
The Solution of Traveling Salesman Problem with Time Windows by

MILP in Matlab Code

JAROMÍR ZAHRÁDKA
Department of East Bohemia Region,

Žampach 10, 53401 Žamberk,
CZECH REPUBLIC

Abstract: - A delivery driver uses his truck to distribute ordered goods from the warehouse (depot) to 𝑛
customers. Each customer determines the delivery point (by GPS coordinates) and time window for the
distribution of goods. This problem can be called the traveling salesman problem with time windows (TSPTW).
The objective of the solution is to select the sequence of delivery points so that the travel distance and the total
travel time are minimal. The necessary condition is that the deliverer leaves the warehouse, visits all delivery
points (where he arrives at the required time windows), and returns to the warehouse. In this article, one exact
robust solution of the TSPTW is presented by using mixed integer linear programming implemented in Matlab
code. The created algorithm can be used for any number 𝑛 of customers.

Key-Words: - Matlab, mixed-integer linear programming, MILP, optimization, traveling salesman problem

with time windows, TSPTW.

1 Introduction
This article aims to create a functional Matlab
algorithm that can find the optimal solution of the
traveling salesman problem with time windows
(TSPTW) for any given number 𝑛 of customers.

The simple traveling salesman problem (TSP)
lies in finding the shortest path or shortest time that a
salesman should take to visit all 𝑛 customers and
return to the depot. Related works on the topic of
TSP are [1], [2], [3], [4] and [5].

The TSPTW is an extension of the TSP which
requires, in addition, that the traveling salesman
arrive at the customers during pregiven time
windows.

Our work is focused on the use of branch and
bound, and branch and cut algorithms that have been
used, for example, in studies [5], [6] and [7]. The
TSPTW was solved in [8] and [9]. Authors used the
compressed-annealing heuristic and the QUBO
model.

The related problem of finding the real optimal
road route from Start-point to End-Point is described
by pseudocode for Dijkstra's algorithm in [10]. The
minimum distances of the routes are obtained using
google navigation which is also used in our work.

The TSP solution using Matlab code is
demonstrated in [11]. The Matlab code for the
solution of the traveling salesman problem was used
in [5] and [7].

2 Mixed-integer Linear Programming
The problem of mixed-integer linear programming
(MILP) is generally expressed by:

min
𝑿

(𝒇𝑇 ∙ 𝑿) subject to {

𝑿𝑖𝑛𝑡𝑐𝑜𝑛 are integers
𝑨 ∙ 𝑿 ≤ 𝒃

𝑨𝑒𝑞 ∙ 𝑿 = 𝒃𝑒𝑞

𝒍𝑏 ≤ 𝑿 ≤ 𝒖𝑏

(1)

The vector 𝑿 is the column vector of all flow
variables. The symbol 𝒇 denotes the column vector
with coefficients represented in the objective
function which is 𝒇𝑇 ∙ 𝑿. The number of components
of 𝒇 is equal to the number of all flow variables.
Writing 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 means the list of variables of the
vector 𝑿 that takes only the integer values. The other
flow variables are treated as real variables.

The linear inequality constraint matrix 𝑨 is
specified as a matrix of real numbers, which are the
linear coefficients in the system of inequality
constraints given by 𝑨 ∙ 𝑿 ≤ 𝒃. The size of the
matrix 𝑨 is 𝑚𝑖𝑛𝑒𝑞 × 𝑛, where 𝑚𝑖𝑛𝑒𝑞 is the number of
inequality constraints and 𝑛 is the number of flow
variables. Linear inequality constraints vector 𝒃 is
the vector of given real numbers (right sides of the
inequalities). The length of the vector 𝒃 is 𝑚𝑖𝑛𝑒𝑞.

The linear equality constraint matrix 𝑨𝑒𝑞 is
specified as the matrix of real numbers, which are
the linear coefficients in the system of equations
𝑨𝑒𝑞 ∙ 𝑿 = 𝒃𝑒𝑞. The size of the matrix 𝑨𝑒𝑞 is 𝑚𝑒𝑞 × 𝑛,

Received: June 6, 2023. Revised: January 21, 2024. Accepted: February 8, 2024. Published: March 21, 2024.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 186 Volume 21, 2024

where 𝑚𝑒𝑞 is the number of linear equation
constraints and 𝑛 is the number of flow variables.
Linear equality constraint vector 𝒃𝑒𝑞 is the vector of
given real numbers (right sides of the equations).
The length of the vector 𝒃𝑒𝑞 is 𝑚𝑒𝑞.

The lower and upper bounds of flow variables
(items of 𝑿) are specified as real numbers - elements
of vectors 𝒍𝑏, and 𝒖𝑏. The vector 𝑿 satisfies the
inequality 𝒍𝑏 ≤ 𝑿 ≤ 𝒖𝑏. The core of the solver for
the MILP solution in Matlab code is the command:

X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub),
 (2)

where previously used variables are expressed by
the corresponding variable identifiers of Matlab
langu-age. The transformation of all variable labels
into Matlab identifiers is contained in Table 1.
A more detailed explanation of the intlinprog
command is available in [11].

3 Mathematical Formulation of the

Traveling Salesman Problem with

Time Windows
The traveling salesman problem with time windows
(TSPTW) can be defined as follows. Let 𝐺0 = (𝑉, 𝐸)
be a connected graph consisting of a set 𝑉 of 𝑛 + 1
nodes indexed by = 0, 1, ⋯ , 𝑛 , and a set 𝐸 of non-
negatively weighted arcs between pairs of
corresponding nodes of the graph 𝐺0. The index 𝑖 =

0 is used for the seller, and indexes 𝑖 = 1, ⋯ , 𝑛 for
customers. For easier reference, let 𝐼 = {1, ⋯ , 𝑛} be
the set of customers, and 𝐼0 = 𝐼 ∪ {0}. Each of the
customers 𝑖 ∈ 𝐼 can be reached only within a
specified time interval (window) [𝑙𝑤𝑖

, 𝑢𝑤𝑖
] . Vectors

of lower and upper boundaries of the time window
are denoted by 𝒍𝑤 and 𝒖𝑤. For each customer 𝑖 ∈ 𝐼
let 𝑚𝑖 be the service time associated with the
handover and unloading of goods. The vector 𝒎 of
customer service times means 𝒎 = (𝑚1, ⋯ , 𝑚𝑛). The
constant 𝑡0 means the moment when the vehicle can
first leave the depot.

Let 𝑑𝑖𝑗 be the length of the one-way path (in
meters) and 𝑐𝑖𝑗 the one-way time-distance (in
seconds), i.e. the travel duration from node 𝑖 to node
𝑗 for all 𝑖, 𝑗 ∈ 𝐼0. Therefore 𝑫 = (𝑑𝑖𝑗)

𝑖,𝑗∈𝐼0
 is a

distance matrix and 𝑪 = (𝑐𝑖𝑗)
𝑖,𝑗∈𝐼0

 is a time-distance
matrix. Both matrices 𝑫 and 𝑪 are non-negative,
asymmetric, and related (but essentially independent
non-negative), with zeros on the main diagonal, i.e.
𝑐𝑖𝑖 = 0 and 𝑑𝑖𝑖 = 0 for each 𝑖 ∈ 𝐼0. It is necessary to
satisfy the triangular inequalities among all nodes of
the graph 𝐺0 in both matrices.

Since we have to respect time windows, it is
necessary that the time-distance matrix 𝑪 be used
for optimization. The elements of the time-distances
matrix 𝑐𝑖𝑗 are not strictly proportional, in general, to
the corresponding elements of the distance matrix
𝑑𝑖𝑗. The driving time between two nodes is
significantly influenced by the quality of the roads
used.

To start the optimization process, it is necessary
to select the time moment 𝑡0 when the vehicle leaves
the depot. Regarding the lower valid time windows
of all customers, the appropriate time 𝑡0 is:

𝑡0 = min
𝑗∈𝐼

(𝑙𝑤𝑗
− 𝑐0𝑗) (3)

But when the first visited customer 𝑠 ∈ 𝐼 is

selected during the optimization process, for which
it is valid that 𝑙𝑤𝑠

− 𝑐0𝑠 > 𝑡0, then a waiting time
𝑙𝑤𝑠

− 𝑐0𝑠 − 𝑡0 will be required. To eliminate the
unnecessary waiting time at the first customer, it is
appropriate to shift the departure time of the vehicle
from the depot to the real value 𝑡𝑆𝑡𝑎𝑟𝑡 = 𝑙𝑤𝑠

− 𝑐0𝑠.
The core of the TSPTW solution is to find the

cycle in the graph 𝐺0 which contains all nodes of
the graph so that the travel time is the shortest, and
where all time windows are respected. For this
purpose, integer variables 𝑥𝑖𝑗 for 𝑖, 𝑗 ∈ 𝐼0 are
introduced, which can only take the values 0 or 1.
The value 𝑥𝑖𝑗 = 1 means that the arc from the node 𝑖
to 𝑗 is included in the cycle. The value 𝑥𝑖𝑗 = 0
means that the corresponding arc is not included.
For a systemic reason, variables 𝑥𝑖𝑖 are included,
but all these variables are fixed by the value zero
(𝑥𝑖𝑖 = 0), for each 𝑖 ∈ 𝐼0. Variables 𝑥𝑖𝑗 are elements
of a matrix 𝑿 = (𝑥𝑖𝑗)

𝑖,𝑗∈𝐼0
. The number of all

variables 𝑥𝑖𝑗 is (𝑛 + 1)2.
Other flow variables that need to be used in the

TSPTW solution are the vehicle departure times
from all customers. Therefore real (non-integer)
flow variables 𝑡𝑖 are introduced for each 𝑖 ∈ 𝐼. The
variable 𝑡𝑖 indicates the moment when the driver
leaves the customer number 𝑖. The variables 𝑡𝑖 are
arranged as 𝑛 elements of a vector 𝒕 = (𝑡1, ⋯ , 𝑡𝑛).
So, the number of all flow variables is (𝑛 + 1)2 + 𝑛.

The solution of TSPTW is realized by the

optimal solution of the mixed-integer linear
programming problem:
min
(𝑿,𝒕)

{∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑛
𝑖,𝑗=0 + ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1 } subject to (4)

𝑥𝑖𝑗 , 𝑖, 𝑗 ∈ 𝐼0 are integers, even true that 𝑥𝑖𝑗 ∈ {0,1} (5)
(𝑐𝑖𝑗 + 𝑢𝑤𝑖

+ 𝑚𝑖 − 𝑙𝑤𝑗) 𝑥𝑖𝑗 + 𝑡𝑖 − 𝑡𝑗 ≤
 𝑢𝑤𝑖

− 𝑙𝑤𝑗 + 𝑚𝑖 − 𝑚𝑗, 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (6)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 187 Volume 21, 2024

https://localhost:31515/static/help/optim/ug/intlinprog.html?searchHighlight=intlinprog&searchResultIndex=1#d117e102699

(𝑐0𝑗 + 𝑡0 + 𝑙𝑤𝑗) 𝑥0𝑗 − 𝑡𝑗 ≤ −𝑙𝑤𝑗 − 𝑚𝑗, 𝑗 ∈ 𝐼 (7)

∑ 𝑥𝑖𝑗𝑗∈𝐼0

= 1, 𝑖 ∈ 𝐼0 (8)

∑ 𝑥𝑖𝑗𝑖∈𝐼0
= 1, 𝑗 ∈ 𝐼0 (9)

𝑥𝑖𝑖 = 0, 𝑖 ∈ 𝐼0 (10)

0 ≤ 𝑥𝑖𝑗 ≤ 1, 𝑖, 𝑗 ∈ 𝐼0, 𝑖 ≠ 𝑗 (11)

max (𝑙𝑤𝑗 + 𝑚𝑗; 𝑡0 + 𝑐0𝑗 + 𝑚𝑗) ≤ 𝑡𝑗 ≤ 𝑢𝑤𝑗

+ 𝑚𝑗, 𝑗 ∈ 𝐼
 (12)

In the above expressed model (4), with flow

variables 𝑥𝑖𝑗 and 𝑡𝑖, the linear function:
∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑛
𝑖,𝑗=0 + ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1 (13)

is minimized. The first part, ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑛
𝑖,𝑗=0 guaran-

tees finding the cycle, which takes the minimum
travel time. For this, in the optimization process, it
is necessary that the second part of the minimized
function (13), i.e. ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1 will be smaller by at

least 10 times. This condition is certainly met if we
choose the coefficients:

𝑘𝑓 =
min

𝑖,𝑗∈𝐼0, 𝑖≠𝑗
(𝑐𝑖𝑗)

86400 𝑛
 . (14)

It is assumed that the values of the variables 𝑡𝑖

do not exceed the order of 86400 sec (1 day).
This objective function guarantees that the

members containing the variables 𝑡𝑖 will not affect
the optimal values of the variables 𝑥𝑖𝑗. At the same
time, the arrival times 𝑡𝑖 will be minimized and
downtimes of vehicles will not be necessary before
reaching customers.

Using statement (5) it is given that 𝑥𝑖𝑗 , 𝑖, 𝑗 ∈

𝐼0 are all integer variables, even binary ones.
If 𝑥𝑖𝑗 = 0 , the inequality (6) expresses the

relationship 0 ≤ (𝑢𝑤𝑖
+ 𝑚𝑖) − 𝑡𝑖 + 𝑡𝑗 − (𝑙𝑤𝑗 + 𝑚𝑗),

for each 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗. The right side of this
inequality can only be nonnegative because the
upper bound of time window 𝑢𝑤𝑖

 plus service time
𝑚𝑖 is greater than or equal to the departure time 𝑡𝑖
(from the node 𝑖), and the departure time 𝑡𝑗 (from
the node 𝑗) is greater than or equal to the sum of
lower bound of the time window 𝑙𝑤𝑗 , and the service
time 𝑚𝑗.

In the case 𝑥𝑖𝑗 = 1 the inequality (6) defines a
relationship 𝑐𝑖𝑗 + 𝑡𝑖 + 𝑚𝑗 ≤ 𝑡𝑗, 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 . This
expresses the condition that the departure time
𝑡𝑗 (from node 𝑗) is greater than or equal to the sum of

the departure time 𝑡𝑖 (from node 𝑖), the traveling
time 𝑐𝑖𝑗 from node 𝑖 to the 𝑗 one, and the service
time 𝑚𝑗.

The Constraint (7) defines 𝑛 relations between
the flow variables 𝑥0𝑗 and 𝑡𝑗, for each 𝑗 ∈ 𝐼. In the
case 𝑥0𝑗 = 0 the inequality (7) expresses a
relationship 𝑙𝑤𝑗 + 𝑚𝑗 ≤ 𝑡𝑗, i.e. the departure time 𝑡𝑗
from node 𝑗 is greater than or equal to the sum of
the lower bound of the time window 𝑙𝑤𝑗 and service
time 𝑚𝑗. In the case 𝑥0𝑗 = 1 the inequality expresses
the relationship 𝑡0 + 𝑐0𝑗 + 𝑚𝑗𝑥0𝑗 ≤ 𝑡𝑗. The departure
time from node 𝑗 is greater than or equal to the sum
of the departure time 𝑡0 (from the depot), traveling
time 𝑐0𝑗 (from the depot to the node 𝑗), and the
service time 𝑚𝑗.

Statements (8), (9) and (10) declare 3 (𝑛 + 1)
equation constraints. The inequalities in (11) declare
the lower and upper bounds (0 and 1) for variables
𝑥𝑖𝑗, 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑥𝑖𝑗 ∈ {0,1}. The inequalities in (12)
enforce permitted limits for departure times 𝑡𝑗, 𝑗 ∈ 𝐼.

4 Transfer of TSPTW Model to the

 Matlab Environment
The procedure for solving TSPTW in Matlab code is
contained in the M-function TSPTW_SOLVER.m,
which is listed as an Appendix at the end of this
article.

For solving the TSPTW in the Matlab
environment, it is necessary to reliably modify the
used variables following Matlab rules. The main
problem with the transformation is that the index 0
cannot be used in Matlab, therefore, some variables
need to be reindexed. An overview of the main
variables transformed into the Matlab is contained
in Table 1., where identifier p substitutes (n+1)^2.

We assume the vehicle goes around to 𝑛
customers {1, 2, ⋯ , 𝑛 }. Each customer requests the
arrival of a vehicle in a certain time window. The
lower and upper boundaries of the time windows
and service times for all customers are stored in M-
vectors lw, uw and m. For departure time 𝑡0 from
the depot, the identifier t0 is used in Matlab. The
distance matrix 𝑫 and the travel time matrix 𝑪 have
to be transferred to the Matlab environment as
matrices D and C thus D(i,j) ≡ 𝑑𝑖−1 𝑗−1 and
C(i,j) ≡ 𝑐𝑖−1 𝑗−1 for indexes 𝑖, 𝑗 ∈ {1, 2, ⋯ , 𝑛 + 1}.

For the solution of TSPTW via the intlinprog

command, all flow variables have to be arranged in
a column vector X. First (𝑛 + 1)2 flow variables of
vector X are elements 𝑥𝑖𝑗 of the matrix 𝑿. Each
variable 𝑥𝑖𝑗, 𝑖, 𝑗 ∈ 𝐼0 is represented in Matlab code by

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 188 Volume 21, 2024

flow variable X(i*(n+1)+j+1,1). Each variable 𝑡𝑖, 𝑖 ∈

𝐼 is represented in Matlab code by flow variable
X((n+1)^2+i,1).

In the intlinprog command of Matlab the
objective function (13) is expressed like f'*X, where
f is a column vector with (𝑛 + 1)2 + 𝑛 components.
The first (𝑛 + 1)2 components of the vector f are
elements of travel time matrix C such that f((i-
1)*(n+1)+j,1)=C(i,j), i,j ∈ {1, 2, ⋯ , 𝑛 + 1}, and the
last 𝑛 components have the same value 𝑘𝑓 according
to relation (14). The value of 𝑘𝑓 (kf in Matlab code)
is calculated by commands on lines No. 2 to 8 of the
Appendix. The vector f of all components of the
objective function are created in Matlab code on line
No. 9.

The value 𝑡0 according to (3) is introduced in
Matlab code on row No. 10 of the Appendix.

The constraints (5), (6) are transformed to the
Matlab code by inequalities
(C(i+1,j+1)+uw(i)+m(i)-lw(i))*X(i*(n+1)+j+1,1)+…

X(p+i,1) - X(p+j,1)<= uw(i)-lw(j)+m(i)-m(j), for all
indexes i, j∈ {1,2, . . . , 𝑛}, i ≠ j, and
(C(1,j+1) +t0 -lw(j))*X(j+1,1) -X(p+j,1)<= -lw(j)-

m(j), for j ∈ {1,2, . . . , 𝑛}.
Concerning the last two inequalities, we can fill

in the elements of matrix A and vector b, which are
essential input parameters of the intlinprog
function. The corresponding Matlab code can be
found on rows No. 11 to 24 of the Appendix.

Concerning equalities (7), (8), (9), we can fill the
elements into the matrix Aeq and vector beq. The
relevant Matlab code can be found on rows No. 25
to 43 of the Appendix.

Two input variables lb, ub of the intlinprog
command (2) are the lower and upper bounds of the
flow variables. Concerning the relations (9), (10),
(11) the relevant components are filled in using the
commands on lines No. 44 to 63 of the Appendix.

The vector 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 of integer variables is, in the
Matlab, coded by the vector intcon, and specifies all
indices of flow variables, which are taken as
integers. It uses the command intcon=1:p on row
No. 64, p=(n+1)^2. This means that all flow
variables 𝑥𝑖𝑗 are taken as integers.

By installing the input variables f, intcon, A, b,
Aeq, beq, lb, and ub, and running the command
intlinprog (on row No. 65), we get the optimal
TSPWT solution if it exists. The optimal solution is
given by the optimal values of components of flow
variables vector X. The optimal TSPWT solution
may not exist if the set of time windows cannot be

met due to too short time windows or too long-time
travel distances between customers.

While the variable X(k,1), k ∈ {1, 2, … , (𝑛 + 1)2 }
takes the value 1, the corresponding arc between the
nodes (customers) of the graph is part of the
traveller’s cycle. By processing these variables, we
can obtain the order of passing the vertices, i.e.
components of the Matlab vector CYCLE, as the
code shows on lines No. 66 to 79 of the Appendix.

The last flow variables X(k,1), for k ∈
{𝑝 + 1, 𝑝 + 2, … , 𝑝 + 𝑛 }, where 𝑝 = (𝑛 + 1)2, are
specifically the departure times of the vehicle from
the nodes (customers) k at the optimal cycle. The
vector of the departure times 𝒕 is created on line No.
80 of the Appendix.

The real departure time 𝑡𝑆𝑡𝑎𝑟𝑡 (tStart in Matlab)
of the vehicle from the depot is calculated by a
command on line No. 81. The time 𝑡𝑅𝑒𝑡 (tRet in
Matlab) of the vehicle’s arrival back to the depot
after visiting all customers is calculated by a
command on line No 82. The total duration of the
business trip 𝑡𝑇𝑜𝑡𝐷𝑢𝑟 = 𝑡𝑅𝑒𝑡 − 𝑡𝑆𝑡𝑎𝑟𝑡 is calculated on
line No 83.

Table 1. The transformations of variable labels to
 Matlab identifiers

Variable
label 𝑛

𝑨
𝒃 𝑨𝑒𝑞 𝒃𝑒𝑞 𝑪 𝑫

Matlab n A b Aeq beq C D

Variable
label 𝒍𝑏 𝒖𝑏 𝒍𝑤 𝒖𝑤 𝒇 𝑘𝑓 𝒎

Matlab lb ub lw uw f kf m

Variable
label 𝑑𝑖𝑗 𝑥𝑖𝑗

Matlab D(i+1,j+1) X((n+1)*i+j+1,1)

Variable
label 𝑐𝑖𝑗 𝒕

Matlab C(i+1,j+1) X(p+1:end,1)

Variable

label
𝑿 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 𝑡0 𝑡𝑖

Matlab X intcon t0 X(p+i)

Variable

label
𝑡𝑆𝑡𝑎𝑟𝑡 𝑡𝑅𝑒𝑡 𝑡𝑇𝑜𝑡𝐷𝑢𝑟 𝑑𝑇𝑜𝑡𝐷𝑖𝑠𝑡

Matlab tStart tRet TotDur TotDist

For a clear output of the gained solution it is

useful to create vectors of departure and arrival
times 𝑡𝐴𝑟𝑟 (tArr in Matlab) and 𝑡𝐷𝑒𝑝 (tDep in
Matlab) from and to customers with items in the
order of the shortest cycle nodes. It is useful to
extend the vector of departure times 𝒕𝐷𝑒𝑝 by adding
a new first item 𝑡𝑆𝑡𝑎𝑟𝑡 (the departure time from the
depot). For the last item of the arrival times vector
𝒕𝐴𝑟𝑟, it is useful to add 𝑡𝑅𝑒𝑡 (the arrival time to the

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 189 Volume 21, 2024

depot). It is also good to arrange the lower and
upper bounds of time windows
𝒍𝑤 and 𝒖𝑤 in the order of the nodes visited. The
vectors 𝒕𝐷𝑒𝑝, 𝒕𝐴𝑟𝑟, 𝒍𝑤 and 𝒖𝑤 are created and
modified using commands on lines No. 84 to 91.
The output time items of all mentioned vectors are
expressed in the clock time format 'hh:mm'. The
total distance 𝑡𝑇𝑜𝑡𝐷𝑖𝑠𝑡 (TotDist in Matlab) travelled
during the sales trip is calculated by executing the
commands on lines No. 92 to 99.

5 Application
Our created optimization program was applied to
the delivery of frozen and refrigerated goods from a
central warehouse (vehicle depot) in a company in
the Czech Republic. The optimization of one line
with ten customers is chosen for the presentation.
The GPS coordinates of the vehicle depot are
longitude 𝐸0 = 15.90840 and latitude 𝑁0 = 50.02660.
The customers GPS coordinates𝐸𝑖, 𝑁𝑖, time window
lower and upper bounds 𝑙𝑤𝑖

, 𝑢𝑤𝑖
 (clock), and

service times 𝑚𝑖 (minutes) are given in Table 2.

Table 2. The customer's GPS coordinates, time
window bounds, and service times

𝑖 𝐸𝑖

(⁰)

𝑁𝑖

(⁰)

𝑙𝑤𝑖

𝑢𝑤𝑖

𝑚𝑖

(min)

1 15.7741 49.9841 6:00 8:00 23

2 16.4334 49.9015 10:00 14:00 21

3 14.5875 49.9039 6:00 11:00 22

4 14.8589 49.9939 6:00 8:00 21

5 14.5668 50.0419 6:00 12:00 21

6 16.2156 49.9883 8:00 14:00 22

7 15.3376 49.9463 6:00 8:00 24

8 14.0708 49.9624 6:00 9:00 23

9 14.2490 49.9196 6:00 12:00 21

10 16.2042 49.9052 8:00 13:00 22

The depot and customer locations are plotted in

Figure 1. The data of distances and time distances
bet-ween each two nodes have been obtained
directly from navigation applications. All distances
and time distances are contained in the distance
matrix 𝑫 and time distance matrix 𝑪 in Table 3 and
Table 4.

Fig. 1: Positions of the depot and customers
according to GPS coordinates

Table 3. The distance matrix 𝑫
Dist.
(m)

j
0 1 2 3 4 5

i

0 0 14172 49463 111603 85370 109170

1 141780 0 59899 102123 75890 99690

2 49454 59734 0 156662 130429 154229

3 112058 102104 156666 0 26711 20196

4 85750 75796 130358 26609 0 24176

5 109477 99523 154085 20138 24130 0

6 27459 40398 22489 137326 111093 134893

7 51454 39296 93858 63847 37614 61414

8 144563 137484 197204 50579 65232 42444

9 135290 129140 183702 35563 53747 33171

10 29914 40194 19780 137122 110889 134689

Dist.
(m)

 j
6 7 8 9 10

i

0 27459 50951 143159 137742 29893

1 40571 39392 136367 128162 40329

2 22489 93831 196394 182801 19767

3 137338 63824 50661 34512 137096

4 111030 37516 66234 52748 110788

5 134754 61243 42792 33726 134515

6 0 74495 177058 163465 13220

7 74530 0 103161 89986 74288

8 177876 103944 0 18336 177634

9 164374 90860 18382 0 164132

10 13241 74291 176854 163261 0

Table 4. The time distance matrix 𝑪

Time
(sec)

j
0 1 2 3 4 5

i

0 0 678 1955 4646 3492 4454

1 678 0 2346 4314 3160 4122

2 1956 2329 0 6382 5227 6189

3 4644 4312 6379 0 1199 945

4 3486 3154 5221 1194 0 1002

5 4446 4114 6180 942 1000 0

6 1238 1643 1050 5695 4541 5503

7 2137 1637 3704 2735 1581 2543

8 6088 5773 7938 2202 2849 1913

9 5642 5325 7391 1470 2211 1467

10 1202 1574 769 5627 4473 5435

Time
(sec)

 j
6 7 8 9 10

i

0 1238 2142 6133 5684 1201

1 1662 1637 5810 5352 1593

2 1050 3705 7982 7419 770

3 5695 2733 2208 1488 5625

4 4537 1575 2861 2232 4468

5 5496 2535 1925 1485 5427

6 0 3018 7296 6733 548

7 3020 0 4315 3773 3951

8 7254 4271 0 903 7185

9 6707 3746 906 0 6638

10 548 2950 7227 6664 0

5.1 The Smallest Cycle Duration with

 Respecting Time Windows
By running the TSPTW_SOLVER.m function with
the above given input parameters (Table 2 and Table
4), the optimal solution was found. The smallest
duration cycle concerning time windows is given by

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 190 Volume 21, 2024

the sequence of nodes 0-1-7-4-8-9-3-5-10-2-6-0.
The found cycle is drawn in Figure 2. The total time
spent on the delivery route is 8 h 49 min 19 sec and
the corresponding travel distance is 435.650 km.

Fig. 2: The smallest duration cycle of the seller’s
 journey with respecting the time windows

Table 5. The arrival and departure times of the
smallest duration cycle concerning time windows
Time

(clock)

Start
The arrived and dep. times of cycle

0-1-7-4-8-9-3-5-10-2-6-0
Re-
turn

i 0 1 7 4 8 9 -

𝑙𝑤𝑖
 - 6:00 6:00 6:00 6:00 6:00 -

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:50 7:40 8:49 9:27 -

𝑡𝐷𝑒𝑝𝑖
 5:48 6:23 7:14 8:01 9:12 9:48 -

𝑢𝒘𝒊
 - 8:00 8:00 8:00 9:00 12:00 -

i - 3 5 10 2 6 0

𝑙𝑤𝑖
 - 6:00 6:00 8:00 10:00 8:00 -

𝑡𝐴𝑟𝑟𝑖
 - 10:12 10:50 12:42 13:16 13:55 14:38

𝑡𝐷𝑒𝑝𝑖
 - 10:34 11:11 13:04 13:37 14:17 -

𝑢𝒘𝒊
 - 11:00 12:00 13:00 14:00 15:00 -

The calculated vehicle departure and arrival

times 𝑡𝐷𝑒𝑝𝑖
, 𝑡𝐴𝑟𝑟𝑖

, and the lower and upper bounds
𝑙𝑤𝑖

, 𝑢𝑤𝑖
 of time windows are in Table 5. The time

values shown in the table are rounded to the nearest
minute.

5.2 The Smallest Duration Cycle Without

Time Windows
If all customers do not require any time window,
then there exists n! different cycles that the seller
can use to visit all customers. The mean value of the
travel time after all possible cycles (without service
times) is ∑ (

1

𝑛
∑ 𝑐𝑖,𝑗

𝑛
𝑖=0)𝑛

𝑗=0 . We can find the cycle of
actual minimum travel time. For this purpose, we
modify the previous mixed-integer linear
programming problem by cancelling constraints (5),
(6), and changing (11) to a constraint:
𝑡𝑒 + 𝑚𝑗 ≤ 𝑡𝑗 ≤ 𝑡𝑒 + ∑ (

1

𝑛
∑ 𝑐𝑖,𝑗

𝑛
𝑖=0)𝑛

𝑗=0 + ∑ 𝑚𝑖
𝑛
𝑖=1 , 𝑗 ∈ 𝐼.

 (15)
We assume that all customers accept the arrival

of the vehicle at the earliest 𝑡𝑒 = 6 a. m. By running
this modified M-function, the solution for the cycle
of minimal travel time can be found. This is the
node sequence 0-6-2-10-1-7-4-5-8-9-3-0, and the
corresponding cycle is shown in Figure 3. To solve
the described TSP, the Matlab code published in [4]
can also be used.

Fig. 3: The smallest duration cycle of the
seller’s journey without respecting the time
windows.

The calculated vehicle departure times tDepi
 and

arrival times tArri
 for each node 𝑖 are included in

Table 6. The time values shown in the table are
rounded to the nearest minute. This business trip
lasts exactly 8 h 36 min 34 sec and the
corresponding travel distance is 419.740 km. This
means in our case that, when respecting the time
windows, the travel time is 12 min and 45 seconds
longer and the distance traveled is 25.910 km
longer.

Table 6. The arrival and departure times of the

 smallest duration cycle without time windows
Time

(clock)

Start
The arrived and dep. times of cycle

0-6-2-10-1-7-4-5-8-9-3-0
Re-
turn

i 0 6 2 10 1 7 -

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:39 7:13 8:01 8:51 -

𝑡𝐷𝑒𝑝𝑖
 5:39 6:22 7:00 7:35 8:24 9:15 -

i - 4 5 8 9 3 0

𝑡𝐴𝑟𝑟𝑖
 - 9:42 10:19 11:12 11:51 12:36 14:15

𝑡𝐷𝑒𝑝𝑖
 - 10:19 10:40 11:35 12:12 12:58 -

5.3 The Smallest Length Cycle without Time

 Windows
As is clear from the elements of the used matrices 𝑪
and 𝑫, the time distances between the same pairs of
nodes are not exactly proportional to the length
distances. The reason may be, for example, the
different quality of the roads used. Driving time is
shorter on higher quality roads than when using

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 191 Volume 21, 2024

lower class ones. The consequence may be that the
shortest cycle in time may not be the shortest in
length and vice versa.

We can present it in our case. If we optimize our
TSP problem without time windows based on the
use of the distance matrix 𝑫, we obtain the optimal
solution, given the node sequence 0-5-8-9-3-4-7-1-
10-2-6-0, which is shown in Figure 4. For
optimization we used the code published in [5].

Fig. 4: The minimal length cycle without respecting
time windows

The length of this cycle is 419.441 km and the
total time spent on the delivery route is 8 h 36 min
53 sec. The cycle length is 299 m less than the cycle
length in the previous case, but the travel time is 19
s longer. The last obtained cycle is minimal in terms
of travel distance but not minimal in terms of time.
The calculated vehicle departure times 𝑡𝐷𝑒𝑝𝑖

 and
arrival times 𝑡𝐴𝑟𝑟𝑖

 (in hh:mm) for each node i are
included in Table 7.

Table 7. The arrival and departure times of the

smallest duration cycle without time windows
Time

(clock)

Start
The arrived and dep. times of cycle

0-5-8-9-3-4-7-1-10-2-6-0
Re-
turn

I 0 5 8 9 3 4 -

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:53 7:31 8:16 8:58 -

𝑡𝐷𝑒𝑝𝑖
 4:45 6:21 7:16 7:52 8:38 9:19 -

i - 7 1 10 2 6 0

𝑡𝐴𝑟𝑟𝑖
 - 9:45 10:37 11:26 12:01 12:40 13:20

𝑡𝐷𝑒𝑝𝑖
 - 10:09 11:00 11:48 12:22 13:02 -

6 Conclusion
This paper proposes a new practical algorithm for
the TSPTW solution for any number of customers,
by using a developed Matlab code. The TSPTW is
formulated as a mixed-integer linear programming
problem with a new approach, which respects the
given matrix of distances, time windows, service
duration times of customers, and constant speed of
the vehicle. The solution lies in minimizing the
vehicle trip duration that services all nodes

(customers). In practice, there is not strict
proportionality between the time and the length of
the path connecting the nodes. Therefore, the
shortest path in time may not be the shortest in
length. The designed objective function using
members with appropriate multiples of departure
times allows minimization of customer departure
times and avoids unnecessary waiting times.

The main output of this paper is a computational
algorithm implemented in an M-function created in
Matlab code, which allows a general solution of the
newly formulated TSPTW problem for any number
n of customers. The created M-function
TSPTW_SOLVER.m is given in the Appendix at
the end of this paper.

The application in section 5 shows one practical
TSPWT solution for 10 customers on an ordinary
PC, this calculation takes 7.23 sec. For comparison,
the optimal solutions for the shortest time and the
shortest distance when no time windows are applied,
are shown.

The M-function TSPTW_SOLVER.m is
practically usable on a regular personal computer
for up to 20 customers. For less than 13 customers,
the calculation takes a few seconds. With a larger
number of customers, the calculation can take tens
of minutes or more. The program was successfully
tested for up to 60 customers.

Entering too short and inappropriately combined
time windows can easily make the problem
unsolvable. It is therefore important to negotiate
with customers and use time windows only when
necessary.

Testing of the created program showed that it is
highly usable in practice. Respecting the results
obtained during the delivery of goods ultimately
enables fuel savings.

The author intends to extend his future research
to solving the vehicle routing problem with time
windows (VRPTW) and respecting the
predetermined priority of customers. In the next
stage of the TSPTW and VRPTW solution, the use
of artificial intelligence is expected.

Acknowledgement:

The submitted manuscript contains a specific model
created by the author for solving TSPTW as an
optimization problem of linear programming (4)
with a specifically designed objective function (13)
and constraints (5) to (12). Service times and time
windows are respected.

The main and unique result of the article is the
transformation of the created model into the Matlab
environment, and the creation of the corresponding

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 192 Volume 21, 2024

M-function, which is applicable for solving TSPTW
for any number of 𝑛 customers. The created M-
function TSPTW_SOLVER.m is in the Appendix.

References:

[1] Bentley, J. J.: Fast Algorithms for Geometric
Traveling Salesman Problems. ORSA Journal

on Computing. Vol. 4, No. 4, 1992, pp. 387–
411.

[2] Davendra, D., Traveling Salesman Problem,

Theory and Applications. InTech, Jerza
Trdina 9, Rijeka, Croatia, 2010.

[3] Gutin, G., and Punnen, A. P., The Traveling

Salesman Problem and Its Variations. New
York: Springer Science+Business Media,
LLC, 2007.

[4] Warren, R. H.: Generating Cyclic Permutati-
ons: Insights to the Traveling Salesman Pro-
blem. WSEAS Transactions on Information

Science and Applications, Vol. 18, 2021, pp.
68–72,
https://doi.org/10.37394/23209.2021.18.9.

[5] Zahradka, J.: The Traveling Salesman
Problem Solution by Mixed Integer Linear
Programming in Matlab Code. Journal of

Applied and Computational Sciences, Vol. 1,
No. 1, 2022, 45–
52.
https://doi.org/10.5281/zenodo.6880928.

[6] Bard, J. F., Kontoravdis, G., and Yu. G.: A
Branch-and-Cut Procedure for the Vehicle
Routing Problem with Time Windows.
Transportation Science, Vol. 36, No. 2, 2002,
pp. 250–269.

[7] Gradle, K. P., and Muley, Y. M.: Travelling
Salesman Problem with MATLAB Program-
ming. International Journal of Advances in

Ap-plied Mathematics and Mechanics. Vol. 2,
No. 3, 2015, pp. 258–266.

[8] Ohlmann, J. W., J. W., and Thomas, B. W.: A
Compressed-Annealing Heuristic for the
Traveling Sales-man Problem with Time
Windows. Informs Journal on Computing,

Vol. 19, No. 1, 2007, pp. 80–90.
https://doi.org/10.1287/ijoc.1050.0145.

[9] Papalitsas, C., Andronikos, T., Ciannakis, K.,
Theocharopoulou, G., and Fanarioti, S.:
A QU-BO Model for the Traveling Salesman
Problem with Time Windows. Algorithms,

Vol. 12, No. 11, 2019, pp.
224.
https://doi.org/10.3390/a12110224.

[10] Sushma, M., Reddy, V.: Finding an Optimal
Path with Hospital Information System Using

GIS-based Network Analysis WSEAS Tran-

sactions on Information Science and Appli-

cations, Vol. 18, 2021, pp. 1–6.
https://doi.org/10.37394/23209.2021.18.1.

[11] MathWorks. Inc., Optimization Toolbox,

User’s Guide. The MathWorks, Inc. Natic,
Massachusetts, United States, 2024,
[Online].
https://uk.mathworks.com/help/optim/index.ht
ml?s_tid=CRUX_lftnav (Accessed Date:
Marcch 11, 2024).

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The sole author of this scientific article
independently conducted and prepared the entire
work from the formulation of the problem to the
final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

This work was funded by the private sources of the
author.

Conflict of Interest

The author has no conflict of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 193 Volume 21, 2024

https://doi.org/10.37394/23209.2021.18.9
https://doi.org/10.5281/zenodo.6880928h
https://doi.org/10.1287/ijoc.1050.0145
https://doi.org/10.3390/a12110224
https://doi.org/10.37394/23209.2021.18.1
https://uk.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav
https://uk.mathworks.com/help/optim/index.html?s_tid=CRUX_lftnav
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

APPENDIX

TSPTW_SOLVER.m
1: function[X,CYCLE,AllDist,AWT,tStart,tArr]=…

 TSPTW_SOLVER(n,D,C,lw,uw,m)

 2: Ctemp=C'; Ctemp=Ctemp(:); p=(n+1)*(n+1);

 3: for i=1:p

 4: if Ctemp(i)==0

 5: Ctemp(i)=Inf;

 6: end

 7: end

 8: kf=min(Ctemp)/86400/n; Ctemp=[];

 9: CT=C'; f=CT(:); f=[f;kf*ones(n,1)];

10: t0=min(lw-C(1,2:end));

11: A=zeros(n^2,(n+1)^2+n); k=0;

12: for i=1:n

13: for j=1:n

14: if i~=j

15: k=k+1; A(k,(n+1)*i+1+j)=C(i+1,j+1)…

 +m(i)+uw(i)-lw(j);

16: A(k,p+i)=1; A(k,p+j)=-1;

17: b(k,1)=uw(i)-lw(j)+m(i) -m(j);

18: end

19: end

20: end

21: for j=1:n

22: k=k+1; A(k,(n+1)*i+1+j)=C(1,j+1)+t0-lw(j);

23: A(k,p+j)=-1; b(k,1)=-lw(j)-m(j);

24: end

25: Aeq=zeros(3*n+3,p+n);

26: for i=1:n+1

27: for j=1:n+1

28: Aeq(i,(i-1)*(n+1)+j)=1;

29: end

30: Aeq(i,(i-1)*(n+1)+i)=0;

31: beq(i,1)=1;

32: end

33: for i=1:n+1

34: for j=1:n+1

35: Aeq(n+1+i,(j-1)*(n+1)+i)=1;

36: end

37: Aeq(n+1+i,(i-1)*(n+1)+i)=0;

38: beq(n+1+i,1)=1;

39: end

40: for i=1:n+1

41: Aeq(2*n+2+i,(i-1)*(n+1)+i)=1;

42: beq(2*n+2+i,1)=0;

43: end

44: lb=zeros(p,1);

45: for i=1:n

46: if lw(i)<t0+C(1,1+i)

47: lb(p+i,1)=t0+C(1,1+i)+m(i);

48: else

49: lb(p+i,1)=lw(i)+m(i);

50: end

51: end

52: k=0;

53: for i=1:n+1

54: for j=1:n+1

55: k=k+1;

56: if i==j

57: ub(k,1)=0;

58: else

59: ub(k,1)=1;

60: end

61: end

62: end

63: ub(p+1:p+n,1)=uw+m;

64: intcon = 1:p; options = optimoptions'intlin…
 prog','MaxTime',420,'MaxNodes',3000000);

65: X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,[],…

 options); X=round(X);

66: for i=2:n+1

67: if X(i)==1

68: CYCLE=0; Nok=2; CYCLE(Nok)=i-1;

69: TEST=i; break;

70: end

71: end

72: while TEST~=1

73: for j=1:n+1

74: if X((CYCLE(Nok))*(n+1)+j)==1

75: Nok=Nok+1; CYCLE(Nok)=j-1;

76: TEST=j; break;

77: end

78: end

79: end

80: t=X(p+1:end);

81: tStart=(t(CYCLE(2))-m(CYCLE(2))-C(1,…

 CYCLE(2)+1))

82: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1);

83: TotDur=tRet-tStart;

84: tDep=[tStart,t(CYCLE(2:end-1))];

85: tDep=hours(tDep); tDep.Format='hh:mm';

86: tArr=[t(CYCLE(2:end-1))-(m(CYCLE…

 (2:end-1))),tRet];

87: tArr=hours(tArr); tArr.Format='hh:mm';

88: uw=hours(uw(CYCLE(2:end-1)));

89: uw.Format='hh:mm';

90: lw=hours(lw(CYCLE(2:end-1)));

91: lw.Format='hh:mm';

92: TotDist=0;

93: for i=1:(n+1)

94: for j=1:(n+1)

95: if X((n+1)*(i-1)+j)==1

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 194 Volume 21, 2024

96: TotDist=TotDist+D(i,j); break;

97: end

98: end

99: end

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2024.21.18 Jaromír Zahrádka

E-ISSN: 2224-3402 195 Volume 21, 2024

