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Abstract: - A delivery driver uses his truck to distribute ordered goods from the warehouse (depot) to n
customers. Each customer determines the delivery point (by GPS coordinates) and time window for the
distribution of goods. This problem can be called the traveling salesman problem with time windows (TSPTW).
The objective of the solution is to select the sequence of delivery points so that the travel distance and the total
travel time are minimal. The necessary condition is that the deliverer leaves the warehouse, visits all delivery
points (where he arrives at the required time windows), and returns to the warehouse. In this article, one exact
robust solution of the TSPTW is presented by using mixed integer linear programming implemented in Matlab
code. The created algorithm can be used for any number n of customers.
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1 Introduction 2 Mixed-integer Linear Programming
This article aims to create a functional Matlab The problem of mixed-integer linear programming
algorithm that can find the optimal solution of the (MILP) is generally expressed by:
traveling salesman problem with time windows Xintcon are integers
(TSPTW) for any givep number n of customers. min(fT - X) subject to 2 4 § f Z
The simple traveling salesman problem (TSP) 2 eq " A = Deq
lies in finding the shortest path or shortest time that a I, <X <u,
salesman should take to visit all n customers and (M
return to the depot. Related works on the topic of
TSP are [1], [2], [3], [4] and [5]. The vector X is the column vector of all flow
The TSPTW is an extension of the TSP which variables. The symbol f denotes the column vector
requires, in addition, that the traveling salesman with ~coefficients represented in the objective
arrive at the customers during pregiven time function which is f7 - X. The number of components
windows. of f is equal to the number of all flow variables.
Our work is focused on the use of branch and Writing X;,:con means the list of variables of the
bound, and branch and cut algorithms that have been vector X -that takes only the integer Yalues. The other
used, for example, in studies [5], [6] and [7]. The flow Varlqbles are treatgd as real Va.rlables. . ‘
TSPTW was solved in [8] and [9]. Authors used the The linear inequality constraint matrix A is
compressed-annealing heuristic and the QUBO specified as a matrix of real numbers, which are the
model. linear coefficients in the system of inequality
The related problem of finding the real optimal constraints given by A-X <b.The size of the
road route from Start-point to End-Point is described MAtrix A is Mineq X 1, Where My eq is the number of
by pseudocode for Dijkstra's algorithm in [10]. The inequality constraints and n is the number of flow
minimum distances of the routes are obtained using variables. Linear inequality constraints vector b is
google navigation which is also used in our work. the vector of given real numbers (right sides of the
The TSP solution using Matlab code is inequalities). The length of the vector b is M.
demonstrated in [11]. The Matlab code for the The linear equality constraint matrix A,, is
solution of the traveling salesman problem was used specified as the matrix of real numbers, which are
in [5] and [7]. the linear coefficients in the system of equations

Agq* X = b,y. The size of the matrix A4,, is mqq X n,
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where mg, is the number of linear equation
constraints and n is the number of flow variables.
Linear equality constraint vector b, is the vector of
given real numbers (right sides of the equations).
The length of the vector b,y is me,.

The lower and upper bounds of flow variables
(items of X) are specified as real numbers - elements
of vectors [, and u,. The vector X satisfies the
inequality I, < X < u;. The core of the solver for
the MILP solution in Matlab code is the command:

X=intlinprog(f,intcon,A,b,Aeq,beq,Ib,ub),
2

where previously used variables are expressed by
the corresponding variable identifiers of Matlab
langu-age. The transformation of all variable labels
into Matlab identifiers is contained in Table 1.
A more detailed explanation of the intlinprog
command is available in [11].

3 Mathematical Formulation of the
Traveling Salesman Problem with

Time Windows
The traveling salesman problem with time windows
(TSPTW) can be defined as follows. Let G, = (V, E)
be a connected graph consisting of a set V of n+ 1
nodes indexed by =0,1,::-,n, and a set E of non-
negatively weighted arcs between pairs of
corresponding nodes of the graph G,. The index i =
0 is used for the seller, and indexes i = 1,---,n for
customers. For easier reference, let I = {1,---,n} be
the set of customers, and I, =1 U {0}. Each of the
customers i €1 can be reached only within a
specified time interval (window) [l,,,,u,,] . Vectors
of lower and upper boundaries of the time window
are denoted by [, and u,,. For each customer i € I
let m; be the service time associated with the
handover and unloading of goods. The vector m of
customer service times means m = (my,---,m,). The
constant t, means the moment when the vehicle can
first leave the depot.

Let d;; be the length of the one-way path (in
meters) and c;; the one-way time-distance (in
seconds), i.e. the travel duration from node i to node
j for all i,j€el, Therefore D= (dif)ijezo is a

. is a time-distance
0

matrix. Both matrices D and € are non-negative,
asymmetric, and related (but essentially independent
non-negative), with zeros on the main diagonal, i.e.
c;; =0 and d; = 0 for each i € [,. It is necessary to
satisfy the triangular inequalities among all nodes of
the graph G, in both matrices.

distance matrix and € = (Cii)ije
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Since we have to respect time windows, it is
necessary that the time-distance matrix € be used
for optimization. The elements of the time-distances
matrix c;; are not strictly proportional, in general, to
the corresponding elements of the distance matrix
d;j. The driving time between two nodes is
significantly influenced by the quality of the roads
used.

To start the optimization process, it is necessary
to select the time moment t, when the vehicle leaves
the depot. Regarding the lower valid time windows
of all customers, the appropriate time ¢, is:

t =min(l —C )
0 jel wj 0j

3)
But when the first visited customer s el is
selected during the optimization process, for which
it is valid that [, —cys > ty, then a waiting time
Ly, — cos — to will be required. To eliminate the
unnecessary waiting time at the first customer, it is
appropriate to shift the departure time of the vehicle
from the depot to the real value tsiq,e = Ly, — Cos-
The core of the TSPTW solution is to find the
cycle in the graph G, which contains all nodes of
the graph so that the travel time is the shortest, and
where all time windows are respected. For this
purpose, integer variables x;; for i,j€l, are
introduced, which can only take the values 0 or 1.
The value x;; = 1 means that the arc from the node i
to j is included in the cycle. The value x;; =0
means that the corresponding arc is not included.
For a systemic reason, variables x; are included,
but all these variables are fixed by the value zero
(x; = 0), for each i € I,. Variables x;; are elements
of a matrix X = (x; j)i . The number of all
JElg

variables x;; is (n + 1)%.

Other flow variables that need to be used in the
TSPTW solution are the vehicle departure times
from all customers. Therefore real (non-integer)
flow variables t; are introduced for each i € I. The
variable t; indicates the moment when the driver
leaves the customer number i. The variables t; are
arranged as n elements of a vector t = (ty,--,t,).
So, the number of all flow variables is (n + 1)? + n.

The solution of TSPTW is realized by the

optimal solution of the mixed-integer linear
programming problem:
min{X?;_oc;j - xi; + Xl k- i} subject to (4)

X0

x;j,1,]j € I, are integers, even true that x;; € {0,1} (5)
(Cij +uwl. +mi _le> xij +ti _tj <

Uy, = by, +my—my,  ,jELL#] (6)
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(c0j+t0+le)x0j—tjs—le —m;, jel  (7)
YieXij =1, 1€l 3
Yie,Xij =1, €I ©)
x; =0, i€l (10)
0<x;<1, i,j€lyi%] (11)

max(le +my; ty + o +mj) <t < U; +m;, j el

(12)

In the above expressed model (4), with flow
variables x;; and t;, the linear function:
Xij=0Cij " xij + Xiz1 ks t; (13)
is minimized. The first part, ¥;_,c;; - x;; guaran-
tees finding the cycle, which takes the minimum
travel time. For this, in the optimization process, it
is necessary that the second part of the minimized
function (13), i.e. XL, ks -t; will be smaller by at
least 10 times. This condition is certainly met if we
choose the coefficients:
_min_(cij)
LjElg, i#]

ke =
f 86400 n

(14)

It is assumed that the values of the variables ¢;
do not exceed the order of 86400 sec (1 day).

This objective function guarantees that the
members containing the variables t; will not affect
the optimal values of the variables x;;. At the same
time, the arrival times t; will be minimized and
downtimes of vehicles will not be necessary before
reaching customers.

Using statement (5) it is given that x;;, i,j €
I, are all integer variables, even binary ones.

If x;; =0, the inequality (6) expresses the
relationship 0 < (u,, +m;) — t; +¢; — (le + mj),
for each i,jel, i+#j. The right side of this
inequality can only be nonnegative because the
upper bound of time window u,, plus service time
m; is greater than or equal to the departure time ¢;
(from the node i), and the departure time t; (from
the node j) is greater than or equal to the sum of
lower bound of the time window Ly, and the service
time m;.

In the case x;; = 1 the inequality (6) defines a
relationship ¢;; +t;+m; < t;, i,j€l, i#j. This
expresses the condition that the departure time
t; (from node j) is greater than or equal to the sum of
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the departure time ¢; (from node i), the traveling
time ¢;; from node i to the j one, and the service
time m;.

The Constraint (7) defines n relations between
the flow variables x,; and t;, for each j € I. In the
case xp; =0 the inequality (7) expresses a
relationship 1, +m; < ¢;, i.e. the departure time ¢;
from node j is greater than or equal to the sum of
the lower bound of the time window L and service
time m;. In the case x,; = 1 the inequality expresses
the relationship t, + co; + m;xy; < t;. The departure
time from node j is greater than or equal to the sum
of the departure time t, (from the depot), traveling
time ¢,; (from the depot to the node j), and the
service time m,;.

Statements (8), (9) and (10) declare 3 (n+ 1)
equation constraints. The inequalities in (11) declare
the lower and upper bounds (0 and 1) for variables
xij, 1,j €1, i # j, x;; € {0,1}. The inequalities in (12)
enforce permitted limits for departure times t;, j € I.

4 Transfer of TSPTW Model to the

Matlab Environment
The procedure for solving TSPTW in Matlab code is
contained in the M-function TSPTW_SOLVER.m,
which is listed as an Appendix at the end of this
article.

For solving the TSPTW in the Matlab
environment, it is necessary to reliably modify the
used variables following Matlab rules. The main
problem with the transformation is that the index 0
cannot be used in Matlab, therefore, some variables
need to be reindexed. An overview of the main
variables transformed into the Matlab is contained
in Table 1., where identifier p substitutes (n+1)"2.

We assume the vehicle goes around to n
customers {1,2,---,n}. Each customer requests the
arrival of a vehicle in a certain time window. The
lower and upper boundaries of the time windows
and service times for all customers are stored in M-
vectors lw, uw and m. For departure time t, from
the depot, the identifier tO is used in Matlab. The
distance matrix D and the travel time matrix € have
to be transferred to the Matlab environment as
matrices D and C thus D(ij)=d;_;;-; and
C(ij) =ci—q j—4 forindexes i, j € {1,2,--,n + 1}.

For the solution of TSPTW via the intlinprog
command, all flow variables have to be arranged in
a column vector X. First (n + 1)? flow variables of
vector X are elements x;; of the matrix X. Each
variable x;;, i, € I, is represented in Matlab code by
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flow variable X(i*(n+1)+j+1,1). Each variable ¢t;, i €
I is represented in Matlab code by flow variable
X(n+N)"2+i,7).

In the intlinprog command of Matlab the
objective function (13) is expressed like f'*X, where
f is a column vector with (n + 1) + n components.
The first (n + 1)? components of the vector f are
elements of travel time matrix C such that f((i-
D*(n+1)+j,1)=C(i)j), ij €{1,2,---,n+ 1}, and the
last n components have the same value k; according
to relation (14). The value of k; (kf in Matlab code)
is calculated by commands on lines No. 2 to 8 of the
Appendix. The vector f of all components of the
objective function are created in Matlab code on line
No. 9.

The value t, according to (3) is introduced in
Matlab code on row No. 10 of the Appendix.

The constraints (5), (6) are transformed to the
Matlab code by inequalities

(CA+1,j+ 1) +uw(i)+m(i)-Iw(@)* X[ (n+1) +j+1,1) +...
X(p+i,1) - X(p+j,1) <= uw(i)-Iw()+m(i)-m(j), for all
indexes i, je {1,2,...,n}, 1 #], and

(CAj+1) +t0 -Iw )*X(+1,1) -X(p+j, D<= -Iw()-
m(j), forj € {1,2,...,n}.

Concerning the last two inequalities, we can fill
in the elements of matrix A and vector b, which are
essential input parameters of the intlinprog
function. The corresponding Matlab code can be

found on rows No. 11 to 24 of the Appendix.

Concerning equalities (7), (8), (9), we can fill the
elements into the matrix Aeq and vector beq. The
relevant Matlab code can be found on rows No. 25
to 43 of the Appendix.

Two input variables |b, ub of the intlinprog
command (2) are the lower and upper bounds of the
flow variables. Concerning the relations (9), (10),
(11) the relevant components are filled in using the
commands on lines No. 44 to 63 of the Appendix.

The vector X;,;.,n Of integer variables is, in the
Matlab, coded by the vector intcon, and specifies all
indices of flow variables, which are taken as
integers. It uses the command intcon=1.p on row
No. 64, p=(n+1)"2. This means that all flow
variables x;; are taken as integers.

By installing the input variables f, intcon, A, b,
Aeq, beq, Ib, and ub, and running the command
intlinprog (on row No. 65), we get the optimal
TSPWT solution if it exists. The optimal solution is
given by the optimal values of components of flow
variables vector X. The optimal TSPWT solution
may not exist if the set of time windows cannot be
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met due to too short time windows or too long-time
travel distances between customers.

While the variable X(k,1), k € {1,2, ...,(n + 1)? }
takes the value 1, the corresponding arc between the
nodes (customers) of the graph is part of the
traveller’s cycle. By processing these variables, we
can obtain the order of passing the vertices, i.e.
components of the Matlab vector CYCLE, as the
code shows on lines No. 66 to 79 of the Appendix.

The last flow variables X(k1), for ke
{p+1,p+2,..,p+n}, where p=(n+1)2?, are
specifically the departure times of the vehicle from
the nodes (customers) k at the optimal cycle. The
vector of the departure times ¢ is created on line No.
80 of the Appendix.

The real departure time g4, (tStart in Matlab)
of the vehicle from the depot is calculated by a
command on line No. 81. The time tg., (tRet in
Matlab) of the vehicle’s arrival back to the depot
after visiting all customers is calculated by a
command on line No 82. The total duration of the
business trip troipur = tret — tstare 18 calculated on
line No 83.

Table 1. The transformations of variable labels to

Matlab identifiers
V?;Lae'ile n | A b | Ay |bg| Cc| D
Matlab n A b | Aeq | beq| C | D
V?;loaetile L, up L, uy f kf m
Matlab b | ub | Iw | uw f kf m
Variable d: X
label Y Y
Matlab D(i+1j+1) X((n+T)*i+j+1,1)
Variable i ¢
label Y
Matlab Cli+1j+1) X(p+1:end,1)
V?;Lae}:l)le X X intcon tO ti
Matlab intcon t0 X(p+i)
Variable
label tStart tRet tTo tDur dTo tDist
Matlab tStart tRet TotDur TotDist

For a clear output of the gained solution it is
useful to create vectors of departure and arrival
times t,, (tArr in Matlab) and tp., (tDep in
Matlab) from and to customers with items in the
order of the shortest cycle nodes. It is useful to
extend the vector of departure times tj., by adding
a new first item tg., (the departure time from the
depot). For the last item of the arrival times vector
ty,, it is useful to add tg., (the arrival time to the
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depot). It is also good to arrange the lower and
upper bounds of time windows
l,and u, in the order of the nodes visited. The
vectors  tpep, tarrs lyand w, are created and
modified using commands on lines No. 84 to 91.
The output time items of all mentioned vectors are
expressed in the clock time format 'hh:mm'. The

total distance tro.pis (TOtDist in Matlab) travelled
during the sales trip is calculated by executing the
commands on lines No. 92 to 99.

5 Application

Our created optimization program was applied to
the delivery of frozen and refrigerated goods from a
central warehouse (vehicle depot) in a company in
the Czech Republic. The optimization of one line
with ten customers is chosen for the presentation.
The GPS coordinates of the vehicle depot are
longitude E, = 15.9084° and latitude N, = 50.0266°.
The customers GPS coordinatesk;, N;, time window
lower and upper bounds I,, u,, (clock), and
service times m; (minutes) are given in Table 2.

Table 2. The customer's GPS coordinates, time
window bounds, and service times

Jaromir Zahradka

Fig. 1: Positions of the depot and customers
according to GPS coordinates

Table 3. The distance matrix D

Dist. ]
(m) 0 1 2 3 4 5
0 0 14172 | 49463 | 111603 | 85370 | 109170
1 | 141780 0 59899 | 102123 | 75890 | 99690
2 | 49454 | 59734 0 156662 | 130429 | 154229
3 | 112058 | 102104 | 156666 0 26711 | 20196
4 | 85750 | 75796 | 130358 | 26609 0 24176
i| 5 | 109477 | 99523 | 154085 | 20138 | 24130 0
6 | 27459 | 40398 | 22489 | 137326 | 111093 | 134893
7 | 51454 | 39296 | 93858 | 63847 | 37614 | 61414
8 | 144563 | 137484 | 197204 | 50579 | 65232 | 42444
9 | 135200 | 129140 | 183702 | 35563 | 53747 | 33171
10 | 29914 | 40194 | 19780 | 137122 | 110889 | 134689
Dist. j
(m) 6 7 8 9 10
0 | 27459 | 50051 | 143159 | 137742 | 29893
1 | 40571 | 39392 | 136367 | 128162 | 40329
2 | 22489 | 93831 | 196394 | 182801 | 19767
3 | 137338 | 63824 | 50661 | 34512 | 137096
4 111030 | 37516 | 66234 | 52748 | 110788
i| 5 | 134754 | 61243 | 42792 | 33726 | 134515
6 0 74495 | 177058 | 163465 | 13220
7 | 74530 0 103161 | 89986 | 74288
8 | 177876 | 103944 0 18336 | 177634
9 | 164374 | 90860 | 18382 0 164132
10 | 13241 | 74291 | 176854 | 163261 0

; E, N, ™ o, - . Table 4. The time 'dlstance matrix C
) © (min) f‘mj j
: : sec 0 1 2 3 4 5
1 15.7741 49.9841 6:00 8:00 23 0 0 78 1955 2646 3490 1454
2 16.4334 49.9015 10:00 14:00 21 1 678 0 2346 4314 3160 4122
3 14.5875 49.9039 6:00 11:00 22 2 1956 2329 0 6382 5227 6189
4 | 148589 | 49.9939 6:00 800 | 21 3 | 4644 | 4312 | 6379 0 1199 | 945
4 3486 3154 5221 1194 0 1002
6 16.2156 49.9883 8:00 14:00 22 6 1238 1643 1050 5695 4541 5503
7 15.3376 49.9463 6:00 8:00 24 7 2137 1637 3704 2735 1581 2543
8 6088 5773 7938 2202 2849 1913
8 | 140708 | 49.9624 6:00 9:00 | 23 9 | 5642 | 5325 | 7391 | 1470 | 2211 | 1467
9 14.2490 49.9196 6:00 12:00 21 10 1202 1574 769 5627 4473 5435
10 16.2042 49.9052 8:00 13:00 22 Time ]
(sec) 6 7 8 9 10
The depot and customer locations are plotted in 0 [ 1238 | 2142 | 6133 | 5684 | 1201
Figure 1. The data of distances and time distances 1| 1662 | 1637 | 5810 1 5352 | 1993
. 2 1050 3705 7982 7419 770
b.et—ween each t'wo' nodes .ha\'/e been qbtalned 3 | 5695 2733 2208 7488 5625
directly from navigation applications. All distances |4 | 4537 | 1575 [ 2861 | 2232 | 4468
and time distances are contained in the distance 1] 5| 549 | 2635 | 1925 | 1485 | 5427
matrix D and time distance matrix C in Table 3 and 6 0 3018 1296 6733 548
7 3020 0 4315 3773 3951
Table 4. 8 | 7254 | 4271 0 903 | 7185
- . 9 | 6707 | 3746 | 906 0 6638
z *0 - Dgpot 10 548 2950 7227 6664 0

-l

vern Latitude -
&

Nart

Eastern Longitude - EY)

E-ISSN: 2224-3402

190

5.1 The Smallest Cycle Duration with
Respecting Time Windows

By running the TSPTW_SOLVER.m function with

the above given input parameters (Table 2 and Table

4), the optimal solution was found. The smallest

duration cycle concerning time windows is given by
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the sequence of nodes 0-1-7-4-8-9-3-5-10-2-6-0.
The found cycle is drawn in Figure 2. The total time
spent on the delivery route is 8 h 49 min 19 sec and
the corresponding travel distance is 435.650 km.

&

«) - Depot

Latitude - N|(

7

Northern

“-e3 1028 o

Eastern Longltude - E(")

Fig. 2: The smallest duration cycle of the seller’s
journey with respecting the time windows

Table 5. The arrival and departure times of the
smallest duration cycle concerning time windows

Time The arrived and dep. times of cycle | Re-
(clock) | Start 0-1-7-4-8-9-3-5-10-2-6-0 turn
1 0 1 7 4 8 9
lwi 6:00 | 6:00 | 6:00 | 6:00 | 6:00
tarr, 6:00 | 650 | 7:40 | 849 | 9:27
tDepi 5:48 6:23 714 8:01 9:12 9:48
Uy, 8:00 8:00 8:00 9:00 | 12:00
i - 3 5 10 2 6 0
lwi 6:00 | 6:00 | 8:00 | 10:00 | 8:00
tArri 10:12 | 10:50 | 12:42 | 13:16 [ 13:55 | 14:38
tDepi 10:34 | 11:11 | 13:.04 | 13:37 | 14117
Uy, 11:00 | 12:00 | 13:00 | 14:00 | 15:00

The calculated vehicle departure and arrival
times tpep,, tarr,, and the lower and upper bounds
Ly, Uy, of time windows are in Table 5. The time
values shown in the table are rounded to the nearest
minute.

5.2 The Smallest Duration Cycle Without
Time Windows

If all customers do not require any time window,
then there exists n! different cycles that the seller
can use to visit all customers. The mean value of the
travel time after all possible cycles (without service
times) is Y7, (%Z?:o c, j). We can find the cycle of
actual minimum travel time. For this purpose, we
modify the previous mixed-integer linear
programming problem by cancelling constraints (5),
(6), and changing (11) to a constraint:

1 .
te+my St < te+ 2o (oc) + Zymy, €L
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(15)
We assume that all customers accept the arrival
of the vehicle at the earliest t, = 6 a. m. By running
this modified M-function, the solution for the cycle
of minimal travel time can be found. This is the
node sequence 0-6-2-10-1-7-4-5-8-9-3-0, and the
corresponding cycle is shown in Figure 3. To solve
the described TSP, the Matlab code published in [4]
can also be used.

_ 5

- % o] - Depot

S.é ; <‘

c ' v e,

9 -

o=

= v o ),
Eastern Longitude - E{)

Fig. 3: The smallest duration cycle of the

seller’s journey  without respecting the time

windows.

The calculated vehicle departure times tpe,, and
arrival times t,,,, for each node i are included in
Table 6. The time values shown in the table are
rounded to the nearest minute. This business trip
lasts exactly 8 h 36 min 34 sec and the
corresponding travel distance is 419.740 km. This
means in our case that, when respecting the time
windows, the travel time is 12 min and 45 seconds
longer and the distance traveled is 25.910 km
longer.

Table 6. The arrival and departure times of the
smallest duration cycle without time windows

Time The arrived and dep. times of cycle | Re-
(clock) | Start 0-6-2-10-1-7-4-5-8-9-3-0 turn
i 0 6 2 10 1 7
tarr, 6:00 | 6:39 | 713 | 801 | 851
tDepi 5:39 6:22 7:00 7:35 8:24 9:15
i - 4 5 8 9 3 0
tArri 9:42 | 10:19 | 1112 | 11:51 | 12:36 [ 14:15
tDePi 10:19 | 10:40 | 11:35 | 12:12 | 12:58

5.3 The Smallest Length Cycle without Time
Windows
As is clear from the elements of the used matrices €
and D, the time distances between the same pairs of
nodes are not exactly proportional to the length
distances. The reason may be, for example, the
different quality of the roads used. Driving time is
shorter on higher quality roads than when using
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lower class ones. The consequence may be that the
shortest cycle in time may not be the shortest in
length and vice versa.

We can present it in our case. If we optimize our
TSP problem without time windows based on the
use of the distance matrix D, we obtain the optimal
solution, given the node sequence 0-5-8-9-3-4-7-1-
10-2-6-0, which is shown in Figure 4. For
optimization we used the code published in [5].
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Fig. 4: The minimal length cycle without respecting

time windows

The length of this cycle is 419.441 km and the
total time spent on the delivery route is 8 h 36 min
53 sec. The cycle length is 299 m less than the cycle
length in the previous case, but the travel time is 19
s longer. The last obtained cycle is minimal in terms
of travel distance but not minimal in terms of time.
The calculated vehicle departure times tp,,, and
arrival times t,,,, (in hh:mm) for each node i are
included in Table 7.

Table 7. The arrival and departure times of the
smallest duration cycle without time windows

Time The arrived and dep. times of cycle | Re-
(clock) | Start 0-5-8-9-3-4-7-1-10-2-6-0 turn
| 0 5 8 9 3 4
tarr, 6:00 | 653 | 7:31 | 816 | 858
tDepi 4:45 6:21 7:16 7:52 8:38 9:19
i - 7 1 10 2 6 0
tArri 9:45 | 10:37 | 11:26 | 12:01 | 12:40 | 13:20
tDepl. 10:09 | 11:00 | 11:48 | 12:22 | 13:02

6 Conclusion

This paper proposes a new practical algorithm for
the TSPTW solution for any number of customers,
by using a developed Matlab code. The TSPTW is
formulated as a mixed-integer linear programming
problem with a new approach, which respects the
given matrix of distances, time windows, service
duration times of customers, and constant speed of
the vehicle. The solution lies in minimizing the
vehicle trip duration that services all nodes

E-ISSN: 2224-3402

192

Jaromir Zahradka

(customers). In practice, there is not strict
proportionality between the time and the length of
the path connecting the nodes. Therefore, the
shortest path in time may not be the shortest in
length. The designed objective function using
members with appropriate multiples of departure
times allows minimization of customer departure
times and avoids unnecessary waiting times.

The main output of this paper is a computational
algorithm implemented in an M-function created in
Matlab code, which allows a general solution of the
newly formulated TSPTW problem for any number
n of customers. The created M-function
TSPTW_SOLVER.m is given in the Appendix at
the end of this paper.

The application in section 5 shows one practical
TSPWT solution for 10 customers on an ordinary
PC, this calculation takes 7.23 sec. For comparison,
the optimal solutions for the shortest time and the
shortest distance when no time windows are applied,
are shown.

The M-function TSPTW_SOLVER.m is
practically usable on a regular personal computer
for up to 20 customers. For less than 13 customers,
the calculation takes a few seconds. With a larger
number of customers, the calculation can take tens
of minutes or more. The program was successfully
tested for up to 60 customers.

Entering too short and inappropriately combined
time windows can easily make the problem
unsolvable. It is therefore important to negotiate
with customers and use time windows only when
necessary.

Testing of the created program showed that it is
highly usable in practice. Respecting the results
obtained during the delivery of goods ultimately
enables fuel savings.

The author intends to extend his future research
to solving the vehicle routing problem with time
windows  (VRPTW) and  respecting the
predetermined priority of customers. In the next
stage of the TSPTW and VRPTW solution, the use
of artificial intelligence is expected.

Acknowledgement:
The submitted manuscript contains a specific model
created by the author for solving TSPTW as an
optimization problem of linear programming (4)
with a specifically designed objective function (13)
and constraints (5) to (12). Service times and time
windows are respected.

The main and unique result of the article is the
transformation of the created model into the Matlab
environment, and the creation of the corresponding
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M-function, which is applicable for solving TSPTW
for any number of n customers. The created M-
function TSPTW_SOLVER.m is in the Appendix.
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APPENDIX 48:  else
49: lb(p+i,T)=Iw(i)+m();
TSPTW_SOLVER.m 50:  end
1: function[X,CYCLE, AllDist AWT, tStart tArr]=... >1:end
TSPTW_SOLVER(n,D,C, lw,uw,m) 52: k=0;
2: Ctemp=C"; Ctemp=Ctemp(); p=(n+T)*(n+1); 53: for i=Tin+1
P p pLip .
3 fori=1: 54: forj=Tn+1
p
4: if Ctemp(i)==0 55 k=k+,
5. Ctemp(i)=Inf; 56: ifi==
6: end 57: ub(k,1)=0;
7. end 58: else
8: kf=min(Ctemp)/86400/n; Ctemp=[]; 59: ub(k)=T;
9: CT=C’; f=CT(; f=[fkFones(n1)]; 60:  end
10: t0=min(w-C(1,2:end)); 61: end
11: A=zeros(n2,(n+1N)"2+n); k=0; 62: end
12: fori=1n 63: yb(p+1:p+n,1)=u.w+m; . S
13: forj=Tn 64: intcon = 1:p; options = optimoptions'intlin...
14: i i ] pro'g',jMaxTim.e',420,'MaxNodes',3000OOO);
15 k=k+1; Atk (N+1)%+14+))=C(i+1,j+1)... 65: X=||T1t|mprog(f,lntcon,A,b,Aeq,beq,lb,ub,[],..‘
+mi)+uw(i)-Tw(); opt‘lons); X=round(X);
16: Atkp+i)=T; Ak,p+j)=-1; 66: for' |=;:n+1
17 bk D=uw()-()+me) -m(); 67: i X(==1 .
18 end 68:  CYCLE=0; Nok=2; CYCLE(Nok)=i-T
19: end 69: TEST=i; break;
20: end 70:  end
21: for j=T:n 71:enq
22: k=keT; Al (n+1)Ai+1+]) =C(1j+1)-+10-hw(; 72: while TEST~=1
23: Alkp+)=-T b(k,1)=-w()-m(); 73: forj=tn+1 .
o4 end 74 ifX(CYCLE(NoK)*(n+1)+])==1
25: Aeg=zeros(3*n+3,p+n); 75 NOk:NOk”? CYCLE(Nok)=j-T;
26: for i=1in+1 76: TEST=j; break
27: forj=Tn+1 7T end
28 Aeq(i,(-I*(n+1)+)=1, 78: end
29: end 79: end
30: Aeq(l (-5 (n+1)+)=0; 80: t=X(p+T-end)
31 beq(il)=T: 81: tStart=(t(CYCLE(2))-m(CYCLE(2))-C(1,...
12 end CYCLER)+1))
33 for i=1'n+1 82: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1);
34: forj=Tn+1 83: TotDur=tRet-tStart;
35- Aeq(n+1+i,(-*(n+1)+0)=T; 84: tDep=[tStart,t(CYCLE(2:end-1))];
36 end 85: tDep=hours(tDep); tDep.Format="hh:mm;
37 Aeq(ne e () (e 1) +)=0; 86: tArT=[t(CYCLE(2:end-1))-(m(CYCLE...
38: beq(n+1+i,1)=T; (2-end-T)),Ret];
39: end 87: tArr=hours(tArr); tArr.Format="hh:mm’;
40: for i=1n+1 88: uw:hours(uYV(CYCLIIE(Z:end—T)));
A41: Aeq(2*n+2+i,(-)*(n+1)+D)=T; 89: uw.Format="hh:mm’
42: beq(2*n+2+i,1):0; 90: |W=hOUFS('VY(CYCLIEI(ZIeﬂd-1))),‘
43: end 91: IW.Fo_rmat: hh:mm?;
44: Ib=zeros(p,1); 92: TOtP'StZO;
45: fori=1n 93: for |:1.:(n+1)
46:  if Iw(i)<t0+C(11+i) 94: forj=Tin+D
47: Ib(p+i,)=t0+C(1,1+0)+m(); 95 X+ +)==T
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TotDist=TotDist+D(i,); break;
end
end
end
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