic. 𝑃2,𝑖𝑛𝑖  is related to the effective aperture 
(𝐸𝑓𝑠𝑝) of the malicious drone (how much power the 
malicious drone can capture) and is calculated by: 
𝑃2,𝑖𝑛
𝑖 = 𝑃2𝐸𝑓𝑠𝑝                                                    (10) 
 
where 𝐸𝑓𝑠𝑝 is for the lowest frequency 

(fundamental - frlow=θ0/2π) of the transmitted signal 
(e.g. 𝜗0 of Eq. (2)). More specifically, the effective 
aperture is related to the malicious drone’s gain 
(antenna that receives the signal): 

𝐸𝑓𝑠𝑝 = 𝑔𝑡𝑎𝑟,𝑟
1 𝜆𝑙𝐹

2

4𝜋
                                        (11) 

 
where 𝑔𝑡𝑎𝑟,𝑟1  is the malicious drone’s gain for the 

lowest frequency of the transmitted signal and 𝜆𝑙𝐹 is 
the wavelength of the lowest frequency. By 
combining Eq. 9 and 10 for each harmonic i: 
𝑃3
𝑖 = 𝑓𝑎𝑖𝑃2,𝑖𝑛

𝑖 = 𝑓𝑎𝑖(𝑃2𝐸𝑓𝑠𝑝)
𝑖
= 

= 𝑓𝑎𝑖 (
𝑃𝑡𝑟𝑔𝑡𝑟𝐸𝑓𝑠𝑝

4𝜋𝑟2
)

𝑖

 

 
(12) 

 
Then the power of the i-th harmonic, leaving the 

non-linear malicious drone (point “3”) can be 
expressed as: 

𝑃3,𝑜𝑢𝑡
𝑖 = 𝑔𝑡𝑎𝑟,𝑡

𝑖 𝑃3
𝑖 = 𝑔𝑡𝑎𝑟,𝑡

𝑖 𝑓𝑎𝑖 (
𝑃𝑡𝑟𝑔𝑡𝑟𝐸𝑓𝑠𝑝

4𝜋𝑟2
)
𝑖

         (13) 
 
where 𝑔𝑡𝑎𝑟,𝑡𝑖  is the gain of the malicious drone’s 

transmission antenna at the i-th harmonic. 
Considering a spherical spread back to the harmonic 
radar-equipped mini-drone, the power at point “4” 
can be expressed as: 

𝑃4
𝑖 = 𝑔𝑡𝑎𝑟,𝑡

𝑖 𝑓𝑎𝑖 (
𝑃𝑡𝑟𝑔𝑡𝑟𝐸𝑓𝑠𝑝

4𝜋𝑟2
)
𝑖

(
1

4𝜋𝑟2
)              (14) 

 
Then, the power that the mini-drone’s harmonic 

radar receives is estimated by incorporating the 
radar’s effective aperture: 
𝑃4,𝑖𝑛
𝑖 =𝑃4

𝑖𝐸𝑓ℎ𝑟
𝑖 = 

= 𝑔𝑡𝑎𝑟,𝑡
𝑖 𝑓𝑎𝑖 (

𝑃𝑡𝑟𝑔𝑡𝑟𝐸𝑓𝑠𝑝

4𝜋𝑟2
)

𝑖

(
1

4𝜋𝑟2
)𝐸𝑓ℎ𝑟

𝑖  

 
(15) 

  
where 𝐸𝑓ℎ𝑟𝑖  is the effective aperture at the i-th 

harmonic and can be expressed as: 

𝐸𝑓ℎ𝑟
𝑖 = 𝑔𝑟𝑣

𝑖 𝜆𝑖
2

4𝜋
                                                 (16) 
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where 𝑔𝑟𝑣𝑖  is the gain of the mini-drone’s 
harmonic radar receiver at the i-th harmonic and λi 
is the respective wavelength. 

By grouping all parameters of the non-linear 
malicious drone, we have: 
𝑘𝑖 = 𝑔𝑡𝑎𝑟,𝑡

𝑖 𝑓𝑎𝑖(𝐸𝑓𝑠𝑝)
𝑖                                        (17) 

 
Then Eq. (15) becomes: 

𝑃4,𝑖𝑛
𝑖 =

𝑔𝑟𝑣
𝑖 𝜆𝑖

2(𝑃𝑡𝑟𝑔𝑡𝑟)
𝑖𝑘𝑖

(4𝜋)𝑖+2𝑟2𝑖+2
                                        (18) 

 
According to Eq. (18), the mini-drone’s 

harmonic radar receives a power which is analogous 
to 1

𝑟2(𝑖+1)
 for the ith harmonic frequency. Thus, as the 

mini-drone approaches the malicious drone, the 
power that the mini-drone’s harmonic radar receives 
increases very fast. Additionally, the power that the 
mini-drone’s harmonic radar receives is 
proportional to the power of the signal it transmits 
and the gain of its antenna. The gain is raised to i 
(for the ith harmonic). Thus, if the mini-drone 
receives enough power, the existence of a malicious 
drone can be confirmed. However, in order to also 
estimate the distance between the mini-drone and 
the malicious drone, the phase of the received signal 
should also be analyzed.  

Towards this direction, let us recall Eq. (2) for 
the transmitted signal at point “1”. Then the analytic 
representation of Eq. (2), for θ0 >0 is: 
𝐸1 = 𝐸0𝑒

𝑗(𝜃0𝑡+𝜑)                                                    (19) 
 
where θ0 is the lowest frequency (fundamental), φ is 
the initial phase of θ0, and 𝜆𝑙𝐹 is the wavelength of 
θ0. E0 is the amplitude of the transmitted signal, 
related to the signal’s power, which has already 
been discussed. The following analysis focuses on 
the phase of the signal (θ0t + φ). In particular, the 
signal propagates from point “1” to point “2” 
traveling a distance r, which results in a change of 
its phase by Δθ1,2. More particularly: 
𝑖𝑓𝑟 = 𝜆𝑙𝐹𝑡ℎ𝑒𝑛𝛥𝜃1,2 = 2𝜋 => 
𝑟

𝛥𝜃1,2
=
𝜆𝑙𝐹
2𝜋

=> 𝛥𝜃1,2 =
2𝜋

𝜆𝑙𝐹
𝑟 

 
 

(20) 

  
As a result, the signal at point “2” will be: 
𝐸2 = 𝐸0𝑒

𝑗(𝜃0𝑡+𝜑+𝛥𝜃1,2)                                        (21) 
 

Again, by modelling the relationship between 
the input and output signals that the non-linear 
malicious drone receives and transmits, according to 
Eq. (1) we have: 
𝐸3 = ∑ ℎ𝑎𝑖𝐸2

𝑖∞
𝑖=1                                                   (22) 

where hai corresponds to the amplitude of the 
ith harmonic of the signal transmitted back from the 
malicious drone. 

For notation simplicity and by dropping hai and 
E0 (since they are not related to the signal’s phase) 
we get: 
𝐸3́ = ∑ 𝑒𝑖𝑗(𝜃0𝑡+𝜑+𝛥𝜃1,2)∞

𝑖=1                                   (23) 
 

Finally, the signal propagates back from point 
“3” to point “4” traveling a distance r, which results 
in a change of its phase by 𝛥𝜃3,4𝑖 : 
𝐸4́ = ∑ 𝑒𝑖𝑗(𝜃0𝑡+𝜑+𝛥𝜃1,2)𝑒𝑗𝛥𝜃3,4

𝑖∞
𝑖=1                         (24) 

or 
𝐸4́ = ∑ 𝑒𝑗(𝑖(𝜃0𝑡+𝜑+𝛥𝜃1,2)+𝛥𝜃3,4

𝑖 )∞
𝑖=1                        (25) 

 
𝛥𝜃3,4

𝑖  is different for each harmonic frequency i. 
More specifically and based on Eq. (20): 
𝛥𝜃3,4

𝑖 =
2𝜋

𝜆𝑖
𝑟                                                         (26) 

 
where λi is the wavelength of the ith harmonic 

frequency. Considering that: 
𝜆1 ≡ 𝜆𝑙𝐹 , 𝜆2 =

1

2
𝜆𝑙𝐹, 𝜆3 =

1

3
𝜆𝑙𝐹 , 𝑒𝑡𝑐.                  (27) 

 
we have that: 
𝛥𝜃3,4

𝑖 = 𝑖𝛥𝜃1,2                                                     (28) 
 
Then Eq. (25) becomes: 

𝐸4́ = ∑ 𝑒𝑗(𝑖(𝜃0𝑡+𝜑+𝛥𝜃1,2)+𝑖𝛥𝜃1,2)
∞

𝑖=1

=> 

𝐸4́ = ∑ 𝑒𝑗𝑖(𝜃0𝑡+𝜑+2𝛥𝜃1,2)
∞

𝑖=1

 

 
 
(29) 

 

 
Fig. 3: Mini-drone scanning indoor space to create 
3D non-linear device location map and detect tiny 
malicious drones 
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3.2 The Innovative Indoor Spy-Drone 

 Detection Algorithm 
According to Eq. (29) and assuming the existence of 
a malicious drone, the mini-drone will receive: (a) a 
signal with power calculated using Eq.(18) for i=1, 
frequency frlow (wavelength 𝜆𝑙𝐹) and phase (𝜃0𝑡 +
𝜑+ 2𝛥𝜃1,2), (b) a signal (first harmonic) with 
power calculated using Eq.(18) for i=2, frequency 
2frlow (wavelength 𝜆2) and phase 2(𝜃0𝑡 +𝜑+
2𝛥𝜃1,2), which is double compared to the phase of 
frlow etc. Without loss of generality, if φ=0, then we 
have for frlow: 
𝛥𝜃1,4 = 2𝜋𝑓𝑟

𝑙𝑜𝑤
𝑡 +

2𝜋𝑓𝑟𝑙𝑜𝑤
𝑐

𝑟                                (30) 
 
and since 𝛥𝜃1,4 is measured by the mini-drone 
(since the mini-drone knows the transmitted and 
estimates the received signal), the distance of the 
malicious drone can be calculated by: 
𝑟 =

𝑐

2𝜋𝑓𝑟𝑙𝑜𝑤
(𝛥𝜃1,4 − 2𝜋𝑓𝑟

𝑙𝑜𝑤
𝑡)                              (31) 

 
Thus, if the indoor space is empty, it is 

straightforward to detect the malicious drone. 
However, in most cases the indoor space of a CI is 
not empty but it contains several electronic devices, 
which behave in a non-linear way, just as the 
malicious drone does. In order to detect the 
malicious drone in such an environment, the mini-
drone runs the proposed innovative algorithm. In 
particular, the mini-drone, scans the whole indoor 
space by moving on a 3D grid. An example is 
provided in Figure 3. More specifically, the mini-
drone can start from a node (where two red lines 
cross) and each time move by a distance equal to Td, 
which defines the size of the scan-cube (represented 
in black color, within Figure 3). Each time it visits a 
new node ndi, i=1, …,n, the mini-drone transmits a 
signal at frlow and analyses the received signal. After 
visiting all nodes, the mini-drone creates a non-
linear system location map for the whole indoor 
space by using Eq. (31). The 3D location map 
contains all non-linear devices, including the 
malicious drone. 

If the mini-drone could have been provided in 
advance with a legitimate location map, then it 
would be an easy task to detect the malicious drone. 
However, the creation of a legitimate map needs 
accurate and time-consuming preliminary work. The 
proposed algorithm does not need a legitimate map. 
To do so, the mini-drone periodically re-scans the 
indoor space. As long as the 3D location map 
remains the same, either there is not any malicious 
drone or the malicious drone does not move. If the 
malicious drone moves, then the 3D location map 

will change, leading to the detection of the 
malicious drone (new location within the 3D 
location map).  

There is only one case, where the malicious 
drone may remain undetectable by the 3D location 
map method. In this case, it is assumed that the 
malicious drone is able to stick to the legitimate 
devices (approach as close as possible) that exist 
within the indoor space. Thus, when the mini-drone 
is far away during the scanning process, the 
malicious drone can move to the next legitimate 
device. However, in order to locate indoor 
legitimate devices, the malicious drone has to 
transmit a signal, operating in a similar - to the 
mini-drone- way. But, if a signal is transmitted, then 
the malicious drone reveals its existence. The same 
happens if the malicious drone is remotely operated. 
The aforementioned analysis results in Algorithm 1. 
 
Algorithm 1: Indoor Space Scanning and Malicious 

Drones Detection 
// ########  INITIALIZATION  ######## 

mini_drone.move.to -> (x0, y0) // mini drone can start from any node, 
but for simplicity, it is assumed that it moves to initial node of the 3D 
grid e.g. bottom right  
if (3D_map.available == “true”) // 3D map of the indoor infrastructure 
is available at the system’s server 
then { 

         mini_drone.receive -> 3D_map  
         go.to(MALICIOUS DRONE LOCATION) 
         } 
 

// ########  CREATE 3D MAP  ######## 
else { 

SCAN(j): 
         for (i=1:n) 
              { 

                mini_drone.move.to -> ndi //mini-drone moves to all nodes of 
the 3D grid 

                mini_drone.transmit_signal = true  // mini-drone transmits 
signal to detect non-linear device (NLD) 
                mini_drone.receive_signal -> 𝑃4,𝑖𝑛𝑖  //Eq. (18) 
                mini_drone.select -> max(𝑃4,𝑖𝑛𝑖 ) // mini-drone keeps only the 
NLD providing the maximum value of 𝑃4,𝑖𝑛𝑖  
                mini_drone.estimate.distance.max_NLD -> ri //Eq. (31) 
                R_all-> (r1, r2, …, rn)  //all measured distances are stored in 
R_all 
               } 

 

           mini_drone.create(R_all)-> 3D_map(j) //R_all is used to create 
3D_map 
           system_server.receive-> 3D_map(j) // 3D_map is received by the 
system’s server 
         } 
 

// ########  MALICIOUS DRONE  LOCATION######## 
while (mini_drone.on_duty == “true”) // a specific mini-drone is on 
duty, scanning the indoor area. If it needs re-charging, then another 
mini-drone takes its place 
 
do { 

       3D_map(j) <- SCAN(j).return.3D_map //the mini-drone scans the 
whole 3D grid to provide the jth instance of the3D_map 
       if (3D_map(j) ≠ 3D_map(i), for 𝑖 ≠ 𝑗)  //if the jth instance of the 
3D_map is different from the ith instance of the3D_map 
           { 

            spy_drone.detection = true // spy-drone is detected, occupying a 
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new position within the 3D_map 
             spy_drone.location.(x,y,z)->(3D_map(j).(x,y,z)- 
             -3D_map(i).(x,y,z)).nonzero // the location (x,y,z coordinates) 
of the malicious_drone is calculated 

           } 

} 

 
 
4   Experimental Results 
A PC with Intel(R) Core i7-12700 CPU @ 3.60GHz 
plus 16 GB DDR4 RAM was used for running the 
experiments. Results and comparisons were 
simulated using R 4.3.2. For the following 
calculations Ptr is assumed to be 0.1 Watt (30 dBm), 
since: (a) the antenna of a small drone does not have 
to transmit high-power signals and (b) in this way 
less energy is used for malicious drone detection. 
On the other hand, gtr for frlow is assumed to be 5 
dBi, 𝑔𝑟𝑣1  is assumed to be 5 dBi and 𝑔𝑟𝑣2  is assumed 
to be 3 dBi. Additionally, 𝑔𝑡𝑎𝑟,𝑡1 = 𝑔𝑡𝑎𝑟,𝑟

1 = 𝑔𝑡𝑎𝑟,𝑡
2 =

𝑔𝑡𝑎𝑟,𝑟
2 = 1𝑑𝐵𝑖, since it is considered that the gain 

of the malicious drone does not resemble the gain of 
real antennas, but it is significantly less. 
Furthermore, frlow is set to 900 MHz (𝜆1 ≡ 𝜆𝑙𝐹 =
0.33𝑚) with its first harmonic at 1,800 MHz (𝜆2 =
0.165𝑚). Finally, fa1=1, fa2= 0.5, 𝜋 ≈ 3.14 and 
𝑐 ≈ 299,792,458m/sec. Here it should be 
mentioned that the most common parameters have 
been selected for the problem under consideration, 
but even if other parameters are selected, they will 
lead to similar results. 
 

 
Fig. 4: Power received by the antenna of the mini-
drone for the lowest frequency and its first harmonic 
 

Based on the aforementioned parameters, 𝑃4,𝑖𝑛1  
and 𝑃4,𝑖𝑛2  (Eq. 18) are calculated and visualized in 
Figure 4. As it can be observed, the received power 

at a distance of 0.1m is 19.77 dBm and 2.76 dBm 
for the lowest frequency and the first harmonic, 
while, in the case of 2m it falls to -32.27 dBm and -
75.3 dBm respectively. Here it should be mentioned 
that each receiver has a sensitivity. If the strength of 
the received signal is less than the sensitivity 
threshold, then the receiver will not be able to 
receive the signal. According to [27], the common 
802.11g products have a sensitivity of -85 dBm, 
many wireless market products offer a sensitivity of 
-105 dBm, while professional devices provide a 
receiver sensitivity of almost -120 dBm. Thus, the 
proposed scheme with its specific parameters 
enables the mini-drone to detect the malicious 
drone, even if its antenna is a common market 
product and not a highly specialized and specifically 
designed antenna. Reliable detection of the 
malicious drone can be achieved even at a distance 
of 2 meters. 
 

  
(a) (b) 

Fig. 5: (a) Hand-held scanning device (b) Passive 
infrared sensor 
 

 
Fig. 6: Foldable grid of sensors 
 
4.1 Comparison to State-of-the-Art 

 Approaches 
Sensors emitting laser beams could somehow 
confront the problem of tiny malicious drones, but 
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such a solution would need a huge number of laser 
sensors to cover the whole space and possibly 
produce many false alarms (due to bugs, insects, 
etc.). For this reason, in this paper, two common 
approaches are considered and compared to the 
proposed scheme. The first, traditional approach is 
based on a human guard who holds a scanning 
device (Figure 5(a)) and inspects the whole CI. The 
second approach is based on passive infrared 
sensors (Figure 5(b)), e.g. and without loss of 
generality, Panasonic’s PaPIRs passive infrared 
sensors [28], [29]. Additionally, let us assume that 
the CI resembles a rectangular tank with a length 
equal to 100 m, a width equal to 4 m, and a height 
equal to 4 m. In this case, the volume of the CI is 
estimated to be 1,600 m3. According to [28], [29] 
PaPIRs can detect an area of 70×25 cm (1,750 cm2) 
at a distance of 12 m. Assuming that the tiny spy-
drone has a size of 7.5×7.5 cm (56.25 cm2) and 
considering that PaPIRs exhibit a linear behavior 
regarding the distance – detectable area relation, 
then PaPIRs sensors should be placed about every 
0.8m in order to be able to detect the tiny malicious 
drone, in a foldable grid (Figure 6). The grid of 
sensors could be unfolded on non-working hours 
and folded on working hours. 

On the other hand, it is assumed that the human 
guard can raise the hand-held scanning device to a 
height of 2 – 2.2 meters. In this case, the malicious 
drone’s maximum distance could be 1.8 – 2 meters. 
Considering similar to the mini-drone’s receiver 
sensitivity, the human guard can effectively scan the 
whole CI, using the hand-held scanning device. 

Next, the three approaches are compared 
quantitatively and qualitatively. In particular, the 
quantitative comparisons include the time to scan 
the CI and the cost of scanning, while the qualitative 
comparisons include false alarms and parameters 
such as sensitivity, human mistakes, preparation 
time, and ease of installing/uninstalling. 

Regarding the time to scan the CI, let us 
consider that the CI is cut into slices and the 
distance between slices is 1 m. Let us also consider 
that the human guard moves at a speed of 1.4 m/sec 
and spends 5 seconds to scan each slice. Let us also 
consider that the mini drone passes through the 
center of the slices (following the axis of the grid), 
transmits a signal every 0.01 seconds, and moves at 
a speed of 1 m/sec. In order to scan the CI under 
consideration, the human guard needs 571.4 sec, the 
passive infrared sensors approach needs 0 sec and 
the proposed approach needs 100 sec. Figure 7 
provides the scan time per CI’s cubic meter for the 
three approaches. Volume is provided in the log10 
scale. As it can be observed, the passive infrared 

sensors approach needs zero time, since the grid of 
sensors covers the whole volume of the CI. 
Additionally, the human scanning approach 
provides the worst performance (in case of 50,000 
m3, scanning takes 17,856.25 sec), while the 
proposed approach provides a time reduction of 
82.5% compared to the human scanning approach 
(e.g. in the case of 50,000 m3, scanning takes 3,125 
sec). 

 

 
Fig. 7: Time to scan CI versus CI’s volume (in cubic 
meters – log10 scale) 
 

Now, regarding the cost of scanning, let us 
assume that a human guard has a total cost (daily 
rate, insurance, etc.) of 80 Euros per 8 hours and the 
hand-held scanning device costs 300 Euros. Let us 
also assume that each passive infrared sensor costs 
on average 10 Euros [30] (depending on the number 
of purchased sensors). In order to cover the whole 
CI, each slice (foldable grid of passive infrared 
sensors) should contain 36 sensors (one every 0.8 
meters), while the total number of slices is 125 
(each slice every 0.8 meters). As a result, the whole 
CI is covered by 4,500 sensors. On the other hand, 
the cost of buying an autonomous mini drone like 
e.g. Pegasus mini [31] and making all necessary 
adaptations (e.g. addition of transmitter, receiver, 
signal analyzer, etc.) may reach 2,000 Euros. It is 
also assumed that in one day, the CI should be 
scanned 10 times. This is reasonable, since the 
malicious drone may move at any time from its 
position. Then the overall cost for one day and for 
one year are visualized in Figures 8(a) and 8(b) 
respectively.  
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Table 1. Qualitative comparison of the three approaches 
 False Alarms Sensitivity Human 

Mistakes 

Preparation 

Time 

Ease of 

Installing / 

Uninstalling 

Human 

Scanning 

Very Low Very Low Yes No Easy 

Passive Infrared 

Sensors 

Moderate Moderate No Moderate Difficult 

Proposed Very Low Very Low No No Easy 
 
 

 
(a) 

 

 
(b) 

Fig. 8: (a) Cost in Euro (log10 scale) of One-Day 
Scanning versus CI’s volume (in cubic meters – 
log10 scale) (b) Cost in Euro (log10 scale) of One-
Year Scanning versus CI’s volume (in cubic meters 
– log10 scale) 
 

 

As it can be observed, the minimum cost for one 
day is provided by the human scanning approach 
(304.96 Euro for a CI of 500 m3 and 796 Euro for a 
CI of 50,000 m3). This is expected in the short term 
since the cost of the hand-held device is much lower 
(300 Euro) than the cost of the modified mini-drone 
(2,000 Euro). However, in the long term, the 
proposed approach provides much lower operational 
costs compared to the other two approaches. In 
particular (Figure 8(b)), the minimum cost for one 
year is provided by the proposed scanning approach 
(2,000 Euro for a CI of any volume), while the 
human scanning approach requires 2,110.43 Euro 
for a CI of 500 m3 and 181,342.54 Euro for a CI of 
50,000 m3 and the passive infrared sensors approach 
requires 14,062.5 Euro for a CI of 500 m3 and 
1,406,250 Euro for a CI of 50,000 m3. 

Thus, (a) compared to the human scanning 
approach, the proposed approach reduces the 
scanning cost from 5.23% to 98.9% (b) compared to 
the passive infrared sensors approach, the proposed 
approach reduces the scanning cost from 85.78% to 
99.86 %. Here it should be mentioned that the cost 
of recharging the mini-drone’s batteries is neglected 
since it is low. Even if it is considered, the costs of 
the other two approaches (especially for large CIs) 
are still orders of magnitude greater. 

Finally, a qualitative comparison of the three 
approaches is provided in Table 1. In particular, 
regarding false alarms, the passive infrared sensors 
approach may be vulnerable to insects, swarms of 
bugs, etc. Regarding sensitivity, the passive infrared 
sensors approach may be more sensitive to 
temperature and for this reason, it is recommended 
that sensors are 3 to 5 meters away from heat 
sources. Additionally, the passive infrared sensors 
approach cannot detect malicious drones if they are 
not moving. The proposed approach and the human 
scanning approach can detect malicious drones if a 
ground truth 3D location map is available. If there is 
not a ground truth 3D location map and the 
malicious drone does not move it cannot be located. 
In this case, a malicious worker (maybe a staff 
member of the CI) could pick up the malicious 
drone and leave the CI. 
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Furthermore, the human scanning approach may 
be vulnerable to human mistakes (e.g. if the human 
guard does not properly scan the CI). On the other 
hand, the passive infrared sensors approach may 
need some time for preparation, especially in order 
to unfold (and fold) the grid of sensors. Finally, the 
passive infrared sensors approach takes much time 
to install/uninstall and it is a solution of low 
portability, compared to the other two approaches. 
For reproducing the simulated results, datasets are 
provided in Table 2, Table 3, Table 4 and Table 5 of 
the appendix. 
 
 
5   Conclusion 
Critical infrastructures face a significant risk of 
rapid destruction or becoming targets of various 
cyber-attacks at minimal cost, if not adequately 
defended against tiny malicious drones. This study 
concentrated on countering autonomous tiny 
malicious drones, by incorporating mini-drones 
equipped with harmonic radar and a novel algorithm 
that creates 3D non-linear device location maps of 
indoor areas. Extensive comparisons to state-of-the-
art methods revealed both the advantages and 
limitations of the proposed approach. 

Future research can address various unresolved 
issues. For instance, the scenario where the 
malicious drone does not move, the case of very 
large CIs or the case of CIs that combine indoor and 
outdoor sensitive areas. Further research initiatives 
might also involve creating a more extensive 
simulation framework that incorporates practical 
challenges such as dynamic obstacles and various 
drone speeds, thus enhancing the evaluation of the 
algorithm's efficacy in complex scenarios. Lastly, 
there is potential for implementing security plans 
optimized for specific critical infrastructures, taking 
into account their unique characteristics. 
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APPENDIX 

 
Table 2. Power received by the antenna of the mini-
drone for the lowest frequency and its first harmonic 

(Figure 4) 
Distance in 

meters 
𝑷𝟒,𝒊𝒏
𝟏  (dBm) 𝑷𝟒,𝒊𝒏

𝟐  (dBm) 

0.1 19.7708684 2.760176  
0.2 7.7296686 -15.301624  
0.3 0.6860182 -25.867100  
0.4 -4.3115312 -33.363424  
0.5 -8.1879318 -39.178025  
0.6 -11.3551816 -43.928899  
0.7 -14.0330532 -47.945707  
0.8 -16.3527311 -51.425223  
0.9 -18.3988320 -54.494375  
1 -20.2291316 -57.239824  

1.1 -21.8848390 -59.723385  
1.2 -23.3963814 -61.990699  
1.3 -24.7868657 -64.076425  
1.4 -26.0742530 -66.007506  
1.5 -27.2727819 -67.805300  
1.6 -28.3939309 -69.487023  
1.7 -29.4470884 -71.066760  
1.8 -30.4400318 -72.556175  
1.9 -31.3792756 -73.965040  
2 -32.2703314 -75.301624 

 
Table 3. Time to scan CI versus CI’s volume (in 

cubic meters – log10 scale) (Figure 7) 
Volume in 

m3 (log10) 

Human 

Scanning 

(sec) 

Passive 

Infrared 

Sensors 

(sec) 

Propose

d 

(sec) 

2.698970 178.5625 0 31.25 
3.000000 357.1250 0 62.50 
3.176091 535.6875 0 93.75 
3.301030 714.2500 0 125.00 
3.397940 892.8125 0 156.25 
3.477121 1071.3750 0 187.50 
3.544068 1249.9375 0 218.75 
3.602060 1428.5000 0 250.00 
3.653213 1607.0625 0 281.25 
3.698970 1785.6250 0 312.50 
3.875061 2678.4375 0 468.75 
4.000000 3571.2500 0 625.00 
4.096910 4464.0625 0 781.25 
4.176091 5356.8750 0 937.50 
4.243038 6249.6875 0 1093.75 
4.301030 7142.5000 0 1250.00 
4.397940 8928.1250 0 1562.50 
4.477121 10713.7500 0 1875.00 
4.544068 12499.3750 0 2187.50 
4.698970 17856.2500 0 3125.00 

 
 

Table 4. Cost in Euro (log10 scale) of One-Day 
Scanning versus CI’s volume (in cubic meters – 

log10 scale)  (Figure 8(a)) 
Volume 

in m3 

(log10) 

Human 

Scanning in 

Euro (log10) 

Passive 

Infrared 

Sensors in 

Euro 

(log10) 

Proposed 

in Euro 

(log10) 

 

2.698970 2.484243 4.148063 3.30103 
3.000000 2.491250 4.449093 3.30103 
3.176091 2.498145 4.625184 3.30103 
3.301030 2.504933 4.750123 3.30103 
3.397940 2.511616 4.847033 3.30103 
3.477121 2.518199 4.926214 3.30103 
3.544068 2.524682 4.993161 3.30103 
3.602060 2.531071 5.051153 3.30103 
3.653213 2.537366 5.102305 3.30103 
3.698970 2.543572 5.148063 3.30103 
3.875061 2.573337 5.324154 3.30103 
4.000000 2.601192 5.449093 3.30103 
4.096910 2.627368 5.546003 3.30103 
4.176091 2.652055 5.625184 3.30103 
4.243038 2.675414 5.692131 3.30103 
4.301030 2.697580 5.750123 3.30103 
4.397940 2.738783 5.847033 3.30103 
4.477121 2.776414 5.926214 3.30103 
4.544068 2.811042 5.993161 3.30103 
4.698970 2.900917 6.148063 3.30103 

 

Table 5. Cost in Euro (log10 scale) of One-Year 
Scanning versus CI’s volume (in cubic meters – 

log10 scale) (Figure 8(b)) 
Volume 

in m3 

(log10) 

Human 

Scanning in 

Euro (log10) 

Passive 

Infrared 

Sensors in 

Euro (log10) 

Proposed 

in Euro 

(log10) 

 

2.698970 3.324370 4.148063 3.30103 
3.000000 3.593380 4.449093 3.30103 
3.176091 3.758251 4.625184 3.30103 
3.301030 3.877469 4.750123 3.30103 
3.397940 3.970910 4.847033 3.30103 
3.477121 4.047763 4.926214 3.30103 
3.544068 4.113040 4.993161 3.30103 
3.602060 4.169774 5.051153 3.30103 
3.653213 4.219947 5.102305 3.30103 
3.698970 4.264918 5.148063 3.30103 
3.875061 4.438643 5.324154 3.30103 
4.000000 4.562394 5.449093 3.30103 
4.096910 4.658590 5.546003 3.30103 
4.176091 4.737294 5.625184 3.30103 
4.243038 4.803900 5.692131 3.30103 
4.301030 4.861636 5.750123 3.30103 
4.397940 4.958188 5.847033 3.30103 
4.477121 5.037130 5.926214 3.30103 
4.544068 5.103906 5.993161 3.30103 
4.698970 5.258500 6.148063 3.30103 
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