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Abstract: - Simultaneous Localization and Mapping (SLAM) technologies are indispensable for indoor service 
robots, enabling them to navigate through and interact with environments. Visual SLAM systems often 
encounter significant challenges such as dynamic obstacles, variable lighting, feature scarcity, and perceptual 
aliasing in real-world scenarios. By merging the precise environmental mapping capabilities of visual SLAM 
with the ubiquity and stability of WiFi signals, our method effectively addresses the limitations typically 
associated with visual SLAM. Notably, our fusion technique leverages existing WiFi infrastructure, thus 
providing a cost-effective improvement in spatial awareness without the extensive offline database 
requirements of WiFi RSSI-based localization. Comparative performance evaluations highlight that our graph 
optimization-based approach not only surpasses the original ORBSLAM3 method but also significantly 
outperforms the Extended Kalman Filter (EKF) in terms of accuracy, particularly in environments characterized 
by poor lighting, feature-less scenes, and significant occlusions. This is evidenced by a reduced Root Mean 
Square Error (RMSE) in localization: 3.09m for our method versus 4.02m for EKF. This enhancement in 
precision underscores the potential of our integrated system to advance indoor navigation technologies, making 
it a crucial development in the field of robotics and automated systems. 
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1    Introduction 
Visual SLAM (Simultaneous Localization and 
Mapping) is a popular solution for indoor robot 
localization by feature point extraction and 
matching to positioning and mapping. Due to its 
high accuracy, lightweight, low cost, and low 
power consumption shown in Figure 1. 

Compare some previous work.ORBSLAM3, 
[1], one of the Visual SLAM SoTA methods,which 
have short-term, mid-term, and long-term data 
association by ORB descriptor model and adjusted 
method to feature extraction and feature matching. 
The ORBslam3 uses quite an efficient and precise 
way to Visual, but still can’t overcome the problem 
when a robot or device goes to featureless 
environment would lose track and cause low 
accuracy.YOLO-SLAM, a kind of improved SoTA 
Visual SLAM integrated with semantic information 
supported by deep learning models, it can help 
robots better perceive their surrounding 
environment. However, the accuracy of the 

estimated position is largely dependent on feature 
correspondences and can be adversely affected by 
occlusion caused by dynamic objects, featureless 
scenes, drastic viewpoint changes, and changes in 
illumination, leading to incorrect estimations due to 
false tracking correspondences, [2]. 

In our paper, Figure 16, Figure 18 and Figure 
20 illustrate different challenge trajectories. These 
figures show that without the WiFi, [3] submodule 
and algorithm added to ORB-SLAM3, the system 
loses track and its accuracy decreases. 

Additionally, loop closure detection is a crucial 
component of the SLAM system for the 
relocalization of a robot in a map. Perceptual 
aliasing, especially in symmetric and repetitive 
environments such as indoor corridors with similar 
patterns of doors and lights, can lead to false loops 
and inaccurate map estimations.    Our proposed 
method can avoid false loop detection by using 
WiFi RSSI, [3] value outliers, making the system 
more robust. Figure 19 shows that using ORB-
SLAM3 without the WiFi submodule may cause 
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false loop detection, but with our WiFi submodule, 
false loop detection can be avoided, resulting in a 
more accurate and robust system. 

Moreover, wireless signal-based indoor 
localization has become increasingly popular in 
recent years as a reliable method for identifying the 
locations of IoT (Internet of Things) devices in 
indoor environments, where GNSS (Global 
Navigation Satellite Systems) are typically 
unavailable due to the lack of a direct line-of-sight. 
This has motivated various research efforts to 
develop effective techniques for this type of 
localization. 

However, Wireless-signal-based indoor 
localization [3], approaches have been able to 
achieve acceptable accuracy, these methods are not 
compatible with the need for centimeter-level 
precision. Additionally, such strategies normally 
require a predefined WiFi radio map which must be 
maintained and updated regularly, making them 
incompatible with the idea of SLAM, where a robot 
can be placed in an unknown environment without 
prior knowledge. 

We present a robust life-long SLAM system 
that utilizes ORB-SLAM3, [1] as its base Visual 
SLAM module. This system consists of a Visual 
SLAM and a WiFi SLAM module, allowing it to 
address challenges with vision-based localization 
and navigation. These two modules interactively 
update both the vision map and WiFi map, with the 
WiFi SLAM module, [3] consisting of a tracking 
submodule to locate the robot when vision has 
difficulty, as well as a mapping submodule that 
autonomously updates with assistance from Visual 
SLAM. The advantage of our system over 
database-based Wireless signal based offline indoor 
localization methods is its ability to adapt to 
changing environments. Furthermore, WiFi 
information is used in the loop detection 
submodule of Visual SLAM to prevent false loop 
detection, since WiFi signals are different in two 
separate places with similar vision scenes. On top 
of that, a real-time degeneracy detection module is 
used to detect whenever the vision sensor is 
degraded, which introduces a mechanism to decide 
whether to compensate the degradation with WiFi 
signal information. Our system enables the 
combination of Visual SLAM and WiFi SLAM to 
provide reliable and accurate robot localization in 
dynamic indoor environments. With this, robots 
can be deployed in unknown environments without 
prior knowledge, and accurately localize and map 
areas in real-time. 

 

2   Background 
 
2.1  Visual SLAM 

 
Fig. 1: Typical visual SLAM framework, [1] 
 

With the advantages of sensor configuration 
simplicity, lightweight, and low cost, visual-based 
SLAM algorithms are proposed in research. A 
typical visual SLAM framework consists of 
frontend visual odometry, backend optimization, 
loop closure detection, and mapping modules as 
shown in Figure 2. The frontend visual odometry 
estimates the motion between input images from 
sensors and constructs a local map using a 
feature-based method or direct method. Backend 
optimization then optimizes the results from visual 
odometry. Simultaneously, the mapping module 
constructs and maintains a global map based on the 
measurements. To combat accumulated error, loop 
closure detection recognizes previously visited 
places, relocalizes, and improves mapping accuracy 
by reducing accumulated drift caused by noise. 

ORB-SLAM3 is one of the well-known 
keyframe-based real-time visual SLAM algorithms, 
[1] which consists of three main threads: tracking, 
local mapping, and loop closing. ORB (Oriented 
FAST and Rotated BRIEF) features are used in this 
system, which is then transformed into map points 
after the corresponding frame is selected as a 
keyframe to construct the map. The tracking thread 
tracks for unmapped regions using ORB features 
extracted from images and matches ORB features 
to map points to perform local bundle adjustment in 
local mapping thread. In our system, we use 
ORB-SLAM3 with RGBD cameras as our visual 
SLAM module and sensors to demonstrate the 
challenges of visual SLAM and how WiFi signals, 
[3] can improve them. 
 
2.2  WiFi-based Indoor Localization 
The lack of availability of GNSS in indoor 
environments has led to an increase in demand for 
indoor localization solutions. One popular solution 
is based on WiFi fingerprinting, which utilizes the 
existing infrastructure of WiFi networks. This 
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method has attracted attention from both academia 
and industry as it is achievable and cost-effective. 

 
Fig. 2: Typical WiFi-based indoor localization 
pipeline 

 
A typical WiFi-based indoor localization 

pipeline is shown in Figure 2. It consists of an 
offline stage and an online stage. Firstly, a radio 
map Ω ∈ R𝑁×𝑀 construction is done in the offline 
stage, where N is the number of fingerprints, and M 
represents the number of access points plus 2 (X 
and Y to represent locations). A fingerprint is a 
vector v ∈ RM of RSSI rm received in a place n 
with coordinates (xn , yn ).Secondly, in the online 
stage, the user's location is estimated by matching 
the fingerprint of the current place to those on the 
radio map. Traditional matching algorithms such as 
K-Nearest Neighbors, Decision Tree, Random 
Forest, [4], and Support Vector Machine classifiers, 
[5] have been explored for years. WKNN can be 
applied to WiFi localization by using the signal 
strength (RSSI) values from nearby access points 
as features. Given a set of RSSI measurements 
from multiple access points, WKNN can determine 
the k nearest neighbors (based on signal strength 
similarity) to the query point (the device for which 
localization is required). Random Forest can also 
be utilized for WiFi localization. During inference, 
the trained Random Forest model can predict the 
location of a device based on its WiFi signal 
strengths. Generally, machine learning-based 
solutions achieve higher accuracy than traditional 
methods, but they can be expensive because 
training and tuning are required, and as the scale of 
the model increases, more computational resources 
are needed. Additionally, data-driven approaches 
depend heavily on the distribution of training data, 
so a natural trade-off between accuracy and 
robustness needs to be considered. Both traditional 
WiFi fingerprint-based indoor localization and 
machine learning-based solutions require an offline 
database, which does not align with the scenarios in 

a SLAM system, where a robot explores and 
locates itself without prior knowledge. Therefore, 
our system proposes a WiFi SLAM solution that 
can operate without an offline database. 
 
2.3  Visual SLAM with WiFi 
Due to the unique advantages and disadvantages of 
camera and WiFi sensors, several methods, [3] 
have been proposed to combine these two sensors 
to compensate for each other’s weaknesses and 
construct a more robust system.Proposed a system 
that utilizes WiFi-based positioning methods, [4] 
for mobile robot-based learning data collection, 
localization, and tracking in indoor spaces. The 
system combines the extended Viterbi algorithm, 
tracking algorithm, odometer information, and a 
new signal fluctuation matrix to improve the 
accuracy of robot location tracking and the 
effectiveness of building a high-quality WiFi Radio 
Map. 

With the help of WiFi information, they select 
a subset of RGBD images that correspond to the 
similar location range as the current frame for loop 
closure detection, thus avoiding the perceptual 
aliasing problem. In addition, computational 
complexity can be reduced because of the low 
computation overhead of determining WiFi 
similarity, and the number of RGBD images in the 
database that need to be searched is decreased by 
filtering loop closure candidates via their WiFi 
similarity. In our system, we also integrate WiFi 
with visual SLAM to tackle the false loop closure 
problem by associating a keyframe with 
corresponding WiFi information. However, instead 
of storing the WiFi fingerprint or signature, we 
store a pose estimated by the WiFi SLAM module 
in our system. Furthermore, our system not only 
solves the perceptual aliasing problem but also 
provides a coarse robot position sup- ported by our 
WiFi SLAM module to make our system more 
robust when visual SLAM is out of function. 

Both Extended Kalman Filter (EKF), [5], [6] 
and Graph Optimization are popular techniques 
used for Simultaneous Localization and Mapping 
(SLAM) in robotics and computer vision. EKF 
SLAM uses a state vector to represent the robot’s 
pose and the map’s features and estimates the state 
vector by incorporating sensor measurements such 
as odometry and range measurements. EKF SLAM 
is computationally efficient and is widely used in 
mobile robotics applications. On the other hand, 
Graph Optimization represents the SLAM problem 
as a graph, where nodes represent robot poses and 
landmarks and edges represent constraints between 
them. Graph Optimization finds the optimal 
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estimate of the robot’s trajectory and the map by 
minimizing the error between the constraints and 
the estimated values. Although Graph Optimization 
is computationally more expensive than EKF, it is a 
global optimization technique that can improve the 
accuracy of SLAM estimates. In recent years, with 
the improvement of hardware, graph optimization 
has become increasingly popular in modern SLAM 
algorithms. 

The closest work to ours is [6], where an 
EKF-based SLAM using WiFi signal strength is 
proposed to estimate the pose of the robot and the 
locations of the access points (APs) in the 
environment. The pose estimated by WiFi signal 
can be further used to improve loop closure in 
visual SLAM and provide a rough localization 
result. This work estimates the robot pose using a 
WiFi signal and RGBD images based on an 
Extended Kalman Filter (EKF), [6]. Graph 
optimization is only conducted when the last frame 
is detected, to optimize the pose estimation. In 
contrast, our system is a full graph 
optimization-based system. We implement both our 
visual SLAM and WiFi SLAM modules based on 
graph optimization due to the advantage of graph 
optimization that it takes the whole history state 
into account and is a more accurate approach that 
can handle non-Gaussian errors, whereas EKF only 
considers recent states, and the disadvantages of 
EKF that assumes that the system’s error is 
Gaussian and may lead to inconsistency in highly 
non-linear systems. 
 
2.4  Degenercy Detection 
Sensors have an inevitable degradation 
problem.For example, a vision sensor may degrade 
in cases of poor lighting, occlusion, and featureless 
scenes. Similarly, a Lidar sensor may degrade in 
scenarios with self-symmetry or fewer geometric 
constraints. When faced with such degradation, a 
SLAM system may lose track. To improve the 
robustness of a SLAM system, A well-known work, 
[7], [8] proposed a general mechanism to detect 
degeneracy. This work defines an optimization 
based state estimation problem as  arg minǁAx −
 bǁ2and a degeneracy factor, D = δd/δ𝑋𝑐 , where 
δ𝑋𝑐 represents the maximum amount of shift of an 
artifact constraint, and δd is the difference between 
the original estimation result and the estimation 
result affected by the artifact constraint. After a 
series of mathematical deductions, the degeneracy 
factor D = λmin  + 1, where λmin   is the smallest 
eigenvalue of 𝐴𝑇 A.  With this lemma, we can 
detect a degeneracy by setting a threshold for the 
minimum eigenvalue and further integrating sensor 

data extraction to compensate for the degradation. 
 
 
3   Method 
 

 
Fig. 3: illustrates the proposed system, [1], [3] 
 
3.1  System Diagram 
The input is a pair of RGBD images and WiFi 
RSSI（Received Signal Strength Indication) values, 
and the output is the robot poses. The Visual 
SLAM module, based on ORB-SLAM3, uses 
RGBD images as input and outputs an estimated 
robot pose determined by visual information. On 
the other hand, the WiFi SLAM module utilizes 
WiFi RSSI values as input and outputs a robot pose 
estimated using the WiFi signal. If a vision 
degeneracy is detected, the pose estimated through   
WiFi is utilized instead.The whole system is shown 
in Figure 3. 
 
3.2  Graph-based SLAM 
A SLAM problem, [1], can be formulated as a 
MLE (Maximum Likelihood Estimation) problem 
with a probability model 

𝑿∗ = arg 𝑚𝑎𝑥𝑃(𝑿 ∣ 𝒁) 
 
where X represents the state and Z represents the 
observation.  
 

Two main approaches are solving the state 
estimation problem, while traditional SLAM tends 
to use filter-based approaches such as Kalman 
filters and Particle filters, [5], modern graph-based 
SLAM, [1], [6] uses a least-squares approach, 
turning a SLAM problem into a least-squares 
problem and solving it with the optimization 
algorithm. 

In ORB-SLAM, [6], map points MPwj  ∈ R3 
and robot poses tiw ∈ SE(3), where w stands for 
the world reference, are optimized minimizing the 
reprojection error with respect to the matched 
keypoints mpij∈ R2, the error function is: 

eij =  mpij  −  π(tiw, MPwj)         
 

where π is the projection function.  
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In our system, as illustrated in Figure 4, WiFi 
access points are utilized as landmarks along with 
Visual SLAM map points. And this is precisely the 
novelty of our paper. 

 

 
Fig. 4: Graph visualization of our system 
 
3.3  WiFi SLAM Module 
 

3.3.1  Propagation Model 

The signal propagation model plays an important 
role in indoor localization systems based on WiFi-
received signal strength indication (RSSI). WiFi 
RSSI attenuates with distance.Signal propagation 
model, [8] is described by: 

𝑃(𝑑) = 𝑃(𝑑0) − 𝜂10log10 (
𝑑

𝑑0
) 

 
where d and d0 are the distances from the 
transmitter, P (d) and P (d0) are the received 
RSSI(dbm) at distance d and d0, and η is the path 
loss exponent.  
 
3.3.2  Mapping Submodule 

Mapping the submodule of the WiFi module is 
implemented by estimating access point (AP) 
positions, [9], [10]. As illustrated in Figure 4, WiFi 
access points serve as landmarks in our system. 
The location of these access points is continually 
estimated and updated to maintain an up-to-date 
WiFi map. The keyframe class in ORB-SLAM3 
has been modified to include the observation of 
access points APm (m ≤ M, with M being the 
number of the access points in the environment) at 
corresponding location xi, along with their 
respective RSSI values. When an access point is 
observed more than α times (α ≥ 3) and has an 
RSSI value greater than β(dBm), it will be selected 
as a candidate node in the graph. Before starting 
optimization, the status of candidate nodes will be 
further evaluated to ensure that they have been 
properly initialized since a good initialization of 
nodes is crucial for optimal results. To initialize, 
the average location of all locations where APm 
was observed will be taken as the initialization 
value. 
 
 

3.3.3  Tracking Submodule 

With the aid of a WiFi map that is kept up-to-date 
by the WiFi Mapping module, the tracking 
submodule can determine the robot’s pose, denoted 
as x𝑖 ,using a similar approach as the mapping 
submodule.At an uncertain robot’s pose x𝑖, we can 
receive RSSI values rim from each access point 
APm . By following the same method used in the 
mapping submodule, we can construct a graph with 
APm  as fix vertices, the difference between the 
estimated RSSI value and the received RSSI value 
as edges, and our estimated robot’s pose x𝑖 as an 
estimated vertex. After optimization, the robot’s 
pose, x𝑖 can be estimated. The main difference 
between the tracking and mapping submodules is 
that the tracking submodule aims to estimate the 
robot’s pose with known fixed AP positions, while 
the mapping submodule aims to estimate AP 
locations with fixed robot’s poses. 
  

 
Fig. 5: Estimation Access Point Algorithm 
 

Explained the above method more clearly. We 
employed techniques from Visual SLAM 
(Simultaneous Localization and Mapping) to 
initially estimate the positions of WiFi Aps and our 
algorithm about estimating WiFi Aps is shown 
below in Figure 5 (Algorithm 1). Once these 
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positions are approximated, they are used in 
conjunction with WiFi RSSI (Received Signal 
Strength Indicator) values to enhance pose 
estimation. The algorithm for pose estimation is 
shown below in Figure 6 (Algorithm 2). This 
hybrid approach leverages the strengths of both 
Visual SLAM and WiFi signal analysis. By 
estimating WiFi locations first, the system can use 
these locations as additional data points for more 
accurate pose estimation than would be possible by 
relying solely on WiFi RSSI values for localization. 
This method provides a more robust and precise 
navigation framework by systematically refining 
both the map of the environment and the robot's 
understanding of its position within it. 
 

 
Fig. 6: Estimation Access Point Algorithm 
 
3.4  Visual SLAM Module 
 

3.4.1  Base Visual SLAM Algorithm 

ORB-SLAM3, [1] is a famous open-source and 
well-structured visual SLAM framework, which is 
used as a research tool by many students and 
researchers. We choose ORB-SLAM3 as the based 
visual SLAM algorithm in our system, finding out 
its weakness and improving it by integrating WiFi 
as an extra sensor, [9]. 
 
3.4.2  Loop Detection Submodule 

To address the issue of false loop closures, we 
enhance the loop detection mechanism in the visual 
SLAM module by incorporating WiFi signals. We 
assume that WiFi RSSI values received in different 
locations from the same access points should be 
distinct and obtained in different locations should 
be distinguishable. This helps to rectify false loop 
closures that arise due to similar appearances in 
two distinct locations shown in Figure 7. 
 

 
Fig. 7: Loop detection, [1], [8] 
 

Associated with Parts 3.3 and 3.4, our system 
combines the advantages of both WiFi and Visual 
SLAM to achieve a more robust navigation 
solution. While WiFi-based indoor positioning 
techniques typically offer meter-level accuracy, 
they lack the precision of centimeter-level accuracy. 
On the other hand, relying solely on Visual SLAM 
can lead to instability in environments with 
insufficient features. By fusing these two 
technologies in our system, we create a synergy 
akin to an ensemble method in deep learning. 
Incorporating multiple sensors and optimizing their 
positioning allows us to achieve more robust and 
precise navigation outcomes. 

 
 

4   Experiment 
 

4.1  Dataset Setup of Experiments 
There are a bunch of well visual SLAM 
benchmarks such as TUM dataset [11], EuRoC [1] 
dataset and KITTI dataset, [7], however, according 
to the best of our knowledge, there is not a SLAM 
dataset consists of RGB-D images and WiFi signal 
that can be used in our experiments to determine 
our system performance. As a result, we 
constructed our dataset on the fifth floor of the 
college of Electrical Engineering and Computer 
Science Building (CSIE), National Taiwan 
University. We use an RGB-D camera, Realsense 
D435i, produced by Intel to collect RGB-D images 
and an ASUS Zenbook pro15 laptop with WiFi 
6E(802.11ax) network card to collect RSSI signal 
from access points in the environment shown in 
Figure 8. 
 

 
Fig. 8: Dataset Setup of  Experiments 
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CSIE 5F is a typical corridor environment. The 
total area of our experimental space is 
approximately 870 square meters, and it consists of 
around 326 access points, including WiFi 2.4G 
(802.11b) and WiFi 5G (802.11ac). For a visual 
representation of the access points detected during 
our data collection process, please refer to Figure 6. 

 

 
Fig. 9: Access Points Distribution 
 
4.2  Data Preprocessing 

 
Fig. 10:  Data preprocess 

 
Due to the inherent characteristics of the 

devices, the RGB-D image data is captured at a 
frequency of 15 frames per second (fps), while the 
WiFi RSSI data is collected at a considerably lower 
frequency of only 1 fps. To ensure accurate data 
preprocessing, it is essential to conduct a data 
association and synchronization process to align 
and harmonize the two inputs. For this purpose, we 
leverage the capabilities of ROS (Robot Operating 
System), a versatile and open-source framework 
widely adopted in robotics for developing and 
programming robotic systems. ROS provides a rich 
collection of tools and libraries that enable us to 
associate the RGB-D images and WiFi data by 
aligning their timestamps, ensuring synchronization, 
and merging them into a unified data stream that 
seamlessly integrates into our system. 

 
4.3  Evaluation and Comparison 
In Wifi SLAM module,we use RSSI signal strength. 
Only an RSSI value greater than β(dBm) will be 
considered as valid data. To determine the optimal 
threshold, we conducted tests using various RSSI 

values ranging from -100 dBm to -40 dBm. After 
careful evaluation, we have decided to set the 
threshold at -60 dBm. This threshold demonstrated 
lower error and maintained an adequate number of 
valid access points, making it a suitable choice for 
our system. The experimental result is depicted in 
Figure 11. 
 

 
Fig. 11: RSSI Threshold Table 

 
As our system aims to create a robust and 

sustainable solution that can continuously update 
the vision mapping and WiFi mapping information, 
we conducted a test to simulate the long-term 
operation of a robot in the environment. As 
depicted in Figure 9 and Figure 10, our WiFi 
SLAM module demonstrates the capability to 
improve its accuracy in real-time without requiring 
manual interventions shown in Figure 12 and 
Figure 13. 

 

 
Fig. 12: Longterm Accuracy Table 
 

 
Fig. 13: Longterm Accuracy Graph 
 

Compared with Offline Methods, WKNN 
(Weighted k-Nearest Neighbors) [11] and Random 
Forest, [4] are commonly employed techniques for 
WiFi localization. Conversely, Wi-Fi DSAR [12], 
[13] is a machine learning-based approach that 
utilizes an auto-encoder. In Figure 11 the error 
comparison between our method and these 
approaches is depicted. The results indicate that 
despite the challenge of online updating without 
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prior knowledge, which is crucial for a SLAM 
system, our method maintains an acceptable level 
of performance when compared to these offline 
database-dependent methods. 

 

 
Fig. 14: Comparison with Offline Methods 

 
Compared with EKF, the filter-based approach 

has, in theory, lower accuracy compared to the 
graph optimization approach. In practical terms, the 
error comparison between our method and EKF 
(Extended Kalman Filter) depicted in Figure 14 and 
Figure 15 shows that our method utilizing graph 
optimization exhibits higher accuracy than the EKF 
approach. 

 

 
Fig. 15: Comparison with EKF 
 

In the Visual SLAM module, to showcase the 
robustness of our system against common 
challenges such as lighting variations, occlusion, 
and featureless environments, and to address the 
issue of false loop detection caused by similar 
visual scenes, we performed a series of experiments 
specifically designed to simulate these scenarios. 

As depicted in Figure 13, we intentionally 
created an environment with insufficient lighting to 
observe the behavior of the system. In the case of 
pure visual SLAM, the system experienced track 
loss, resulting in an incorrect trajectory. However, 
when we integrated the WiFi SLAM module to 
compensate for the challenging lighting conditions, 
the trajectory remained correct. This demonstrates 
the effectiveness of the WiFi SLAM module in 
improving robustness and ensuring accurate 
trajectory estimation even in challenging lighting 
situations. Figure 14 provides additional insight 
into the performance of the two modules. When the 
visual SLAM module lost track, the minimum 
eigenvalue associated with it approached 0, 
indicating a degenerated state. In contrast, the 
minimum eigenvalue of the WiFi SLAM module 
remained higher than 300. This demonstrates that 
even when the visual information degrades, the 
WiFi signal can still provide reliable measurements 
without suffering from degeneracy. 

 

 
Fig. 16: Lighting Challenge Trajectories 
 

 
Fig. 17: Minimum Eigenvalue Comparison 
(Lighting) 
   

Similarly, we designed a scenario where a 
person continuously walked around the 
environment, leading to tracking loss due to 
occlusion. As illustrated in Figure 16 and Figure 17, 
the integration of the WiFi SLAM module, [14], 
proved beneficial as it helped overcome the 
occlusion challenge, leading to accurate final 
results. Furthermore, Figure 17 displays a 
comparison of the minimum eigenvalues. It 
demonstrates that the WiFi SLAM module provides 
a non-degenerate constraint, improving the 
system’s robustness when the visual SLAM module 
experiences degradation. 

 

 
Fig. 18: Occlusion Challenge Trajectories  
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Fig. 19: Minimum Eigenvalue Comparison 
(Occlusion), [12] 
 

Finally, as part of our evaluation, we 
intentionally designed two featureless scenes 
within the environment to assess the performance 
of our system. The results, depicted in Figure 18 
and Figure 19, unequivocally demonstrate the 
significant contribution of WiFi integration in 
enabling the system to effectively handle 
featureless scenes. The WiFi integration proves to 
be a valuable asset in overcoming the challenges 
posed by the absence of distinct visual features, 
ultimately enhancing the system’s performance and 
reliability. 

 

 
Fig. 20: Feature-less Scene Challenge Trajectories 
 

 
Fig. 21: Minimum Eigenvalue Comparison 
(Featureless), [12] 
 

To assess the system’s capability to eliminate 
false loop detection caused by two visually similar 
scenes in different locations, [15], we deliberately 
designed visually similar environments at two 
distinct places. 

The result depicted in Figure 20, Figure 21 and 
Figure 22 demonstrates that the original ORB-

SLAM3 fails to differentiate between these two 
locations, leading to a false loop detection. As a 
consequence, the system corrects the trajectory 
based on this false loop detection, resulting in an 
incorrect trajectory. 

In contrast, our system incorporates WiFi 
information to filter the loop detection process. 
Consequently, these two visually similar places are 
not identified as a loop, preventing the system from 
making incorrect trajectory corrections based on 
false loop detections. If the Visual extraction is 
recognized as the same place (but it is not), our 
Wifi fingerprint system will prevent it from false 
loop detections by RSSI value outlier removal. 

By Figure 20 displayed, we can discover the 
trajectory can recognize it is not in the same place 
so that it will not cause false loop detection which 
is displayed in the bottom right corner of the image. 
If we just use pure Visual SLAM (ORBSLAM3), it 
will cause false loop detection and thus the 
accuracy would drop very sharply. 

 
Fig. 22: False Loop Detection, [1], [4] 
 
 
5   Conclusion 
Our contribution reproduced a novel structure 
combine Visual SLAM and Wifi real-time 
interactive framework positioning system and 
mutually helps each other drawback. Our research 
leverages data from both WiFi and visual sensors, 
along with degeneracy detection techniques which 
are more robust then ORBSLAM3, [1]. This 
framework effectively enhances the robustness of 
visual SLAM by addressing challenges such as 
lighting variations, occlusion, and featureless 
scenes. Additionally, our proposed solution 
successfully eliminates the issue of false loop 
detection. By combining WiFi and visual 
information and implementing advanced detection 
mechanisms, our framework offers an innovative 
approach to improving the performance and 
reliability of SLAM systems. 

However, SLAM and Wifi positioning still 
have some limitations. Although it can have 
centimeter-level accuracy, we cannot order them to 
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do some task simply by this framework. With the 
rise of multimodal research like VLM(Visual 
Language Model) and LLM (Large Language 
Model) we can not only position but also navigate 
or order instructions to robot.This will become our 
future work to research to improve our system. 
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