
Mitigating Malware Threats on Emerging Technology:

A Machine Learning Approach

AANMAR ABDOU SALAM1, MD. ABDUL BASED1, MOHAMED ISLAM HOUSSAM2,

MOHAMMAD SHORIF UDDIN3
1Department of Computer Science and Engineering,

Dhaka International University,
Dhaka,

BANGLADESH

2Department of Electrical and Electronic Engineering,
Islamic University of Technology,

Gazipur,
BANGLADESH

3Department of Computer Science and Engineering,

Jahangirnagar University,
Dhaka,

BANGLADESH

Abstract: - Malicious programs and malware threats lead to a substantial vulnerability and pose a fundamental
problem. Nowadays, smart devices are becoming more common, and consequently, the risk of malware
intrusion is highly observed. This paper presents a comprehensive exploration from the initial to the final phase
of an effective strategy and the deployment of a model to detect malware efficiently. The proposed Mitigating
Malware Threats on Emerging Technology framework “MMTET” will help mitigate the risk of intrusion. This
study explores the complexity of handling datasets. Random Forests and Decision Trees serve as machine
learning algorithms for training and testing. Starting with a data collection method to obtain relevant
parameters, this paper highlights the importance of well-curated datasets in training using effective machine
learning models. Data analysis follows a statistical approach, and the visualization tools are used for identifying
inherent biases, imbalances, and trends in datasets. For boosting the dataset’s quality, feature engineering and
selection take a central stage to balance the data with new methodologies and detect relevant features with
correlation analysis. Experimental result shows that Random Forest has the best performance compared to other
methods obtained from different algorithms, with accuracy 98.30%.

Key-Words: - Decision Tree, Random Forest, Dataset, Machine Learning, Threats, MMTET.

Received: July 12, 2023. Revised: February 19, 2024. Accepted: April 13, 2024. Published: May 15, 2024.

1 Introduction
The term "malware", [1], is a combination of
malicious files, or code; it can be defined as a form
of software that is intentionally used by
cybercriminals to obtain unauthorized access to
private or sensitive data. This general term refers to
a wide range of malicious software variations, all of
which are designed for particular, frequent evil
objectives.

Numerous well-known threats of malware are
ransomware, which encrypts important files and
requests a ransom to unlock them; Trojans, which
secretly enters a system by standing as a trustworthy

application; and spyware carefully gathers private
data without the user's awareness. Because malware
is constantly changing, it is crucial to have strong
cybersecurity methods and measures in place to
prevent these threats and protect digital assets from
the constant hazards associated with using the
internet.

 The traditional technique uses a known list of
Indicators Of Compromise (IOCs), such as fill
hashes, specific bytes’ sequences, or network attack
patterns, to identify and eliminate malware before
infiltrating a system. The signature-based detection
method was the most used technique to identify

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 282 Volume 21, 2024

malware, [2], in the field of cybersecurity. It works
by locating patterns or signatures linked to
dangerous software. However, as malware has
become exponentially more prevalent, this once-
dominant approach has run into problems and has
become extremely inefficient. The main problem is
that it can only identify malware signatures that
have been observed, which makes it inefficient for
protecting against new potential threats that have
never been observed before.

The weakness of signature-based detection
becomes more evident since the cybersecurity
profile changes dynamically, requiring an
investigation and the application of more intelligent
and proactive measures to counter the increasing
variety of cyber threats. Signature-based detection
has been the way of detecting malware until the
1990s. Then machine learning-based malware
detection techniques were developed and improved,
[3]. Support Vector Machines (SVM), Random
Forests (RF), Logistic Regression (LR), Naïve
Bayes (NB), and Adaboost , [4], are part of the
machine learning methodology proposed to be
useful in malware detection and classification
techniques, achieving higher performance and
accuracy.

The problem nowadays is not just understanding
how malware evolves but also understanding
effectively how processing large and diverse
datasets works and to extract useful information.
The first is unable to emphasize the significance of
data processing in malware detection. Thoroughly
analyzing and preparing a dataset is essential before
implementing machine learning models to mitigate,
detect, and prevent malware attacks. The complexity
of malware behavior and the variety of possible
attack avenues necessitate a careful approach to data
preparation. This entails correcting problems that
can greatly affect the effectiveness of detection
algorithms, such as imbalances, biases, and missing
or irrelevant data. Considering the above issues,
Mitigating Malware Threats on Emerging
Technology framework “MMTET” is proposed in
this paper that will help mitigate the risk of
intrusion.

In this paper, Section 2 summarizes the
literature review on the existing methodologies
proposed by different authors. Section 3 discusses
the methodology, and Section 4 describes different
models that are applied to this work. The analysis is
done in Section 5, and Section 6 summarizes the
findings and the importance of advancing
cybersecurity solutions for emerging technologies.

2 Related Work
The DREBIN, a detection system is presented in [5],
which allows the identification of malware
applications on smart devices. In DREBIN, the
authors consider a dataset of 131,611 applications
including malware software. Mainly, they apply a
broad statistical analysis to extract features from
different sources and analyse them in an expressive
vector space. The DREBIN worked on 123,453
applications and 5,560 malware samples, and the
detection rate was 93,9%.

The Internet of Medical Things (IoMT) method
is proposed in [6], to categorize and identify
malware. The framework used multidimensional
Deep Learning (DL) approaches for an optimal
feature analysis to detect malware and perform a
classification into categories based on the byte
representation of the executable and linkable file.
For an excellent outcome, different methods were
used for their framework, including Convolutional
Neural Network (CNN), bidirectional Long Short-
Term Memory (LSTM), and other model for IoMT
malware classification comparison. Two separate
datasets, Big-2015 datasets, and CDMC-2020-IoMt-
Malware were used to evaluate the performance of
the framework. D TensorFlow was used on the back
end and Keros for the front-end library, and scikit-
learn for Machine Learning (ML) algorithm
implementation. IoMT framework obtains 95%
accuracy which is better than the other DL
approaches like RNN, LSTN, GRU, CNN, and
bidirectional LSTM. It also gives a better
performance in terms of precision (96%), recall
(95%), and F1-score (95). The result demonstrates
the effectiveness of their framework for malware
detection and classification.

Microsoft malware dataset is used in [7], for
training and testing of Light Gradient Boosted
Machine (LGBM) technique to detect malware
attack on Microsoft cloud as a framework. The
LGBM decision tree model is used for classification
and regression using the AutoML tool and another
model to enhance prediction accuracy. Based on that
study, LGBD was the perfect model to use for
evaluating the framework in [7], on large data. An
outcome of 67,78% of F1-score and 66,18%
accuracy revealed that the suggested methodology
was more accurate in predicting malware than
AutoAI and other models.

The authors propose an innovative security
framework ‘MobiSentry’ in [8], for detecting
malware and mobile categorization with a
substantial dataset comprising 184,486 benign and
21,306 malware instances in Android devices.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 283 Volume 21, 2024

Fig. 1: MMTET Framework

For an extensive examination of their
methodology, they split up the dataset into two
phases: 80% for training and 20% for testing. For
experimentation, five different models have been
put into consideration including KNN, RF, SVM,
Ada, and GBM for training and testing. The GBM
classifier gives a satisfactory result accuracy rate of
96.76% showing the out-performance of the
classifier compared to the other algorithms.
 Some publications on the detection of malware
particularly for the Internet of Things (IoT) are
available in [9], [10] and [11]. However, in this
paper a new framework MMTET is presented to
mitigate the risk of intrusion. The MMTET uses a
huge volume of data (600,250) and achieves 98.30%
accuracy.

3 Proposed Methodology
The workflow of the proposed MMTET framework
for mitigating malware threats on emerging
technologies is shown in Figure 1.

3.1 Data Collection and Cleaning

3.1.1 Data Collection

The dataset that has been examined in this paper
was taken from Kaggle, [12]. The dataset consists of
a very large collection of machine-specific data
where each row is uniquely identified by a machine
identifier. The initial dataset was very large, with 83
columns and 8 million records. However, a subset of

the data was chosen to allow satisfactory processing
within the constraints due to practical considerations
connected to computational resources. The final
dataset which was used to train the machine learning
models was reduced down to a higher quality
number of records, resulting in a subset of 600,250
records.

3.1.2 Data Cleaning

The dataset required extensive cleaning since it had
significant biases when first gathered. There was an
extreme incidence of missing values in several
columns of the dataset that were selected including
‘PuaMode', 'Census_ProcessorClass',
'Census_IsFlightingInternal’, and
'DefaultBrowsersIdentifier', often over 90%. A strict
threshold of 35% of missing values was set to
correct this problem. Columns that exceeded this
cutoff were all eliminated since their effectiveness
for further classification assignments was judged to
be compromised by the wide absence of data.
 In addition, columns with unique values in every
row were found, which could confuse the machine
learning models that are used. To simplify the
dataset, these columns were subsequently removed
one at a time. After all of this meticulous cleaning,
the dataset was improved with columns that
included a very limited number of missing values,
which are addressed in later steps.

Dataset

Collection

File.csv

Data Cleaning

(Value Identification, Remove Missing Values,

Optimization, HashDetections, Analysis, Matrix

Correlation, etc.)

Feature Engineering

(Balanced Dataset &

Correlation Analysis, etc.)

80% Training

20% Testing

Normalization

(Feature Scaling, Dataset Optimization, etc.)

Model Evaluation

(RF, DT)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 284 Volume 21, 2024

3.2 Data Analysis
Python's Pandas package was used for reading and
loading the dataset. Then ‘pd.read_csv’ method is
used to import the contents of the csv file in the PC
defined by ‘train_path’ variable to the Pandas. The
data frame ‘train_df’ is used for efficient data
analysis and processing, and it provides an
organized and accessible format for subsequent data
analysis tasks and training models by allocating the
supplied data to ‘train_df’.
 Next, to improve the efficiency of the dataset in
the training phase a technique for memory
optimization is applied. A custom function,
'reduce_mem_usage' is used to reduce the memory
footprint of the DataFrame, which is important
when working with a large dataset. Following that,
the Seaborn library was used to create a categorical
plot that showed the number of observations for
each category of the variable 'HasDetections.' The
visualization provides an important detail into the
distribution of the target variable, increasing the
comprehension of the dataset and laying the
groundwork for additional investigation.

Fig. 2: Plotting Detection

As shown in Figure 2, the 'HasDetections'

variable reveals 510237 samples as detected and
90012 instances as malware detected. Graphically, a
distribution of the 'IsBeta' variable is observed,
demonstrating a significant class of imbalance with
600244 cases labeled as 0 and a tiny count of 5
instances labeled as 1. The distribution was then
quantified using ‘train_df.IsBeta.value_counts()’.
 Figure 3 shows the 'DefaultBrowsersIdentifier'
variable. This variable is the default ID for the
machine, to visualize the occurrences of the top ten
(10) most common identifiers.

With a large number of unique values, the top
frequent identifiers were considered which are
important because these allow more focus on the
examination of the most influential identifiers,
guiding subsequent research and decision-making
processes.

Fig. 3: Top 10 Most Frequent Default Browsers
Identifiers Distribution

 The distributions of key variables are visually
interpreted about the detection outcomes. The first
plot analysis 'SmartScreen,' focusing on the top 5
occurrences is shown in Figure 4. The
‘HasDetections’ clarifies possible correlations
between ‘SmartScreen’ variables and the results of
detection. Similarly, ‘Census_OSBuildNumber’,
‘AVProductsInstalled’, and 'AVProductsEnabled'
are analyzed with the five most frequent
occurrences. In addition, integrating the
‘HasDetections’ and ‘color.Various’ short
illustrations provide useful data about the frequency
and correlations of various variables. This improves
the capacity to identify patterns and dependencies
pertinent to the main research objectives.

Fig. 4: Top 5 SmartScreen Occurrences with
Detection Status Insights

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 285 Volume 21, 2024

3.3 Feature Engineering
The dataset’s properties are examined after data
interpretation. It has been observed that out of
600250 records, 510,237 are legitimate and 90,012
are infected files. This indicates an extremely
imbalanced distribution. Hence, data balancing is
done as described in the following.

3.3.1 Data Balancing

Mitigating the imbalance dataset, an oversampling
strategy has been adopted by using Python's
RandomOverSampler module. The imbalanced data
have been reduced by duplicating instances from the
minority class. This systematic technique generates
a perfectly balanced dataset shown in Figure 5,
laying the base for more resilient and dependable
model training.

Fig. 5: Balanced dataset

3.3.2 Feature Selection and Correlation Analysis

For a powerful model building, an important step
involves a feature selection process through
correlation analysis. ‘Seaborn library’ is applied to
the ‘heat map’ for visualization to clarify the
correlations within the 83 columns in the dataset.
Because it could be difficult to visualize the
complete dataset at once, this procedure selectively
started by plotting a subset, particularly with 20
columns. However, for a better demonstration of the
visualization, the correlation between 1~ 5 columns
is shown in Figure 6.

For example, 'IsSxsPassiveMode' and
'RtpStateBitfield', demonstrate a strong association,
according to the initial analysis. A meticulous
decision-making procedure was followed to
maximize model efficiency and prevent redundancy.
Figure 7 clearly shows that the column
'RtpStateBitfield' displayed a non-uniform
distribution with six distinct values. This led to a
prudent deletion, choosing instead to keep the
'IsSxsPassiveMode' column with its two possible
values as shown in Figure 8.

 The feature evaluation was completed from the
20th to 35th features using the same methodology for
the 64 features chosen from the original group of 83,
ensuring that there was no association at all between
them.

Fig. 6: Matrix correlation between features

Fig. 7: Non-uniform distribution of RtpStateBitfield

Fig. 8: Distribution of IsSxsPassiveMode

3.4 Normalization
For an efficient training model, normalization is an
essential phase to optimize the data, and for that
StandardScaler module was used. Next, by
subtracting the features from their values and
dividing the result by the standard deviation, the
StandardScaler module normalizes the data by

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 286 Volume 21, 2024

implementing the mathematical transformation, and
any divergent scales that may have existed among
the original features are eliminated to ensure that all
features share a consistent scale.

4 Models
In this paper, after raising the data quality and
completing normalization for better performance of
the proposed model, the data are split into training
and testing phases. 80% of the data have been used
to train and the 20% remaining have been used to
test purposes.
 In the context of regression and classification
problems, supervised learning methods like Random
Forest (RF) and Decision Tree (DT), KNN,
OLGBM, and XGBoost are applied. However, this
paper presents the results with RF and DT since
these two methods outperform the other methods in
terms of performance.
 RF is a tree-based classifier that combines
multiple classifiers into one using ensemble learning
to answer progressively complex problems. In the
training phase, multiple internal decision trees are
built by RF where each one gives its output. Based
on the majority vote, RF chooses the final decision
for the problem given. RF does not consider every
feature when it builds a tree, so each tree may differ
from the other and reduce feature space.
 Based on an attribute, every node in the DT
denotes the test, each branch indicates the test's
result and every label has the class label. DT
classifies instances in descending order from the
root node of the tree to the last node that offers the
instances’ classification.

4.1 Performance Metrics
In the MMTET framework, metrics like accuracy,
precision, recall, and F1-score are employed. The
confusion matrix is characterized by True Positive
(TP), True Negative (TN), False Positive (FP), and
False Negative (FN). The measurements for these
are calculated using the following Equations 1
through 5, [13].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 × 100% (1)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (4)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅)𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

4.2 Random Forest
For better accuracy, Random Forest has different
parameters that can be used for training the model.
In the experiment of this paper, the parameters that
provide the best results are tested with different
values. In the training phase with the default values,
the experiment achieved an accuracy of 98,15%, an
FPR of 0.028, an F1-score of 0.98 for the malware
and legitimate files, and then a TPR value of 0.991.
The AUC for Random Forest is shown in Figure 9.

Fig. 9: AUC score with Random Forest Model

Then the parameters are tested with different
values and verified if the change could obtain a
better outcome. N_estimators, Min_sampler_split,
Nin_samples_leaf, Max_features and Boostrap are
the parameters modified for better performance.
This change ended up getting better results than the
default ones. The parameter N_estimators that
defines the number of trees was set to 400.
Max_feature defines the maximum number of
features that Random Forest is permitted to try in an
individual tree set to Auto. Max_depth is set to 2 to
control the depth the tree should grow. The
Min_samples_split and Min_sample_leaf both
define the minimum number of features needed to
split a node were set to 1 and 2 respectively, then
the Bootstrap was set into Auto.

The result shows the highest accuracy of
98.30%, an FPR of 0.025, an F1-score of 0.98 for
malware and valid files, and a TPR of 0.991.

4.3 Decision Tree
The same approach was applied for training with
Decision Tree. First, the experiment was done with
the default values, and then different values for each
parameter are changed and verified to observe the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 287 Volume 21, 2024

result. After the experiment, it was found that the
result in the default values was better than the
changed values. To ameliorate the result,
"Max_depth" was set to 20 for controlling the
maximum depth of the tree, and the max_features
was specified as 'auto' to control feature selection
within each tree. Additionally, min_samples_leaf
was set to 40, which lead to an Accuracy of 63,13 %
which is very low compared to the default one.’’
Finally, the result achieved an accuracy of 91.41%,
an FPR of 0.0164, an F1-score of 0.92 for malware
and 0.91 for begin files, and a TPR of 0.99 (in
default setting) under the standard value.

The Area Under Curve (AUC) for the Decision
Tree and Random Forest is shown in Figure 10. The
experimental results of the Decision Tree model and
Random Forest model are shown in Table 1. The
AUC score offers important insights into the
classifier's performance. An indicator frequently
used to assess the effectiveness of binary
classification algorithms is AUC. It shows the
likelihood that a randomly chosen instance will be
ranked by the model.

In Table 1, the AUC score using the Decision
Tree model and Random Forest model provides an
additional indicator of the classifier's success.
Greater discrimination between positive and
negative instances by the model is indicated by a
higher AUC value. A thorough grasp of this model’s
capacity may be obtained to discriminate between
malicious and benign files over a range of criteria
by examining the AUC score in Figure 10. AUC
values of 0.983 and 0.914 indicate a great
performance of the models.

Table 1. Accuracy, precision, recall, and F-1 score

of RF and DT

Fig. 10: AUC score with Decision Tree Model

5 Analysis
In this section, a comparative analysis is done
between the proposed framework of this paper and
other approaches to detect malware using different
algorithms. The DREBIN [5], IoMT [6], LGBM [7],
and MoBilSentry [8], approaches are considered.
The comparison was made on the volume of data,
the accuracy, the F1-score, and TPR with FPR
records founded on the optimal result.

As shown in Figure 11, Random Forest has
largely a better accuracy than the other frameworks
and Decision Tree has competed with other
approaches. Though DREBIN gets a better accuracy
(93.9%) than MMTET RF (98.3%) and MMTET
DT (91.41%), DREBIN applies a dataset with a total
of 131611 samples. In MMTET, the size of the used
dataset is 600250. Similarly MoBilSentry achieves
better accuracy 96.76% than MMTET DT with
205792 records in the dataset. Again the dataset size
is much lower than that of MMTET.

 IoMT gets an accuracy of 95% with fewer size
of datasets than MMTET and the same happens with
LGBM.

The effectiveness of malware detection with an
accuracy rate of 98.30% in detecting malware
threats on a large dataset of over 600,000 records,
demonstrates the effectiveness of the framework. It
presents a comprehensive data pre-processing
strategy that elaborates on data cleaning and feature
engineering for high-quality data for model training.
The selection of Random Forest (RF) and Decision
Tree (DT) classifiers demonstrate a robust model
selection based on optimization and evaluation, and
oversampling strategies for imbalanced data to
balanced data enhances the robustness of the trained
model.

The study works on a specific dataset from
Kaggle which may introduce biases when working
with a huge dataset. Computational resources may
influence the model affecting the scalability of the
framework.

Fig. 11: Comparison of Results

 Acc

Preci_

0

Preci_

1

Recall_

0

Recall_

1

F1_S_

0

F1_S_

1

RF 0.983 0.99 0.97 0.97 0.99 0.98 0.98

DT 0.914 0.99 0.86 0.84 0.99 0.91 0.92

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 288 Volume 21, 2024

The existing literature's approaches are designed
for detecting malware within a limited dataset. The
MMTET framework has been trained on a large and
higher-quality dataset, which contributes to a
comprehensive analysis and well-trained model.
MMTET framework prefers the use of RF and DT
classifiers due to their superiority in terms of
performance in the experimental setup and excels by
handling larger datasets while maintaining a better
performance than the others.

6 Conclusion
In this paper, an effective framework MMTET to
mitigate malware threats on emerging technology is
presented. MMTET is proven as an efficient model
for detecting malware threats better than the other
approaches investigated in this paper such as
DREBIN, IoMT, LGBM, and MoBilSentry
approaches. These approaches have proposed
different ways of detecting malware threats.
However, their accuracies and strategies do not
compete with the framework proposed in this paper,
which provides a higher accuracy of 98.30% in a
very large dataset using the Random Forest model.
Finding an efficient way to mitigate cybersecurity
threats on emerging technology will be a good
future work as cybersecurity threats are a real
danger for multiple users.

References:

[1] A. P. Namanya, A. J. Cullen, I. Awan, & J.P.
Diss (2018). “The World of Malware: An
Overview”. IEEE 6th International

Conference on Future Internet of Things and

Cloud, Barcelona, Spain, September 2018, pp.
420-427. DOI: 10.1109/FiCloud.2018.00067.

[2] J. Scott (2017). “Signature Based Malware
Detection is Dead”. Institute for Critical

Infrastructure Technology, February 2017.
[3] Y. Baychev, & L. Bilge, (2018).

“Spearphishing Malware: Do we really know
the unknown?” In C. Giuffrida, S. Bardin, G.

Blanc (eds) Detection of Intrusions and

Malware, and Vulnerability Assessment.

DIMVA 2018. Lecture Notes in Computer
Science, Vol. 10885. Springer, Cham,
https://doi.org/10.1007/978-3-319-93411-2_3.

[4] I. Narendra, I. Dawar, N. Kumar, S. Negi, S.
Pathan, & S. Layek (2023). “Text
Categorization using Supervised Machine
Learning Techniques”. 2023 Sixth

International Conference of Women in Data

Science at Prince Sultan University (WiDS

PSU), Riyadh, Saudi Arabia, 2023, pp. 185-
190, DOI: 10.1109/WiDS-
PSU57071.2023.00046.

[5] D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, & K. Rieck (2014). “Drebin:
Effective and Explainable Detection of
Android Malware in Your Pocket”. Network

and distributed system security symposium

(NDSS), September 2017, Vol. 14. pp.23-26.
[6] V. Ravi, T. D. Pham, & M. Alazab (2023).

"Attention-Based Multidimensional Deep
Learning Approach for Cross-Architecture
IoMT Malware Detection and Classification
in Healthcare Cyber-Physical Systems". In

IEEE Transactions on Computational Social

Systems, Vol. 10, no. 4, pp. 1597-1606, Aug.
2023, DOI: 10.1109/TCSS.2022.3198123.

[7] M. Sokolov, & N. Herndon (2021).
“Predicting Malware Attacks using Machine
Learning and AutoAI”. ICPRAM 10th

International Conference on Pattern

Recognition Applications and Methods. pp.
295-301. DOI: 10.5220/0010264902950301.

[8] R. Bungfei, L. Chuanchang, C. Bo, G. Jie, &
C. Junliang (2018). “MobiSentry: Towards
Easy and Effective Detection of Android
Malware on Smartphones”. Mobile

Information Systems. Vol. 2018, Article ID
4317501, pp. 1-14, DOI:
10.1155/2018/4317501.

[9] QD. Ngo, HT. Nguyen, VH. Le, & D.H.
Nguyen (2020). “A survey of IoT
malware and detection methods based on
static features”. ICT Express. Vol. 6. Issue: 4,
pp. 280-286, DOI:
10.1016/j.icte.2020.04.005.

[10] HT. Nguyen, QD. Ngo, & VH. Le (2020). “A
novel graph-based approach for IoT botnet
detection”. International Journal of

Information Security, Vol. 19. pp. 567–577,
DOI: 10.1007/s10207-019-00475-6.

[11] R. Chagantia, V. Ravib, & TD. Pham (2022).
“Deep Learning based Cross Architecture
Internet of Things malware Detection and
Classification”. Computers & Security, May
2022. Vol. 120, No. 102779, pp. 1-22, DOI:
10.1016/j.cose.2022.102779.

[12] Kaggle. Microsoft Malware Prediction,
[Online].
https://www.kaggle.com/c/microsoft-
malware-prediction/overview (Accessed Date:
November 30, 2023).

[13] H. Dalianis (2018). Evaluation Metrics and
Evaluation. Clinical Text Mining. Chapter 6,
pp.45-53. Springer, Cham, DOI: 10.1007/978-
3-319-78503-5_6.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 289 Volume 21, 2024

https://doi.org/10.1007/978-3-319-93411-2_3
https://doi.org/10.1155/2018/4317501
https://doi.org/10.1016/j.icte.2020.04.005
https://doi.org/10.1007/s10207-019-00475-6
https://www.kaggle.com/c/microsoft-malware-prediction/overview
https://www.kaggle.com/c/microsoft-malware-prediction/overview

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.27

Aanmar Abdou Salam, Md. Abdul Based,
Mohamed Islam Houssam,

Mohammad Shorif Uddin

E-ISSN: 2224-3402 290 Volume 21, 2024

https://doi.org/10.1007/978-3-319-78503-5_6
https://doi.org/10.1007/978-3-319-78503-5_6
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

