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Abstract: - Malicious programs and malware threats lead to a substantial vulnerability and pose a fundamental 
problem. Nowadays, smart devices are becoming more common, and consequently, the risk of malware 
intrusion is highly observed. This paper presents a comprehensive exploration from the initial to the final phase 
of an effective strategy and the deployment of a model to detect malware efficiently. The proposed Mitigating 
Malware Threats on Emerging Technology framework “MMTET” will help mitigate the risk of intrusion. This 
study explores the complexity of handling datasets. Random Forests and Decision Trees serve as machine 
learning algorithms for training and testing. Starting with a data collection method to obtain relevant 
parameters, this paper highlights the importance of well-curated datasets in training using effective machine 
learning models. Data analysis follows a statistical approach, and the visualization tools are used for identifying 
inherent biases, imbalances, and trends in datasets. For boosting the dataset’s quality, feature engineering and 
selection take a central stage to balance the data with new methodologies and detect relevant features with 
correlation analysis. Experimental result shows that Random Forest has the best performance compared to other 
methods obtained from different algorithms, with accuracy 98.30%.  
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1   Introduction 
The term "malware", [1], is a combination of 
malicious files, or code; it can be defined as a form 
of software that is intentionally used by 
cybercriminals to obtain unauthorized access to 
private or sensitive data. This general term refers to 
a wide range of malicious software variations, all of 
which are designed for particular, frequent evil 
objectives. 

Numerous well-known threats of malware are 
ransomware, which encrypts important files and 
requests a ransom to unlock them; Trojans, which 
secretly enters a system by standing as a trustworthy 

application; and spyware carefully gathers private 
data without the user's awareness. Because malware 
is constantly changing, it is crucial to have strong 
cybersecurity methods and measures in place to 
prevent these threats and protect digital assets from 
the constant hazards associated with using the 
internet.   

 The traditional technique uses a known list of 
Indicators Of Compromise (IOCs), such as fill 
hashes, specific bytes’ sequences, or network attack 
patterns, to identify and eliminate malware before 
infiltrating a system. The signature-based detection 
method was the most used technique to identify 
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malware, [2], in the field of cybersecurity.  It works 
by locating patterns or signatures linked to 
dangerous software. However, as malware has 
become exponentially more prevalent, this once-
dominant approach has run into problems and has 
become extremely inefficient. The main problem is 
that it can only identify malware signatures that 
have been observed, which makes it inefficient for 
protecting against new potential threats that have 
never been observed before.  

The weakness of signature-based detection 
becomes more evident since the cybersecurity 
profile changes dynamically, requiring an 
investigation and the application of more intelligent 
and proactive measures to counter the increasing 
variety of cyber threats. Signature-based detection 
has been the way of detecting malware until the 
1990s. Then machine learning-based malware 
detection techniques were developed and improved, 
[3]. Support Vector Machines (SVM), Random 
Forests (RF), Logistic Regression (LR), Naïve 
Bayes (NB), and Adaboost , [4], are part of the 
machine learning methodology proposed to be 
useful in malware detection and classification 
techniques, achieving higher performance and 
accuracy.  

The problem nowadays is not just understanding 
how malware evolves but also understanding 
effectively how processing large and diverse 
datasets works and to extract useful information. 
The first is unable to emphasize the significance of 
data processing in malware detection. Thoroughly 
analyzing and preparing a dataset is essential before 
implementing machine learning models to mitigate, 
detect, and prevent malware attacks. The complexity 
of malware behavior and the variety of possible 
attack avenues necessitate a careful approach to data 
preparation. This entails correcting problems that 
can greatly affect the effectiveness of detection 
algorithms, such as imbalances, biases, and missing 
or irrelevant data. Considering the above issues, 
Mitigating Malware Threats on Emerging 
Technology framework “MMTET” is proposed in 
this paper that will help mitigate the risk of 
intrusion. 

In this paper, Section 2 summarizes the 
literature review on the existing methodologies 
proposed by different authors. Section 3 discusses 
the methodology, and Section 4 describes different 
models that are applied to this work. The analysis is 
done in Section 5, and Section 6 summarizes the 
findings and the importance of advancing 
cybersecurity solutions for emerging technologies. 

 
 

2  Related Work  
The DREBIN, a detection system is presented in [5], 
which allows the identification of malware 
applications on smart devices. In DREBIN, the 
authors consider a dataset of 131,611 applications 
including malware software. Mainly, they apply a 
broad statistical analysis to extract features from 
different sources and analyse them in an expressive 
vector space. The DREBIN worked on 123,453 
applications and 5,560 malware samples, and the 
detection rate was 93,9%.  

The Internet of Medical Things (IoMT) method 
is proposed in [6], to categorize and identify 
malware. The framework used multidimensional 
Deep Learning (DL) approaches for an optimal 
feature analysis to detect malware and perform a 
classification into categories based on the byte 
representation of the executable and linkable file. 
For an excellent outcome, different methods were 
used for their framework, including Convolutional 
Neural Network (CNN), bidirectional Long Short-
Term Memory (LSTM), and other model for IoMT 
malware classification comparison. Two separate 
datasets, Big-2015 datasets, and CDMC-2020-IoMt-
Malware were used to evaluate the performance of 
the framework. D TensorFlow was used on the back 
end and Keros for the front-end library, and scikit-
learn for Machine Learning (ML) algorithm 
implementation. IoMT framework obtains 95% 
accuracy which is better than the other DL 
approaches like RNN, LSTN, GRU, CNN, and 
bidirectional LSTM. It also gives a better 
performance in terms of precision (96%), recall 
(95%), and F1-score (95). The result demonstrates 
the effectiveness of their framework for malware 
detection and classification.   

Microsoft malware dataset is used in [7], for 
training and testing of Light Gradient Boosted 
Machine (LGBM) technique to detect malware 
attack on Microsoft cloud as a framework. The 
LGBM decision tree model is used for classification 
and regression using the AutoML tool and another 
model to enhance prediction accuracy. Based on that 
study, LGBD was the perfect model to use for 
evaluating the framework in [7], on large data. An 
outcome of 67,78% of F1-score and 66,18% 
accuracy revealed that the suggested methodology 
was more accurate in predicting malware than 
AutoAI and other models. 

The authors propose an innovative security 
framework ‘MobiSentry’ in [8], for detecting 
malware and mobile categorization with a 
substantial dataset comprising 184,486 benign and 
21,306 malware instances in Android devices. 
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Fig. 1: MMTET Framework 

 
 

For an extensive examination of their 
methodology, they split up the dataset into two 
phases: 80% for training and 20% for testing. For 
experimentation, five different models have been 
put into consideration including KNN, RF, SVM, 
Ada, and GBM for training and testing. The GBM 
classifier gives a satisfactory result accuracy rate of 
96.76% showing the out-performance of the 
classifier compared to the other algorithms. 
  Some publications on the detection of malware 
particularly for the Internet of Things (IoT) are 
available in [9], [10] and [11]. However, in this 
paper a new framework MMTET is presented to 
mitigate the risk of intrusion. The MMTET uses a 
huge volume of data (600,250) and achieves 98.30% 
accuracy. 
 
 
3  Proposed Methodology 
The workflow of the proposed MMTET framework 
for mitigating malware threats on emerging 
technologies is shown in Figure 1. 
 
3.1  Data Collection and Cleaning 
 

3.1.1  Data Collection  

The dataset that has been examined in this paper 
was taken from Kaggle, [12]. The dataset consists of 
a very large collection of machine-specific data 
where each row is uniquely identified by a machine 
identifier. The initial dataset was very large, with 83 
columns and 8 million records. However, a subset of 

the data was chosen to allow satisfactory processing 
within the constraints due to practical considerations 
connected to computational resources. The final 
dataset which was used to train the machine learning 
models was reduced down to a higher quality 
number of records, resulting in a subset of 600,250 
records.  
 
3.1.2  Data Cleaning   

The dataset required extensive cleaning since it had 
significant biases when first gathered. There was an 
extreme incidence of missing values in several 
columns of the dataset that were selected including 
‘PuaMode', 'Census_ProcessorClass', 
'Census_IsFlightingInternal’, and 
'DefaultBrowsersIdentifier', often over 90%. A strict 
threshold of 35% of missing values was set to 
correct this problem. Columns that exceeded this 
cutoff were all eliminated since their effectiveness 
for further classification assignments was judged to 
be compromised by the wide absence of data.  
     In addition, columns with unique values in every 
row were found, which could confuse the machine 
learning models that are used. To simplify the 
dataset, these columns were subsequently removed 
one at a time. After all of this meticulous cleaning, 
the dataset was improved with columns that 
included a very limited number of missing values, 
which are addressed in later steps. 
 
 
 

Dataset 

Collection 

File.csv 

Data Cleaning 

(Value Identification, Remove Missing Values, 

Optimization, HashDetections, Analysis, Matrix 

Correlation, etc.) 

Feature Engineering 

(Balanced Dataset & 

Correlation Analysis, etc.) 

80% Training 

20% Testing 

Normalization  

(Feature Scaling, Dataset Optimization, etc.) 

Model Evaluation 

(RF, DT) 
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3.2  Data Analysis  
Python's Pandas package was used for reading and 
loading the dataset. Then ‘pd.read_csv’ method is 
used to import the contents of the csv file in the PC 
defined by ‘train_path’ variable to the Pandas. The 
data frame ‘train_df’ is used for efficient data 
analysis and processing, and it provides an 
organized and accessible format for subsequent data 
analysis tasks and training models by allocating the 
supplied data to ‘train_df’.  
       Next, to improve the efficiency of the dataset in 
the training phase a technique for memory 
optimization is applied. A custom function, 
'reduce_mem_usage' is used to reduce the memory 
footprint of the DataFrame, which is important 
when working with a large dataset. Following that, 
the Seaborn  library was used to create a categorical 
plot that showed the number of observations for 
each category of the variable 'HasDetections.' The 
visualization provides an important detail into the 
distribution of the target variable, increasing the 
comprehension of the dataset and laying the 
groundwork for additional investigation. 
 

 
Fig. 2: Plotting Detection 

  
As shown in Figure 2, the 'HasDetections' 

variable reveals 510237 samples as detected and 
90012 instances as malware detected. Graphically, a 
distribution of the 'IsBeta' variable is observed, 
demonstrating a significant class of imbalance with 
600244 cases labeled as 0 and a tiny count of 5 
instances labeled as 1. The distribution was then 
quantified using ‘train_df.IsBeta.value_counts()’.  
    Figure 3 shows the 'DefaultBrowsersIdentifier' 
variable. This variable is the default ID for the 
machine, to visualize the occurrences of the top ten 
(10) most common identifiers.  

With a large number of unique values, the top 
frequent identifiers were considered which are 
important because these allow more focus on the 
examination of the most influential identifiers, 
guiding subsequent research and decision-making 
processes. 
 

 
Fig. 3: Top 10 Most Frequent Default Browsers 
Identifiers Distribution 
 
     The distributions of key variables are visually 
interpreted about the detection outcomes. The first 
plot analysis 'SmartScreen,' focusing on the top 5 
occurrences is shown in Figure 4. The 
‘HasDetections’ clarifies possible correlations 
between ‘SmartScreen’ variables and the results of 
detection. Similarly, ‘Census_OSBuildNumber’, 
‘AVProductsInstalled’, and 'AVProductsEnabled' 
are analyzed with the five most frequent 
occurrences. In addition, integrating the 
‘HasDetections’ and ‘color.Various’ short 
illustrations provide useful data about the frequency 
and correlations of various variables. This improves 
the capacity to identify patterns and dependencies 
pertinent to the main research objectives. 
 

 
Fig. 4: Top 5 SmartScreen Occurrences with 
Detection Status Insights 
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3.3  Feature Engineering 
The dataset’s properties are examined after data 
interpretation. It has been observed that out of 
600250 records, 510,237 are legitimate and 90,012 
are infected files. This indicates an extremely 
imbalanced distribution. Hence, data balancing is 
done as described in the following.  
 
3.3.1  Data Balancing  

Mitigating the imbalance dataset, an oversampling 
strategy has been adopted by using Python's 
RandomOverSampler module. The imbalanced data 
have been reduced by duplicating instances from the 
minority class. This systematic technique generates 
a perfectly balanced dataset shown in Figure 5, 
laying the base for more resilient and dependable 
model training. 
 

 
Fig. 5: Balanced dataset 
 
3.3.2  Feature Selection and Correlation Analysis 

For a powerful model building, an important step 
involves a feature selection process through 
correlation analysis. ‘Seaborn library’ is applied to 
the ‘heat map’ for visualization to clarify the 
correlations within the 83 columns in the dataset. 
Because it could be difficult to visualize the 
complete dataset at once, this procedure selectively 
started by plotting a subset, particularly with 20 
columns. However, for a better demonstration of the 
visualization, the correlation between 1~ 5 columns 
is shown in Figure 6.  

For example, 'IsSxsPassiveMode' and 
'RtpStateBitfield', demonstrate a strong association, 
according to the initial analysis. A meticulous 
decision-making procedure was followed to 
maximize model efficiency and prevent redundancy. 
Figure 7 clearly shows that the column 
'RtpStateBitfield' displayed a non-uniform 
distribution with six distinct values. This led to a 
prudent deletion, choosing instead to keep the 
'IsSxsPassiveMode' column with its two possible 
values as shown in Figure 8. 

      The feature evaluation was completed from the 
20th to 35th features using the same methodology for 
the 64 features chosen from the original group of 83, 
ensuring that there was no association at all between 
them. 
 

 
Fig. 6: Matrix correlation between features 
 

 
Fig. 7: Non-uniform distribution of RtpStateBitfield 
 

 
Fig. 8: Distribution of IsSxsPassiveMode 
 
3.4  Normalization  
For an efficient training model, normalization is an 
essential phase to optimize the data, and for that 
StandardScaler module was used. Next, by 
subtracting the features from their values and 
dividing the result by the standard deviation, the 
StandardScaler module normalizes the data by 
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implementing the mathematical transformation, and 
any divergent scales that may have existed among 
the original features are eliminated to ensure that all 
features share a consistent scale. 
 
 
4  Models  
In this paper, after raising the data quality and 
completing normalization for better performance of 
the proposed model, the data are split into training 
and testing phases. 80% of the data have been used 
to train and the 20% remaining have been used to 
test purposes.   
   In the context of regression and classification 
problems, supervised learning methods like Random 
Forest (RF) and Decision Tree (DT), KNN, 
OLGBM, and XGBoost are applied. However, this 
paper presents the results with RF and DT since 
these two methods outperform the other methods in 
terms of performance.  
   RF is a tree-based classifier that combines 
multiple classifiers into one using ensemble learning 
to answer progressively complex problems. In the 
training phase, multiple internal decision trees are 
built by RF where each one gives its output. Based 
on the majority vote, RF chooses the final decision 
for the problem given.  RF does not consider every 
feature when it builds a tree, so each tree may differ 
from the other and reduce feature space. 
   Based on an attribute, every node in the DT 
denotes the test, each branch indicates the test's 
result and every label has the class label. DT 
classifies instances in descending order from the 
root node of the tree to the last node that offers the 
instances’ classification. 
 
4.1  Performance Metrics  
In the MMTET framework, metrics like accuracy, 
precision, recall, and F1-score are employed. The 
confusion matrix is characterized by True Positive 
(TP), True Negative (TN), False Positive (FP), and 
False Negative (FN). The measurements for these 
are calculated using the following Equations 1 
through 5, [13].  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 × 100%       (1) 

 
           𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
              (2) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (3) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
            (4) 

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑇𝑃𝑅)𝑜𝑟 𝑅𝑒𝑐𝑎𝑙𝑙

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                    (5)  

 
4.2  Random Forest  
For better accuracy, Random Forest has different 
parameters that can be used for training the model. 
In the experiment of this paper, the parameters that 
provide the best results are tested with different 
values. In the training phase with the default values, 
the experiment achieved an accuracy of 98,15%, an 
FPR of 0.028, an F1-score of 0.98 for the malware 
and legitimate files, and then a TPR value of 0.991. 
The AUC for Random Forest is shown in Figure 9.  
 

 
Fig. 9: AUC score with Random Forest Model 
 

Then the parameters are tested with different 
values and verified if the change could obtain a 
better outcome. N_estimators, Min_sampler_split, 
Nin_samples_leaf, Max_features and Boostrap are 
the parameters modified for better performance. 
This change ended up getting better results than the 
default ones. The parameter N_estimators that 
defines the number of trees was set to 400. 
Max_feature defines the maximum number of 
features that Random Forest is permitted to try in an 
individual tree set to Auto. Max_depth is set to 2 to 
control the depth the tree should grow. The 
Min_samples_split and Min_sample_leaf both 
define the minimum number of features needed to 
split a node were set to 1 and 2 respectively, then 
the Bootstrap was set into Auto.  

The result shows the highest accuracy of 
98.30%, an FPR of 0.025, an F1-score of 0.98 for 
malware and valid files, and a TPR of 0.991. 
 
4.3  Decision Tree  
The same approach was applied for training with 
Decision Tree. First, the experiment was done with 
the default values, and then different values for each 
parameter are changed and verified to observe the 
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result. After the experiment, it was found that the 
result in the default values was better than the 
changed values. To ameliorate the result, 
"Max_depth" was set to 20 for controlling the 
maximum depth of the tree, and the max_features 
was specified as 'auto' to control feature selection 
within each tree. Additionally, min_samples_leaf 
was set to 40, which lead to an Accuracy of 63,13 % 
which is very low compared to the default one.’’  
Finally, the result achieved an accuracy of 91.41%, 
an FPR of 0.0164, an F1-score of 0.92 for malware 
and 0.91 for begin files, and a TPR of 0.99 (in 
default setting) under the standard value. 

The Area Under Curve (AUC) for the Decision 
Tree and Random Forest is shown in Figure 10. The 
experimental results of the Decision Tree model and 
Random Forest model are shown in Table 1. The 
AUC score offers important insights into the 
classifier's performance. An indicator frequently 
used to assess the effectiveness of binary 
classification algorithms is AUC. It shows the 
likelihood that a randomly chosen instance will be 
ranked by the model.  

In Table 1, the AUC score using the Decision 
Tree model and Random Forest model provides an 
additional indicator of the classifier's success. 
Greater discrimination between positive and 
negative instances by the model is indicated by a 
higher AUC value. A thorough grasp of this model’s 
capacity may be obtained to discriminate between 
malicious and benign files over a range of criteria 
by examining the AUC score in Figure 10. AUC 
values of 0.983 and 0.914 indicate a great 
performance of the models. 
 
Table 1. Accuracy, precision, recall, and F-1 score 

of RF and DT 

 

 
Fig. 10: AUC score with Decision Tree Model 
 

5   Analysis  
In this section, a comparative analysis is done 
between the proposed framework of this paper and 
other approaches to detect malware using different 
algorithms. The DREBIN [5], IoMT [6], LGBM [7], 
and MoBilSentry [8], approaches are considered. 
The comparison was made on the volume of data, 
the accuracy, the F1-score, and TPR with FPR 
records founded on the optimal result.  

As shown in Figure 11, Random Forest has 
largely a better accuracy than the other frameworks 
and Decision Tree has competed with other 
approaches. Though DREBIN gets a better accuracy 
(93.9%) than MMTET RF (98.3%) and MMTET 
DT (91.41%), DREBIN applies a dataset with a total 
of 131611 samples. In MMTET, the size of the used 
dataset is 600250. Similarly MoBilSentry achieves 
better accuracy 96.76% than MMTET DT with 
205792 records in the dataset. Again the dataset size 
is much lower than that of MMTET.  

   IoMT gets an accuracy of 95% with fewer size 
of datasets than MMTET and the same happens with 
LGBM. 

The effectiveness of malware detection with an 
accuracy rate of 98.30% in detecting malware 
threats on a large dataset of over 600,000 records, 
demonstrates the effectiveness of the framework. It 
presents a comprehensive data pre-processing 
strategy that elaborates on data cleaning and feature 
engineering for high-quality data for model training. 
The selection of Random Forest (RF) and Decision 
Tree (DT) classifiers demonstrate a robust model 
selection based on optimization and evaluation, and 
oversampling strategies for imbalanced data to 
balanced data enhances the robustness of the trained 
model. 

The study works on a specific dataset from 
Kaggle which may introduce biases when working 
with a huge dataset. Computational resources may 
influence the model affecting the scalability of the 
framework. 
 

 
Fig. 11: Comparison of Results 
 

 Acc 

Preci_

0 

Preci_

1 

Recall_

0 

Recall_

1 

F1_S_

0 

F1_S_

1 

RF 0.983 0.99 0.97 0.97 0.99 0.98 0.98 
                   

DT 0.914 0.99 0.86 0.84 0.99 0.91 0.92 
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The existing literature's approaches are designed 
for detecting malware within a limited dataset. The 
MMTET framework has been trained on a large and 
higher-quality dataset, which contributes to a 
comprehensive analysis and well-trained model. 
MMTET framework prefers the use of RF and DT 
classifiers due to their superiority in terms of 
performance in the experimental setup and excels by 
handling larger datasets while maintaining a better 
performance than the others.  

 
 

6  Conclusion 
In this paper, an effective framework MMTET to 
mitigate malware threats on emerging technology is 
presented. MMTET is proven as an efficient model 
for detecting malware threats better than the other 
approaches investigated in this paper such as 
DREBIN, IoMT, LGBM, and MoBilSentry 
approaches. These approaches have proposed 
different ways of detecting malware threats. 
However, their accuracies and strategies do not 
compete with the framework proposed in this paper, 
which provides a higher accuracy of 98.30% in a 
very large dataset using the Random Forest model. 
Finding an efficient way to mitigate cybersecurity 
threats on emerging technology will be a good 
future work as cybersecurity threats are a real 
danger for multiple users.   
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