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Abstract: - Oversampling is often applied as a means to win a better knowledge model. Several oversampling 

methods based on synthetic instances have been suggested, and SMOTE is one of the representative 

oversampling methods that can generate synthetic instances of a minor class. Until now, the oversampled data 

has been used conventionally to train machine learning models without statistical analysis, so it is not certain 

that the machine learning models will be fine for unseen cases in the future. However, because such synthetic 

data is different from the original data, we may wonder how much it resembles the original data so that the 

oversampled data is worth using to train machine learning models. For this purpose, I conducted this study on a 

representative dataset called wine data in the UCI machine learning repository, which is one of the datasets that 

has been experimented with by many researchers in research for knowledge discovery models. I generated 

synthetic data iteratively using SMOTE, and I compared the synthetic data with the original data of wine to see 

if it was statistically reliable using a box plot and t-test.  Moreover, since training a machine learning model by 

supplying more high-quality training instances increases the probability of obtaining a machine learning model 

with higher accuracy, it was also checked whether a better machine learning model of random forests can be 

obtained by generating much more synthetic data than the original data and using it for training the random 

forests. The results of the experiment showed that small-scale oversampling produced synthetic data with 

statistical characteristics that were statistically slightly different from the original data, but when the 

oversampling rate was relatively high, it was possible to generate data with statistical characteristics similar to 

the original data, in other words, after generating high-quality training data, and by using it to train the random 

forests, it was possible to generate random forests with higher accuracy than using the original data alone, from 

97.75% to 100%. Therefore, by supplying additional statistically reliable synthetic data as a way of 

oversampling, it was possible to create a machine-learning model with a higher predictive rate.  
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1  Introduction 
Discovering knowledge models with high accuracy 
on a given dataset is one of the most important 
issues in the field of machine learning and data 
mining. Since the accuracy of a machine learning 
algorithm can vary not only on the data given but 
also on how the algorithm processes the data, many 
machine learning algorithms have been proposed, 
and many experimental data have been open to the 
public in various areas, [1]. Because the best 
machine learning algorithm can vary from data to 
data, so, to encourage researchers to find the best 
machine learning algorithm for each data set, there 
are several public data sites, and the UCI machine 
learning repository, [2], is one of the most 
prominent sites. The site has several data sets and 
related research results that have been done using 

those data sets. Among the data in the UCI machine 
learning repository, the wine data attracted 
particular attention because we can achieve the high 
accuracy of several machine learning models even 
though the size of the data is small. In other words, 
the quality of the data is good. For example, various 
machine learning models, like logistic regression, 
neural networks, support vector machine, 
xgboost, and random forests, have been proposed 
for the wine data, and most of them have been 
reported to have a high accuracy of 95%±α, [3]. On 
the other hand, according to experiments, some 
machine learning algorithms do not have a high 
accuracy for the data. For example, locally weighted 
learning (LWL) has an accuracy of 88.8%, while 
zeroR has a low accuracy of 39.9% in 10-fold cross-
validation. If the quality of the data is good and the 
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machine learning algorithm applied is suitable for 
the data, then we can expect the oversampled data to 
be good also by applying oversampling to the data, 
but we do not know how and how much 
oversampling should be done.  

Meanwhile, it is true that the larger the data used 
for training, the higher the accuracy of machine 
learning algorithms. Of course, the data supplied for 
this must be of good quality and may represent the 
entire population well. To obtain more training data, 
fields such as image recognition make it easier for 
humans to label new image data that can be added to 
train machine learning models because it makes it 
easier for humans to recognize what an object is, 
[4], while data from science and social experiments 
rely on statistical methods because it is difficult for 
humans to evaluate the data.  

In addition, in classification problems, when the 
number of data instances differs by class, it is 
common to apply oversampling to ensure that 
minority classes are not discriminated against 
classification. Now, considering that oversampling 
can generate more synthetic data than the original 
data, we want to see if feeding a lot of synthetic data 
into the training of a machine learning model can 
lead to a better machine learning model. Of course, 
we want to conduct a statistical analysis of how 
statistically reliable such training data is, because 
until now, the oversampled data has been used 
conventionally to train machine learning models 
without statistical analysis, so it is not certain that 
the machine learning models will be fine for unseen 
cases in the future. 
     From now on section 2 covers related work, 
section 3 deals with problem formation, section 4 
covers experimentation, and section 5 presents the 
conclusion. 
 

 

2  Related Work 
Wine is one of the most consumed alcoholic 
beverages, and as a result, the analysis of wine-
related public data has attracted the attention of 
many researchers. For example, there are two kinds 
of wine data on the UCI machine learning repository, 
one called ‘wine’ and the other called ‘wine quality’. 
Of these two types of data, we note that it is worth 
oversampling for ‘wine’ data that is relatively small-
sized, yet known to have highly accurate knowledge 
models. The data set contains 178 instances 
consisting of 13 chemical constituents to classify 
three wine cultivars from Italy. Since wine data was 
loaded into the UCI machine learning repository in 
1991, a lot of research has been conducted.  

Statistical inference has been studied for 
variables of interest when auxiliary variables are 
observed along with the variables of interest that do 
not have enough data, and an experiment was done 
using the wine data, [5]. More recently, detailed 
analysis for each 13 attributes of the wine data was 
given, and neural networks and support vector 
machine classifiers were made to generate accurate 
classifiers achieving the accuracy of 94.4% ~ 97.8% 
in 5-fold cross-validation, [6]. An ensemble-based 
method called the ensemble learning method for 
spectral clustering reported achieving a performance 
of 75.8% in clustering, [7]. Graph neural networks 
achieved an accuracy of 97.5% to 98% in 10-fold 
cross-validation for the data set, [8]. The multi-
output neural tree that has a tree structure whose 
nodes are neural achieved an error rate of 15% to 
16% where 20% of the data is used for testing, [9].  

When we do not have sufficient sized data, we 
may rely on oversampling. Simple oversampling 
oversamples a specific class to give more attention 
to training a machine learning model, [10]. Because 
simple oversampling increases the likelihood of 
overfitting by introducing replicated samples, 
oversampling based on synthetic samples was 
invented, [11].  SMOTE is one of the representative 
oversampling methods that generate synthetic 
instances of a minor class. SMOTE stands for 
Synthetic Minority Over-sampling TEchnique. It 
selects k-nearest neighbors and generates a synthetic 
data instance by multiplying an interval value of 
continuous attributes of the k-nearest neighbors with 
a random number between 0 and 1, [12]. There are 
several variant algorithms of SMOTE. Among them, 
borderline-SMOTE and ADSYN (Adaptive 
Synthetic Sampling Approach) may be two 
representatives. Borderline-SMOTE uses a synthetic 
data generation oversampling method that focuses 
on the hard-to-classify parts of the sample by 
increasing the number of samples that are borderline 
with other major classes, [13]. ADASYN aims to 
improve the accuracy of classification by generating 
synthetic data for minority classes, which are easy 
to misclassify because their values are similar to 
those of major classes, [14]. On the other hand, an 
algorithm called SNOCC that creates multiple 
clusters for each major and minority class and 
oversamples each cluster belonging to the minority 
class so that it will become similar to the number of 
instances belonging to the majority class has been 
suggested, [15] and argued that the synthetic data 
generated by SNOCC shows better statistical 
characteristics than the synthetic data generated by 
SMOTE by considering the entire neighborhood in 
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the cluster while SMOTE considers a fixed number 
of the nearest neighbors, k.  

Random forests generate many random decision 
trees based on random sampling with replacement 
and use the many decision trees to classify, [16]. 
When each decision tree is generated, a random 
selection of root attributes for each subtree and no 
pruning is performed, and classes are determined by 
majority vote by the decision trees in the forest so 
that overfitting can be avoided. The most important 
property of random forests is that it has randomness 
when creating the trees that make up the forest so 
that the prediction of each tree is de-correlated with 
each other, and as a result, the generalization 
performance is improved. Random forests are 
known to be one of the most reasonable machine 
learning algorithms across a wide range of data, [17].  
Other factors that affect the performance of random 
forests are the size and dimensionality of the sample. 
Because a smaller sample size may not represent the 
population well, the sample size may affect the 
performance of random forests, [18] and the 
dimensionality of the data affects the size of the 
sample required to generate good random forests, 
[19]. 
 

 

3  Problem Formulation 
The wine data set has thirteen continuous or 
numerical conditional attributes and one decisional 
attribute that classifies wine quality into three 
classes. The data set is the result of a chemical 
analysis of three different wines of class 1, 2, and 3 
grown in the same region in Italy. According to the 
data description in the UCI machine learning 
repository, [3], several machine learning algorithms 
like logistic regression, neural network, support 
vector, xgboost, and random forests showed high 
accuracy in classification.  

On the other hand, the method of applying 
oversampling as a method to improve the 
knowledge model has been studied, and there are 
two methods of oversampling; Simple oversampling 
and synthetic data-based oversampling like SMOTE. 
In this paper, we want to apply SMOTE to generate 
new synthetic data to avoid overfitting, and by 
identifying the statistical properties of the new 
synthetic data concerning the original data, we aim 
to confirm the quality of the data. 
     Since the accuracy of the machine learning 

model can be improved by supplying high-quality 

training data, we would like to see whether the 

supply of a large amount of high-quality synthetic 

data through oversampling can contribute to the 

improvement of the accuracy of the machine 

learning models. As a means of measuring the 

quality of the data, we want to use a box plot that 

makes it easy to see the mean, median, and quartiles 

as well as outliers by eye. In addition, we want to 
use a t-test to confirm whether the newly created 
data and the original data statistically belong to the 
same population.  

The t-test is a statistical method used to compare 

whether the difference in the mean values between 

two groups is statistically the same or different. In 

other words, in a two-sample t-test, the t-value is the 

mean difference between the two groups divided by 

the mean standard error. Before the t-test, the equal 

variance test will be performed first, and the reason 

for the equal variance test is that it can indirectly 

confirm whether the target of statistical analysis is 

extracted from the same population. Equal variance 

testing of Levene, which is also called Levene’s F-

test, is mainly used because it can be used even 

when there is no certainty that the data is in normal 

distribution, [20]. In the assumption of equal 

variance, if the significance level p-value is greater 

than 0.05, then equal variance can be assumed so 

that Student’s t-test will be applied. If the p-value is 

less than or equal to 0.05, then equal variance 

cannot be assumed, so Welch’s t-test will be applied. 

If we use IBM SPSS for the t-test, [21], the top line 

shows the t-test result when it is equal variance, and 

the bottom line shows the t-test result when it is not 

equal variance. Finally, in the t-test, the smaller the 

p-value, the more significant the difference between 

the two groups is, so the p-value of 0.05 or less is 

the criterion for such a judgment, [22].  
For the box plots, MS Excel 2016 will be used, 

and for the t-test, a well-known tool, IBM SPSS, 
will be used for the experiment. For oversampling 
and to generate random forests an open-source tool 
called Weka will be used, [23].  
 
3.1 Experimental Procedure 
We want to check whether we can find random 
forests of high accuracy by adding synthetic data of 
oversampling for the wine dataset, and we repeat 
oversampling until the random forests are no longer 
improved. Oversampling of 100% on the classes 
with the highest number of misclassifications in the 
resulting confusion matrix will be repeated until 
there is no further improvement in misclassification. 
The misclassification will be judged by two factors. 
The first factor is the number of misclassifications 
in 10-fold CV(cross-validation) when we use the 
original data and oversampled data together for 
training and testing, and the second factor is the 
number of misclassifications of the random forests 
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that are trained by oversampled instances only and 
tested by the original data.  
 When selecting a class for the next iteration, we 

prioritize the results of 10-fold CV, followed by 
the test results of the original data.  

 If we do not have misclassifications in the 10-
fold CV but still have misclassifications in the 
test result by the original data, we also consider 
them for further iteration.  

 If the number of misclassifications in each class 
is identical in 10-fold CV or the test result by 
the original data, a class for the next iteration is 
determined based on the fact that one of them 
has different test results.  

 If the number of misclassifications in each class 
is identical in 10-fold CV and the test result by 
the original data, we pick one of them randomly 
for the next iteration. 

 

 

4  Experimentation 
‘Wine’ data set is used for experiments in the UCI 
machine learning repository, [3]. The goal of 
experiments is to find the best models of random 
forests as accurately as possible based on 
progressive and repetitive oversampling and to 
perform statistical tests on the data.  
 
4.1 Wine Dataset 
The data set is the result of a chemical analysis of 
three different wines of class 1, 2, and 3 grown in 
the same region in Italy. The data set has 178 
records and has 13 conditional attributes and one 
decisional attribute, named class. The 13 conditional 
attributes consist of numerical attributes as in Table 
1.  
 
Table 1. The Property of attributes of the wine data 

set 
Attribute Value Range Distinct 

values 
Mean Standard 

Deviation 
Alcohol 11.03 ~ 14.83 126 13.001 0.812 
Malic acid 0.74 ~ 5.8 133 2.336 1.117 
Ash 1.36 ~ 3.23 79 2.367 0.274 
Alkalinity of Ash 10.6 ~ 30 63 19.495 3.34 
Magnesium 70 ~ 162 53 99.742 14.282 
Total phenols 0.98 ~ 3.88 97 2.295 0.626 
Flavonoids 0.34 ~ 5.08 132 2.029 0.999 
Nonflavonoid 
phenols 

0.13 ~ 0.66 39 0.362 0.124 

Proanthocyanins 0.41 ~ 3.58 101 1.591 0.1572 
Color Intensity 1.28 ~ 13 132 5.058 2.318 
Hue 0.48 ~ 1.71 78 0.957 0.229 
OD280 or OD315 of 
diluted wines 

1.27 ~ 4 122 2.612 0.71 

Proline 278 ~ 1680 121 746.893 314.907 
Class  3 class values (1, 2, 3) 

     Malic acid has a strong link to wine taste. Ash is 
the inorganic matter that remains after evaporation 
and incineration of wine. The alkalinity of ash is a 
measure of weak alkalinity dissolved in water. 
Magnesium has its most significant function as an 
essential component of chlorophyll to the health of 
grapevines. Total phenols in wine are important in 
estimating the taste and health benefits of wine. 
Flavonoids are a type of antioxidant that is high in 
red wines. Nonflavonoid phenols can include 
several subclasses of importance to wine. 
Proanthocyanins are condensed tannins and the most 
abundant class of phenols in wine. OD280/OD315 
of diluted wines determine the protein content of 
various wines. Proline is an amino acid in wine.  
     Table 2 shows random forests for the original 
data set. One thousand random trees are trained and 
tested with 10-fold cross-validation. 
 
Table 2. The result of random forests for the original 

data of the wine data set 
Accuracy in 10-CV (%) Confusion matrix No. of 

Misclassified 
 
97.7528 

58 1 0  
4 1 68 2 

0 0 48 
 
Note that class 1 consists of 59 instances, class 2 

consists of 71 instances, and class 3 consists of 48 
instances. 
 
4.1.1  Progressive and Repetitive Oversampling 
Oversampling of 100% for the classes with the 
highest number of misclassifications in the 
confusion matrix was repeated until there was no 
further improvement in misclassification using 
SMOTE. Default parameters of SMOTE of k = 5 
which is the number of nearest neighbors and seed = 
1 which is the seed for a random number between 0 
to 1 were used. The misclassification in 10-fold 
cross-validation is considered when original data 
and oversampled data are used together for training 
and testing, and also the number of 
misclassifications of the random forests that are 
trained by oversampled instances only and tested by 
the original data. We pick the class with the highest 
number of misclassifications for the next 
oversampling in the 10-fold CV. If the values are 
identical, we pick them randomly. If the 
misclassification in the test with the original data 
still needs to be improved, we do oversampling 
further. Table 3 and Table 4 show the results of the 
experiment, and Table 3 shows the result of the 
experiment using 10-fold cross-validation. 
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Table 3. The result of progressive oversampling 
with 10-CV for wine data 

 
Table 4. The corresponding result of progressive 

oversampling when oversampled data are used for 
training and the original data are used for testing for 

the wine data set 

Table 4 shows the corresponding result of the 
experiment when we use over-sampled instances 
only for training and the original data for testing. 

Note that we do further oversampling after 
iteration 6 because the misclassification in the test 
with original data is still not satisfactory. 
 
4.1.2 Statistical test for Oversampled Data of 

Wine 

Statistical tests are done to see the properties of 
oversampled data for each attribute. Data at 
iterations 4 and 9 are tested because all three classes 
are oversampled for the first time at iteration 4 and 
iteration 9 is the final iteration. 
 
4.1.2.1  Statistical Test for Attribute Alcohol  

Figure 1 shows the 5 box plots for the attribute 
‘alcohol’ in the original data, the data of 10-fold CV 
and oversampled only at iteration 4, and the data of 
10-fold CV and oversampled only at iteration 9 
from left to right respectively. Note that the data of 
10-fold CV contains the original data as well as 
oversampled data. We can see the final 
oversampling generated the data of a similar but 
slightly narrow box. The oversampling at iteration 4 
generated lower Q1(the first quartile), lower Q2(the 
second quartile), lower Q3(the third quartile), and 
lower mean. 
 

 
Fig. 1: Box plots for attribute ‘alcohol’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute alcohol at iterations 4 
and 9. From the test equal variance was assumed, 
because F=5.136 with significance=0.24 for the data 
at iteration 4 and F=3.307 with significance=0.69 
for the data at iteration 9. Table 5 and Table 6 
summarize the results. Table 5 shows the result of 
the t-test for the oversampled data at iteration 4. SD 
means standard deviation in the table. 

Iter- 
ation 
No. 

Oversa
mpled 
classes 

Accuracy 
in 10-CV 
(%) 

Confusion matrix No. of 
Misclass
ified 

 
1 

 
2 

 
98.3963 

58 1 0  
4 1 139 2 

0 0 48 
 
2 

 
2 

 
98.7212 

55 4 0  
5 1 283 0 

0 0 48 
 
3 

 
1  

 
99.5566 

118 0 0  
2 1 283 0 

0 1 47 
 
4 

 
3 

 
99.1968 

117 1 0  
4 1 282 1 

0 1 95 
 
5 

 
2 

 
99.7442 

117 1 0  
2 1 567 0 

0 0 96 
 
6 

 
1 

 
100 

236 0 0  
0 0 568 0 

0 0 96 
 
7 

 
3 

 
99.6988 

236 0 0  
3 0 567 1 

0 2 190 
 
8 

 
3 

 
99.8316 

235 1 0  
2 1 567 0 

0 0 384 
 
9 

 
1 

 
100 

472 0 0  
0 0 568 0 

0 0 384 

Iter- 
ation 
No, 

Over-
sampled 
classes 

Accuracy with 
the original data 
(%) 

Confusion 
matrix 

No. of 
Misclassified 

 
1 

 
2 

 
39.8876 

0 59   
107 0 71 0 

0 48 0 
 
2 

 
2 

 
39.8876 

0 59   
107 0 71 0 

0 48 0 
 
3 

 
1 

 
70.7068 

55 4 0  
50 0 71 0 

2 46 47 
 
4 

 
3 

 
94.9438 

54 5 0  
9 0 71 0 

0 4 44 
 
5 

 
2 

 
94.9438 

55 4 0  
9 0 71 0 

0 5 43 
 
6 

 
1 

 
97.7528 

58 1 0  
4 0 71 0 

0 3 45 
 
7 

 
3 

 
98.3141 

58 1 0  
3 0 71 0 

0 2 46 
 
8 

 
3 

 
99.4382 

58 1 0  
1 0 71 0 

0 0 48 
 
9 

 
1 

 
100 

59 0 0  
0 0 71 0 

0 0 48 
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Table 5. Result of the t-test for the oversampled data 
at iteration 4 for the attribute alcohol 
Data at Mean SD t p 
Original 13.0006 0.8118 4.084 0.0 
Iteration 4 12.7120 0.7230 

 
Because p=0.0 which is less than 0.05, we can 

see that the difference in the means is statistically 
significant, so we can say that the oversampled data 
only for attribute alcohol are not good at iteration 4. 
Table 6 shows the result of the t-test for the 
oversampled data at iteration 9. 
 
Table 6. Result of the t-test for the oversampled data 

at iteration 9 for the attribute alcohol 
Data at Mean SD t p 
Original 13.0006 0.8118 -0.297 0.766 
Iteration 9 13.0183 0.7324 

 
Because p=0.766, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data for attribute alcohol are good at 
iteration 9.  
 
4.1.2.2  Statistical Test for Attribute Malic Acid 

Figure 2 shows the 5 box plots for the attribute 
‘malic acid’. We can see the final oversampling 
generated the data of a similar but slightly narrow 
box. But, the oversampling at iteration 4 generated 
lower Q3, lower mean, and lower upper bound. 
 

 
Fig. 2: Box plots for attribute ‘malic acid’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 

 
A t-test for the mean was carried out on the 

synthetic data for the attribute malic acid at 
iterations 4 and 9. Because F=13.421 with 
significance=0.0 for the data at iteration 4, we 
cannot assume equal variance for the original and 
oversampled data at iteration 4. Table 7 shows the 

result of the t-test for the oversampled data at 
iteration 4. 
 
Table 7. Result of the t-test for the oversampled data 

at iteration 4 for the attribute malic acid 
Data at Mean SD t p 
Original 2.3363 1.1171 1.861 0.064 
Iteration 4 2.1535 0.9198 

 
Because p=0.064, we can see that the difference 

in the means is statistically insignificant, so we can 
say that the oversampled data only for attribute 
malic acid are good at iteration 4.  

Because F=3.879 with significance=0.049 for 
the data at iteration 9, we cannot assume equal 
variance. Table 8 shows the result of the t-test for 
the oversampled data at iteration 9. 
 
Table 8. Result of the t-test for the oversampled data 

at iteration 9 for the attribute malic acid 
Data at Mean SD t p 
Original 2.3363 1.1171 -1.051 0.294 
Iteration 9 2.4300 0.9970 

 
Because p=0.294, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data for attribute malic acid are good at 
iteration 9.  
 
4.1.2.3  Statistical Test for Attribute Ash 

Figure 3 shows the 5 box plots for the attribute ‘ash’. 
We can see the final oversampling generated the 
data of a similar but slightly narrow box as we can 
see the Q1 and Q3. The oversampling at iteration 4 
generated lower Q1, lower Q2, lower Q3, and lower 
mean. 
 

 
Fig. 3: Box plots for attribute ‘ash’ in the original 
data, the data of 10-fold CV and oversampled only 
at iteration 4, and the data of 10-fold CV and 
oversampled only at iteration 9 from left to right 
respectively 
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A t-test for the mean was carried out on the 
synthetic data for the attribute ash at iterations 4 and 
9. From the test equal variance was assumed, 
because F=1.961 with significance=0.162 for the 
data at iteration 4. Table 9 shows the result of the t-
test for the oversampled data at iteration 4. 
 
Table 9. Result of the t-test for the oversampled data 

at iteration 4 for the attribute ash 
Data at Mean SD t p 
Original 2.3665 0.2743 2.675 0.008 
Iteration 4 2.3022 0.2467 

 
Because p=0.008, which is less than 0.05, we 

can see that the difference in the means is 
statistically significant, so we can say that the 
oversampled data only for attribute ash are not good 
at iteration 4. Because F=8.253 with 
significance=0.009 for the data at iteration 9, we 
cannot assume equal variance. Table 10 shows the 
result of the t-test for the oversampled data at 
iteration 9. 

 
Table 10. Result of the t-test for the oversampled 

data at iteration 9 for the attribute ash 
Data at Mean SD t p 
Original 2.3665 0.2743 0.301 0.763 
Iteration 9 2.3600 0.2274 

 
Because p=0.763, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute ash are good at 
iteration 9.  

 
4.1.2.4  Statistical Test for Attribute Alkalinity of 

 Ash 

Figure 4 shows the 5 box plots for the attribute 
‘alkalinity of ash’. We can see the final 
oversampling generated the data of a similar but 
slightly narrow box as we can see the Q1 and Q3. 
The oversampling at iteration 4 generated a larger 
Q1, and lower upper boundary, and a smaller lower 
boundary. 

A t-test for the mean was carried out on the 
synthetic data for the attribute alkalinity of ash at 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=11.666 with 
significance=0.001 for the data at iteration 4 and 
F=12.557 with significance=0.0 for the data at 
iteration 9. Table 11 and Table 12 summarize the 
results. Table 11 shows the result of the t-test for the 
oversampled data at iteration 4. 
 

 
Fig. 4: Box plots for attribute ‘alkalinity of ash’ in 
the original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 
 

Table 11. Result of the t-test for the oversampled 
data at iteration 4 for the attribute alkalinity of ash 

Data at Mean SD t p 
Original 19.4949 3.3396 -1.095 0.275 
Iteration 4 19.8115 2.5911 

 
Because p=0.275, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute alkalinity of ash 
are good at iteration 4. Table 12 shows the result of 
the t-test for the oversampled data at iteration 9. 
 

Table 12. Result of the t-test for the oversampled 
data at iteration 9 for the attribute alkalinity of ash 

Data at Mean SD t p 
Original 19.4949 3.3396 -0.263 0.793 
Iteration 9 19.5637 2.6764 

 
Because p=0.793, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute alkalinity of ash 
are good at iteration 9.  

 
4.1.2.5  Statistical Test for Attribute Magnesium 

Figure 5 shows the 5 box plots for the attribute 
‘magnesium’. We can see the final oversampling 
generated the data of a similar but slightly narrow 
box as we can see the Q1, Q3, upper, and lower 
boundary. The oversampling at iteration 4 generated 
higher Q1, lower Q2, lower Q3, lower mean, and 
lower upper boundary. 
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Fig. 5: Box plots for attribute ‘magnesium’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute magnesium from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=6.185 with 
significance=0.013 for the data at iteration 4 and 
F=8.827 with significance=0.003 for the data at 
iteration 9. Table 13 and Table 14 summarize the 
results. Table 13 shows the result of the t-test for the 
oversampled data at iteration 4. 
 

Table 13. Result of the t-test for the oversampled 
data at iteration 4 for the attribute magnesium 

Data at Mean SD t p 
Original 99.7416 14.2825 2.764 0.006 
Iteration 4 96.2611 11.7675 

 
Because p=0.006, which is less than 0.05, we 

can see that the difference in the means is 
statistically significant, so we can say that the 
oversampled data only for attribute magnesium are 
not good at iteration 4. Table 14 shows the result of 
the t-test for the oversampled data at iteration 9. 
 

Table 14. Result of the t-test for the oversampled 
data at iteration 9 for the attribute magnesium 

Data at Mean SD t p 
Original 99.7416 14.2825 0.749 0.454 
Iteration 9 98.9025 11.5992 

 
Because p=0.454, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute magnesium are 
good at iteration 9.  
 

4.1.2.6 Statistical Test for Attribute Total 

Phenols 

Figure 6 shows the 5 box plots for attribute ‘total 
phenols’. We can see the final oversampling 
generated the data of a similar but slightly narrow 
box as we can see the Q1, Q3, upper, and lower 
boundary. However, the oversampling at iteration 4 
generated a larger Q1, lower Q2, and lower Q3. 
 

 
Fig. 6: Box plots for attribute ‘total phenols’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute total phenols from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=10.431 with 
significance=0.001 for the data at iteration 4. Table 
15 shows the result of the t-test for the oversampled 
data at iteration 4. 
 

Table 15. Result of the t-test for the oversampled 
data at iteration 4 for the attribute total phenols 

Data at Mean SD t p 
Original 2.2951 0.6259 0.283 0.777 
Iteration 4 2.2794 0.5339 

 
Because p=0.777, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute total phenols are 
good at iteration 4. Because F=1.987 with 
significance=0.159 for the data at iteration 9, we can 
assume equal variance. Table 16 shows the result of 
the t-test for the oversampled data at iteration 9. 
 

Table 16. Result of the t-test for the oversampled 
data at iteration 9 for the attribute total phenols 

Data at Mean SD t p 
Original 2.2951 0.6259 -0.069 0.945 
Iteration 9 2.2918 0.5825 
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Because p=0.945, which is greater than 0.05, we 
can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute total phenols are 
good at iteration 9.  
 
4.1.2.7  Statistical Test for Attribute Flavonoids 

Figure 7 shows the 5 box plots for the attribute 
‘flavonoids’. We can see the final oversampling 
generated the data of a similar but slightly narrow 
box as we can see the Q1, Q3, upper, and lower 
boundary. But, the oversampling at iteration 4 
generated larger Q1, lower Q2, lower Q3, lower 
mean and lower upper boundary. 
 

 
Fig. 7: Box plots for attribute ‘flavonoids’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute flavonoids from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=26.164 with 
significance=0.0 for the data at iteration 4. Table 17 
shows the result of the t-test for the oversampled 
data at iteration 4. 
 

Table 17. Result of the t-test for the oversampled 
data at iteration 4 for the attribute flavonoids 

Data at Mean SD t p 
Original 2.0293 0.9989 -0.147 0.883 
Iteration 4 2.0420 0.7753 

 
Because p=0.883, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute flavonoids are 
good at iteration 4. Because F=1.06 with 
significance=0.303 for the data at iteration 9, we can 
assume equal variance. Table 18 shows the result of 
the t-test for the oversampled data at iteration 9. 
 

Table 18. Result of the t-test for the oversampled 
data at iteration 9 for the attribute flavonoids 

Data at Mean SD t p 
Original 2.0293 0.9989 0.102 0.919 
Iteration 9 2.0215 0.9394 

 
Because p=0.919, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute flavonoids are 
good at iteration 9.  
 
4.1.2.8 Statistical Test for Attribute Nonflavonoid 

Phenols 

Figure 8 shows the 5 box plots for the attribute 
‘nonflavonoid phenols’. We can see the final 
oversampling generated the data of a similar but 
slightly narrow box as we can see the Q1 and Q3. 
However, the oversampling at iteration 4 generated 
larger Q1, larger Q2, and lower Q3. 
 

Fig. 8: Box plots for attribute ‘nonflavonoid phenols’ 
in the original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute nonflavonoid phenols 
at iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=14.807 with 
significance=0.0 for the data at iteration 4. Table 19 
shows the result of the t-test for the oversampled 
data at iteration 4. 
 

Table 19. Result of the t-test for the oversampled 
data at iteration 4 for the attribute nonflavonoid 

phenols 
Data at Mean SD t p 
Original 0.3619 0.1245 -0.046 0.963 
Iteration 4 0.3624 0.1022 

 
Because p=0.963, which is greater than 0.05, we 

can see that the difference in the means is 
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statistically insignificant, we can say that the 
oversampled data only for attribute nonflavonoid 
phenols are good at iteration 4. Because F=12.677 
with significance=0.0 for the data at iteration 9, we 
cannot assume equal variance. Table 20 shows the 
result of the t-test for the oversampled data at 
iteration 9. 
 

Table 20. Result of the t-test for the oversampled 
data at iteration 9 for the attribute nonflavonoid 

phenols 
Data at Mean SD t p 
Original 0.3619 0.1245 -0.113 0.910 
Iteration 9 0.3630 0.1054 

 
Because p=0.910, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute nonflavonoid 
phenols are good at iteration 9. 

  
4.1.2.9 Statistical Test for Attribute 

 Proanthocyanins 

Figure 9 shows the 5 box plots for the attribute 
‘proanthocyanins’. We can see the final 
oversampling generated the data of a similar box. 
The oversampling at iteration 4 generated larger Q1, 
lower Q3, and smaller upper boundary. 
 

 
Fig. 9: Box plots for attribute ‘proanthocyanins’ in 
the original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively. 

 
A t-test for the mean was carried out on the 

synthetic data for the attribute proanthocyanins from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=5.056 with 
significance=0.025 for the data at iteration 4. Table 
21 shows the result of the t-test for the oversampled 
data at iteration 4. 
 

Table 21. Result of the t-test for the oversampled 
data at iteration 4 for the attribute proanthocyanins 

Data at Mean SD t p 
Original 1.5909 0.5724 0.123 0.902 
Iteration 4 1.5846 0.4906 

 
Because p=0.902, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute proanthocyanins 
are good at iteration 4. Because F=5.505 with 
significance=0.019 for the data at iteration 9, we 
cannot assume equal variance. Table 22 shows the 
result of the t-test for the oversampled data at 
iteration 9. 
 

Table 22. Result of the t-test for the oversampled 
data at iteration 9 for the attribute proanthocyanins 

Data at Mean SD t p 
Original 1.5909 0.5724 -0.462 0.645 
Iteration 9 1.5701 0.4926 

 
Because p=0.645, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute proanthocyanins 
are good at iteration 9. 

 
4.1.2.10 Statistical Test for Attribute Color 

Intensity 

Figure 10 shows the 5 box plots for the attribute 
‘color intensity’. We can see the final oversampling 
generated the data of a similar box. The 
oversampling at iteration 4 generated lower Q1, 
lower Q2, lower Q3, lower mean, smaller lower 
boundary, and smaller upper boundary. 
 

 
Fig. 10: Box plots for attribute ‘color intensity’ in 
the original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively 
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A t-test for the mean was carried out on the 
synthetic data for the attribute color intensity from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=9.129 with 
significance=0.003 for iteration 4. Table 23 shows 
the result of the t-test for the oversampled data at 
iteration 4. 
 

Table 23. Result of the t-test for the oversampled 
data at iteration 4 for the attribute color intensity 

Data at Mean SD t p 
Original 5.0581 2.3183 4.202 0.0 
Iteration 4 4.2042 1.8848 

 
Because p=0.0, which is less than 0.05, we can 

see that the difference in the means is statistically 
significant, so we can say that the oversampled data 
only for attribute color intensity are not good at 
iteration 4. Because F=2.529 with 
significance=0.112 for the data at iteration 9, we can 
assume equal variance. Table 24 shows the result of 
the t-test for the oversampled data at iteration 9. 
 

Table 24. Result of the t-test for the oversampled 
data at iteration 9 for the attribute color intensity 

Data at Mean SD t p 
Original 5.0581 2.3183 0.045 0.964 
Iteration 9 5.0504 2.0988 

 
Because p=0.964, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute color intensity 
are good at iteration 9.  
 
4.1.2.11  Statistical Test for Attribute Hue 

Figure 11 shows the 5 box plots for the attribute 
‘hue’. We can see the final oversampling generated 
the data of a similar but slightly narrow box as we 
can see the Q1 and Q3. The oversampling at 
iteration 4 generated a larger Q1, larger Q2, lower 
Q3, and larger mean. 

 
Fig. 11: Box plots for attribute ‘hue’ in the original 
data, the data of 10-fold CV and oversampled only 

at iteration 4, and the data of 10-fold CV and 
oversampled only at iteration 9 from left to right 
respectively 
 

A t-test for the mean was carried out on the 
synthetic data for the attribute hue from iterations 4 
and 9. From the test equal variance cannot be 
assumed, because F=9.169 with significance=0.003 
for the data at iteration 4. Table 25 shows the result 
of the t-test for the oversampled data at iteration 4. 
 

Table 25. Result of the t-test for the oversampled 
data at iteration 4 for the attribute hue 

Data at Mean SD t p 
Original 0.9574 0.2286 -1.830 0.068 
Iteration 4 0.9946 0.1956 

 
Because p=0.068, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute hue are good at 
iteration 4. Because F=4.804 with 
significance=0.029 for the data at iteration 9, we 
cannot assume equal variance. Table 26 shows the 
result of the t-test for the oversampled data at 
iteration 9. 
 

Table 26. Result of the t-test for the oversampled 
data at iteration 9 for the attribute hue 
Data at Mean SD t p 
Original 0.9574 0.2286 0.334 0.739 
Iteration 9 0.9514 0.2048 

 
Because p=0.739, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute hue are good at 
iteration 9.  

 
4.1.2.12 Statistical Test for Attribute OD280 or 

OD315 of Diluted Wines 

Figure 12 shows the 5 box plots for the attribute 
‘OD280 or OD315 of diluted wines’. We can see the 
final oversampling generated the data of a similar 
but slightly narrow box as we can see the Q1. But, 
the oversampling at iteration 4 generated larger Q1, 
and smaller Q3. 

A t-test for the mean was carried out on the 
synthetic data for the attribute OD280 or OD315 of 
diluted wines from iterations 4 and 9. From the test 
equal variance cannot be assumed, because 
F=28.069 with significance=0.0 for the data at 
iteration 4. Table 27 shows the result of the t-test for 
the oversampled data at iteration 4. 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2024.21.31 Hyontai Sug

E-ISSN: 2224-3402 328 Volume 21, 2024



Fig. 12: Box plots for attribute ‘OD280 or OD315 of 
diluted wines’ in the original data, the data of 10-
fold CV and oversampled only at iteration 4, and the 
data of 10-fold CV and oversampled only at 
iteration 9 from left to right respectively 

 
 

Table 27. Result of the t-test for the oversampled 
data at iteration 4 for the attribute OD280 or OD315 

of diluted wines 
Data at Mean SD t p 
Original 2.6117 0.7100 -1.127 0.261 
Iteration 4 2.6809 0.5481 

 
Because p=0.261, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute OD280 or 
OD315 of diluted wines are good at iteration 4. 
Because F=4.002 with significance=0.046 for the 
data at iteration 9, we cannot assume equal variance. 
Table 28 shows the result of the t-test for the 
oversampled data at iteration 9. 
 

Table 28. Result of the t-test for the oversampled 
data at iteration 9 for the attribute OD280 or OD315 

of diluted wines 
Data at Mean SD t p 
Original 2.6117 0.7100 0.148 0.883 
Iteration 9 2.6034 0.6461 

 
Because p=0.883, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute OD280 or 
OD315 of diluted wines are good at iteration 9.  

A t-test for the mean was carried out on the 
synthetic data for the attribute proline from 
iterations 4 and 9. From the test equal variance 
cannot be assumed, because F=8.004 with 
significance=0.004 for the data at iteration 4. Table 
29 shows the result of the t-test for the oversampled 
data at iteration 4. 
 

4.1.2.13  Statistical Test for Attribute Proline 

Figure 13 shows the 5 box plots for the attribute 
‘proline’. We can see the final oversampling 
generated the data of a similar box. The 
oversampling at iteration 4 generated lower Q1, 
lower Q2, lower Q3, lower mean, and lower upper 
boundary. 
 

 
Fig. 13: Box plots for attribute ‘proline’ in the 
original data, the data of 10-fold CV and 
oversampled only at iteration 4, and the data of 10-
fold CV and oversampled only at iteration 9 from 
left to right respectively 
 

Table 29. Result of the t-test for the oversampled 
data at iteration 4 for the attribute proline 
Data at Mean SD t p 
Original 746.8933 314.9075 3.669 0.0 
Iteration 4 643.5547 274.9652 

 
Because p=0.0, which is less than 0.05, we can 

see that the difference in the means is statistically 
significant, so we can say that the oversampled data 
only for attribute proline are not good at iteration 4. 
Because F=0.70 with significance=0.792 for the 
data at iteration 9, we can assume equal variance. 
Table 30 shows the result of the t-test for the 
oversampled data at iteration 9. 
 

Table 30. Result of the t-test for the oversampled 
data at iteration 9 for the attribute proline 

Data at Mean SD t p 
Original 746.8933 314.9075 0.065 0.948 
Iteration 9 745.2783 308.9427 

 
Because p=0.948, which is greater than 0.05, we 

can see that the difference in the means is 
statistically insignificant, so we can say that the 
oversampled data only for attribute proline are good 
at iteration 9.  

Table 31 summarizes the t-test for the original 
data and oversampled data of 13 attributes at 
iteration 4 and 9. 
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Table 31. Summary of t-test for the original and 
oversampled data of 13 attributes of wine data 

Attribute Iteration 4 Iteration 9 
t p t p 

Alcohol 4.084 0.0 -0.297 0.761 
Malic acid 1.861 0.064 -1.051 0.294 
ash 2.675 0.008 0.301 0.763 
Alkalinity of 
ash 

-1.095 0.275 -0.263 0.793 

Magnesium 2.764 0.006 0.749 0.454 
Total phenols 0.283 0.777 -0.069 0.945 
Flavonoids -0.147 0.883 0.102 0.919 
Nonflavonoid 
phenols 

-0.046 0.963 -0.113 0.910 

Proantho-
cyanins 

0.123 0.902 -0.462 0.645 

Color 
intensity 

4.202 0.0 0.045 0.964 

Hue -1.830 0.068 0.334 0.739 
OD280 or 
OD315 of 
diluted wines 

 
-1.127 

 
0.261 

 
0.148 

 
0.883 

Proline 3.669 0.0 0.065 0.948 
 
In summary, the oversampled data at iteration 9 

are good for all 13 attributes of the wine data set, 
while only 8 attributes are good and 5 attributes are 
not good as indicated by p values at iteration 4 in 
the statistical sense. Moreover, all the t values of 
attributes are better at iteration 9 than iteration 4 
except for attribute nonflavonoid phenols. 

 
 

5  Conclusion 
Building the most accurate machine learning model 

for a given dataset is a common goal of machine 

learning researchers, so several sites have provided 

experimental data for this purpose, and the UCI 

machine learning repository is one of them. The site 

has a variety of datasets and the size of the datasets 

range from small to very large. When we do not 

have sufficiently sized data, we may rely on 

oversampling. However, because simple 

oversampling increases the likelihood of overfitting 

by introducing replicated samples, several 

oversampling methods based on synthetic samples 

have been suggested, and SMOTE is one of the 

representative oversampling methods that can 

generate synthetic instances or samples of a minor 

class. Until now, oversampled data has been used 

conventionally to train machine learning models 

without statistical analysis, so it is not certain that 

the machine learning models will be fine for unseen 

cases in the future. However, because such synthetic 

data is different from the original data, we may 

wonder how much it resembles the original data so 

that the synthetic data may be used to improve 

machine learning models. In this sense, it is 

necessary to compare the synthetic data with the 

original data to see if it is statistically reliable. For 

this purpose, I conducted the study on a 

representative dataset called wine data in the UCI 

machine learning repository, which is one of the 

datasets that has been widely used by many 

researchers in research for various knowledge 

discovery models.  

On the other hand, since training a machine 

learning model by supplying more high-quality 

training instances increases the probability of 

obtaining a machine learning model with higher 

accuracy, it was also checked whether a better 

machine learning model of random forests that is 

one of representative machine learning models can 

be obtained by generating much more synthetic data 

than the original data and using it for training the 

random forests. As summarized in Table 31, the 

results of the experiment showed that small-scale 

oversampling like oversampling at iteration 4 could 

produce synthetic data with statistical characteristics 

that were statistically slightly different from the 

original data, but when the oversampling rate was 

relatively high with the suggested method, it could 

be possible to generate synthetic data with statistical 

characteristics similar to the original data, and by 

using it to train the random forests, it could be 

possible to generate random forests with higher 

accuracy than using the original data alone. In this 

sense, this paper has contributed to the fact that it 

provides a methodology to increase the reliability of 

the machine learning models built using such 

oversampled data by analyzing the statistical 

characteristics of the oversampled data. So, we 

could supply statistically more reliable synthetic or 

oversampled data by applying the statistical 

methods. Moreover, the proposed method is 

applicable in any field where the conditional 

attributes are composed of numerical values and the 

results of the machine learning algorithm based on 

the original data are more or less good, so it can be 

applied in any field where oversampling is desired. 

Our study can be applied to the oversampling 

method that generates synthetic data by the nearest 

neighbor information and the interpolation method 

when the attributes are numerical attributes, such as 

the SMOTE algorithm. Future research will be 

based on how to determine the nearest neighbor if 

the attributes are categorical, and how to do over-

sampling based on that information. Moreover, if 

there is a large difference in the mean of attribute 

values for each class, the oversampled data 

generated by the proposed method may not satisfy 

the t-test, so in such a case, a balanced oversampling 

may be preferred. 
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