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Abstract: - A delivery driver uses his truck to distribute ordered goods from the warehouse (depot) to 𝑛 
customers. Each customer determines the delivery point (by GPS coordinates) and time window for the 
distribution of goods. This problem can be called the traveling salesman problem with time windows (TSPTW). 
The objective of the solution is to select the sequence of delivery points so that the travel distance and the total 
travel time are minimal. The necessary condition is that the deliverer leaves the warehouse, visits all delivery 
points (where he arrives at the required time windows), and returns to the warehouse. In this article, one exact 
robust solution of the TSPTW is presented by using mixed integer linear programming implemented in Matlab 
code. The created algorithm can be used for any number 𝑛 of customers. 
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1 Introduction 
This article aims to create a functional Matlab 
algorithm that can find the optimal solution of the 
traveling salesman problem with time windows 
(TSPTW) for any given number 𝑛 of customers. 

The simple traveling salesman problem (TSP) 
lies in finding the shortest path or shortest time that a 
salesman should take to visit all 𝑛 customers and 
return to the depot. Related works on the topic of 
TSP are [1], [2], [3], [4] and [5].  

The TSPTW is an extension of the TSP which 
requires, in addition, that the traveling salesman 
arrive at the customers during pregiven time 
windows. 

Our work is focused on the use of branch and 
bound, and branch and cut algorithms that have been 
used, for example, in studies [5], [6] and [7]. The 
TSPTW was solved in [8] and [9]. Authors used the 
compressed-annealing heuristic and the QUBO 
model.  

The related problem of finding the real optimal 
road route from Start-point to End-Point is described 
by pseudocode for Dijkstra's algorithm in [10]. The 
minimum distances of the routes are obtained using 
google navigation which is also used in our work. 

The TSP solution using Matlab code is 
demonstrated in [11]. The Matlab code for the 
solution of the traveling salesman problem was used 
in [5] and [7].  

 

2 Mixed-integer Linear Programming 
The problem of mixed-integer linear programming 
(MILP) is generally expressed by:  

min
𝑿

(𝒇𝑇 ∙ 𝑿)  subject to { 

𝑿𝑖𝑛𝑡𝑐𝑜𝑛  are integers
𝑨 ∙ 𝑿 ≤ 𝒃

𝑨𝑒𝑞 ∙ 𝑿 = 𝒃𝑒𝑞

𝒍𝑏 ≤ 𝑿 ≤ 𝒖𝑏

 

(1) 
 

The vector 𝑿 is the column vector of all flow 
variables. The symbol 𝒇 denotes the column vector 
with coefficients represented in the objective 
function which is 𝒇𝑇 ∙ 𝑿. The number of components 
of  𝒇 is equal to the number of all flow variables. 
Writing 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 means the list of variables of the 
vector 𝑿 that takes only the integer values. The other 
flow variables are treated as real variables. 

The linear inequality constraint matrix 𝑨 is 
specified as a matrix of real numbers, which are the 
linear coefficients in the system of inequality 
constraints given by 𝑨 ∙ 𝑿 ≤ 𝒃. The size of the 
matrix 𝑨 is 𝑚𝑖𝑛𝑒𝑞 × 𝑛, where 𝑚𝑖𝑛𝑒𝑞 is the number of 
inequality constraints and 𝑛 is the number of flow 
variables. Linear inequality constraints vector 𝒃  is 
the vector of given real numbers (right sides of the 
inequalities). The length of the vector 𝒃  is 𝑚𝑖𝑛𝑒𝑞. 

The linear equality constraint matrix 𝑨𝑒𝑞 is 
specified as the matrix of real numbers, which are 
the linear coefficients in the system of equations 
𝑨𝑒𝑞 ∙ 𝑿 = 𝒃𝑒𝑞. The size of the matrix 𝑨𝑒𝑞 is 𝑚𝑒𝑞 × 𝑛, 
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where 𝑚𝑒𝑞 is the number of linear equation 
constraints and 𝑛 is the number of flow variables. 
Linear equality constraint vector 𝒃𝑒𝑞 is the vector of 
given real numbers (right sides of the equations). 
The length of the vector 𝒃𝑒𝑞 is 𝑚𝑒𝑞. 

The lower and upper bounds of flow variables 
(items of 𝑿) are specified as real numbers - elements 
of vectors 𝒍𝑏, and 𝒖𝑏. The vector 𝑿 satisfies the 
inequality 𝒍𝑏 ≤ 𝑿 ≤ 𝒖𝑏. The core of the solver for 
the MILP solution in Matlab code is the command:  

X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub),  
         (2) 

 
where previously used variables are expressed by 
the corresponding variable identifiers of Matlab 
langu-age. The transformation of all variable labels 
into Matlab identifiers is contained in Table 1. 
A more detailed explanation of the intlinprog 
command is available in [11]. 
 
3 Mathematical Formulation of the 

Traveling Salesman Problem with 

Time Windows  
The traveling salesman problem with time windows 
(TSPTW) can be defined as follows. Let 𝐺0 = (𝑉, 𝐸) 
be a connected graph consisting of a set 𝑉 of 𝑛 + 1 
nodes indexed by = 0, 1, ⋯ , 𝑛 , and a set 𝐸 of non-
negatively weighted arcs between pairs of 
corresponding nodes of the graph 𝐺0. The index 𝑖 =

0 is used for the seller, and indexes 𝑖 = 1, ⋯ , 𝑛 for 
customers. For easier reference, let 𝐼 = {1, ⋯ , 𝑛} be 
the set of customers, and 𝐼0 = 𝐼 ∪ {0}. Each of the 
customers 𝑖 ∈ 𝐼 can be reached only within a 
specified time interval (window) [𝑙𝑤𝑖

, 𝑢𝑤𝑖
] . Vectors 

of lower and upper boundaries of the time window 
are denoted by 𝒍𝑤 and 𝒖𝑤. For each customer 𝑖 ∈ 𝐼 
let 𝑚𝑖 be the service time associated with the 
handover and unloading of goods. The vector 𝒎 of 
customer service times means 𝒎 = (𝑚1, ⋯ , 𝑚𝑛). The 
constant 𝑡0 means the moment when the vehicle can 
first leave the depot. 

Let 𝑑𝑖𝑗 be the length of the one-way path (in 
meters) and 𝑐𝑖𝑗 the one-way time-distance (in 
seconds), i.e. the travel duration from node 𝑖 to node 
𝑗 for all 𝑖, 𝑗 ∈ 𝐼0. Therefore 𝑫 = (𝑑𝑖𝑗)

𝑖,𝑗∈𝐼0
 is a 

distance matrix and 𝑪 = (𝑐𝑖𝑗)
𝑖,𝑗∈𝐼0

 is a time-distance 
matrix. Both matrices 𝑫 and 𝑪 are non-negative, 
asymmetric, and related (but essentially independent 
non-negative), with zeros on the main diagonal, i.e. 
𝑐𝑖𝑖 = 0 and 𝑑𝑖𝑖 = 0 for each 𝑖 ∈ 𝐼0. It is necessary to 
satisfy the triangular inequalities among all nodes of 
the graph 𝐺0 in both matrices. 

Since we have to respect time windows, it is 
necessary that the time-distance matrix 𝑪  be used 
for optimization. The elements of the time-distances 
matrix 𝑐𝑖𝑗 are not strictly proportional, in general, to 
the corresponding elements of the distance matrix 
𝑑𝑖𝑗. The driving time between two nodes is 
significantly influenced by the quality of the roads 
used. 

To start the optimization process, it is necessary 
to select the time moment 𝑡0 when the vehicle leaves 
the depot. Regarding the lower valid time windows 
of all customers, the appropriate time 𝑡0 is: 

𝑡0 = min
𝑗∈𝐼

(𝑙𝑤𝑗
− 𝑐0𝑗)                          (3) 

 
But when the first visited customer 𝑠 ∈ 𝐼 is 

selected during the optimization process, for which 
it is valid that 𝑙𝑤𝑠

− 𝑐0𝑠 > 𝑡0, then a waiting time 
𝑙𝑤𝑠

− 𝑐0𝑠 − 𝑡0 will be required. To eliminate the 
unnecessary waiting time at the first customer, it is 
appropriate to shift the departure time of the vehicle 
from the depot to the real value 𝑡𝑆𝑡𝑎𝑟𝑡 = 𝑙𝑤𝑠

− 𝑐0𝑠. 
The core of the TSPTW solution is to find the 

cycle in the graph 𝐺0 which contains all nodes of 
the graph so that the travel time is the shortest, and 
where all time windows are respected. For this 
purpose, integer variables 𝑥𝑖𝑗 for 𝑖, 𝑗 ∈ 𝐼0 are 
introduced, which can only take the values 0 or 1. 
The value 𝑥𝑖𝑗 = 1 means that the arc from the node 𝑖 
to 𝑗 is included in the cycle. The value 𝑥𝑖𝑗 = 0 
means that the corresponding arc is not included. 
For a systemic reason, variables 𝑥𝑖𝑖 are included, 
but all these variables are fixed by the value zero 
(𝑥𝑖𝑖 = 0), for each 𝑖 ∈ 𝐼0. Variables 𝑥𝑖𝑗 are elements 
of a matrix 𝑿 = (𝑥𝑖𝑗)

𝑖,𝑗∈𝐼0
. The number of all 

variables 𝑥𝑖𝑗 is (𝑛 + 1)2. 
Other flow variables that need to be used in the 

TSPTW solution are the vehicle departure times 
from all customers. Therefore real (non-integer) 
flow variables 𝑡𝑖 are introduced for each 𝑖 ∈ 𝐼. The 
variable 𝑡𝑖 indicates the moment when the driver 
leaves the customer number 𝑖. The variables 𝑡𝑖 are 
arranged as 𝑛 elements of a vector 𝒕 = (𝑡1, ⋯ , 𝑡𝑛). 
So, the number of all flow variables is (𝑛 + 1)2 + 𝑛. 

 
The solution of TSPTW is realized by the 

optimal solution of the mixed-integer linear 
programming problem: 
min
(𝑿,𝒕)

{∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗
𝑛
𝑖,𝑗=0 + ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1 }   subject to            (4) 

 
𝑥𝑖𝑗 , 𝑖, 𝑗 ∈ 𝐼0 are integers, even true that 𝑥𝑖𝑗 ∈ {0,1}  (5) 
(𝑐𝑖𝑗 + 𝑢𝑤𝑖

+ 𝑚𝑖 − 𝑙𝑤𝑗 )  𝑥𝑖𝑗 + 𝑡𝑖 − 𝑡𝑗 ≤                                  
                         𝑢𝑤𝑖

− 𝑙𝑤𝑗 + 𝑚𝑖 − 𝑚𝑗,        𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗   (6) 
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(𝑐0𝑗 + 𝑡0 + 𝑙𝑤𝑗 )  𝑥0𝑗 − 𝑡𝑗 ≤ −𝑙𝑤𝑗 − 𝑚𝑗,   𝑗 ∈ 𝐼          (7) 

 
∑ 𝑥𝑖𝑗𝑗∈𝐼0

= 1,    𝑖 ∈ 𝐼0                                                     (8) 
 

∑ 𝑥𝑖𝑗𝑖∈𝐼0
= 1,    𝑗 ∈ 𝐼0                                                     (9) 

 
𝑥𝑖𝑖 = 0,    𝑖 ∈ 𝐼0                                                            (10) 

 
0 ≤ 𝑥𝑖𝑗 ≤ 1,    𝑖, 𝑗 ∈ 𝐼0,  𝑖 ≠ 𝑗                                       (11) 

 
max (𝑙𝑤𝑗 + 𝑚𝑗;  𝑡0 + 𝑐0𝑗 + 𝑚𝑗) ≤ 𝑡𝑗 ≤ 𝑢𝑤𝑗

+ 𝑚𝑗, 𝑗 ∈ 𝐼  
                                                                                     (12) 

 
In the above expressed model (4), with flow 

variables 𝑥𝑖𝑗  and 𝑡𝑖, the linear function:  
∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑛
𝑖,𝑗=0 + ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1                                          (13) 

 
is minimized. The first part,  ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗

𝑛
𝑖,𝑗=0  guaran-

tees finding the cycle, which takes the minimum 
travel time. For this, in the optimization process, it 
is necessary that the second part of the minimized 
function (13), i.e. ∑ 𝑘𝑓 ∙ 𝑡𝑖

𝑛
𝑖=1  will be smaller by at 

least 10 times. This condition is certainly met if we 
choose the coefficients: 

𝑘𝑓 =
min

𝑖,𝑗∈𝐼0, 𝑖≠𝑗
(𝑐𝑖𝑗)

86400 𝑛
  .                         (14) 

 
It is assumed that the values of the variables 𝑡𝑖 

do not exceed the order of 86400 sec (1 day). 
This objective function guarantees that the 

members containing the variables 𝑡𝑖 will not affect 
the optimal values of the variables 𝑥𝑖𝑗. At the same 
time, the arrival times 𝑡𝑖 will be minimized and 
downtimes of vehicles will not be necessary before 
reaching customers.  

Using statement (5) it is given that 𝑥𝑖𝑗 , 𝑖, 𝑗 ∈

𝐼0 are all integer variables, even binary ones. 
If 𝑥𝑖𝑗 = 0 , the inequality (6) expresses the 

relationship 0 ≤ (𝑢𝑤𝑖
+ 𝑚𝑖) − 𝑡𝑖 + 𝑡𝑗 − (𝑙𝑤𝑗 + 𝑚𝑗), 

for each 𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗. The right side of this 
inequality can only be nonnegative because the 
upper bound of time window 𝑢𝑤𝑖

 plus service time 
𝑚𝑖 is greater than or equal to the departure time 𝑡𝑖 
(from the node 𝑖), and the departure time 𝑡𝑗 (from 
the node 𝑗) is greater than or equal to the sum of 
lower bound of the time window 𝑙𝑤𝑗 , and the service 
time 𝑚𝑗. 

In the case 𝑥𝑖𝑗 = 1 the inequality (6) defines a 
relationship  𝑐𝑖𝑗 + 𝑡𝑖 + 𝑚𝑗  ≤  𝑡𝑗,    𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 . This 
expresses the condition that the departure time 
𝑡𝑗 (from node 𝑗) is greater than or equal to the sum of 

the departure time 𝑡𝑖 (from node 𝑖), the traveling 
time 𝑐𝑖𝑗 from node 𝑖 to the 𝑗 one, and the service 
time 𝑚𝑗.  

The Constraint (7) defines 𝑛 relations between 
the flow variables 𝑥0𝑗 and 𝑡𝑗, for each 𝑗 ∈ 𝐼. In the 
case 𝑥0𝑗 = 0 the inequality (7) expresses a 
relationship 𝑙𝑤𝑗 + 𝑚𝑗 ≤ 𝑡𝑗,  i.e. the departure time 𝑡𝑗 
from node 𝑗  is greater than or equal to the sum of 
the lower bound of the time window 𝑙𝑤𝑗  and service 
time 𝑚𝑗. In the case 𝑥0𝑗 = 1 the inequality expresses 
the relationship 𝑡0 + 𝑐0𝑗 +  𝑚𝑗𝑥0𝑗 ≤ 𝑡𝑗. The departure 
time from node 𝑗 is greater than or equal to the sum 
of the departure time 𝑡0 (from the depot), traveling 
time 𝑐0𝑗 (from the depot to the node 𝑗), and the 
service time 𝑚𝑗. 

Statements (8), (9) and (10) declare 3 (𝑛 + 1) 
equation constraints. The inequalities in (11) declare 
the lower and upper bounds (0 and 1) for variables 
𝑥𝑖𝑗, 𝑖, 𝑗 ∈ 𝐼,  𝑖 ≠ 𝑗, 𝑥𝑖𝑗 ∈ {0,1}. The inequalities in (12) 
enforce permitted limits for departure times 𝑡𝑗, 𝑗 ∈ 𝐼. 

 
4 Transfer of TSPTW Model to the 

 Matlab Environment  
The procedure for solving TSPTW in Matlab code is 
contained in the M-function TSPTW_SOLVER.m, 
which is listed as an Appendix at the end of this 
article. 

For solving the TSPTW in the Matlab 
environment, it is necessary to reliably modify the 
used variables following Matlab rules. The main 
problem with the transformation is that the index 0 
cannot be used in Matlab, therefore, some variables 
need to be reindexed. An overview of the main 
variables transformed into the Matlab is contained 
in Table 1., where identifier p substitutes (n+1)^2. 

We assume the vehicle goes around to 𝑛 
customers {1, 2, ⋯ , 𝑛 }. Each customer requests the 
arrival of a vehicle in a certain time window. The 
lower and upper boundaries of the time windows 
and service times for all customers are stored in M-
vectors lw, uw and m. For departure time 𝑡0 from 
the depot, the identifier t0 is used in Matlab. The 
distance matrix 𝑫 and the travel time matrix 𝑪 have 
to be transferred to the Matlab environment as 
matrices D and C thus D(i,j) ≡ 𝑑𝑖−1 𝑗−1 and 
C(i,j) ≡ 𝑐𝑖−1 𝑗−1 for indexes 𝑖,  𝑗 ∈ {1, 2, ⋯ , 𝑛 + 1}. 

For the solution of TSPTW via the intlinprog 

command, all flow variables have to be arranged in 
a column vector X. First (𝑛 + 1)2 flow variables of 
vector X are elements 𝑥𝑖𝑗 of the matrix 𝑿. Each 
variable 𝑥𝑖𝑗, 𝑖, 𝑗 ∈ 𝐼0 is represented in Matlab code by 
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flow variable X(i*(n+1)+j+1,1). Each variable 𝑡𝑖, 𝑖 ∈

𝐼 is represented in Matlab code by flow variable 
X((n+1)^2+i,1). 

In the intlinprog command of Matlab the 
objective function (13) is expressed like f'*X, where 
f is a column vector with (𝑛 + 1)2 + 𝑛 components. 
The first (𝑛 + 1)2 components of the vector f are 
elements  of  travel  time  matrix  C  such that  f((i-
1)*(n+1)+j,1)=C(i,j), i,j ∈ {1, 2, ⋯ , 𝑛 + 1}, and the 
last 𝑛 components have the same value 𝑘𝑓 according 
to relation (14). The value of 𝑘𝑓 (kf in Matlab code) 
is calculated by commands on lines No. 2 to 8 of the 
Appendix. The vector f of all components of the 
objective function are created in Matlab code on line 
No. 9. 

The value 𝑡0 according to (3) is introduced in 
Matlab code on row No. 10 of the Appendix. 

The constraints (5), (6) are transformed to the 
Matlab code by inequalities  
(C(i+1,j+1)+uw(i)+m(i)-lw(i))*X(i*(n+1)+j+1,1)+… 

X(p+i,1) - X(p+j,1)<= uw(i)-lw(j)+m(i)-m(j), for all 
indexes i, j∈ {1,2, . . . , 𝑛}, i ≠ j, and  
(C(1,j+1) +t0 -lw(j))*X(j+1,1) -X(p+j,1)<= -lw(j)-

m(j), for j ∈ {1,2, . . . , 𝑛}.  
Concerning the last two inequalities, we can fill 

in the elements of matrix A and vector b, which are 
essential input parameters of the intlinprog 
function. The corresponding Matlab code can be 
found on rows No. 11 to 24 of the Appendix. 

Concerning equalities (7), (8), (9), we can fill the 
elements into the matrix Aeq and vector beq. The 
relevant Matlab code can be found on rows No. 25 
to 43 of the Appendix.  

Two input variables lb, ub of the intlinprog 
command (2) are the lower and upper bounds of the 
flow variables. Concerning the relations (9), (10), 
(11) the relevant components are filled in using the 
commands on lines No. 44 to 63 of the Appendix.  

The vector 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 of integer variables is, in the 
Matlab, coded by the vector intcon, and specifies all 
indices of flow variables, which are taken as 
integers. It uses the command intcon=1:p on row 
No. 64, p=(n+1)^2. This means that all flow 
variables 𝑥𝑖𝑗 are taken as integers. 

By installing the input variables f, intcon, A, b, 
Aeq, beq, lb, and ub, and running the command 
intlinprog (on row No. 65), we get the optimal 
TSPWT solution if it exists. The optimal solution is 
given by the optimal values of components of flow 
variables vector X. The optimal TSPWT solution 
may not exist if the set of time windows cannot be 

met due to too short time windows or too long-time 
travel distances between customers. 

While the variable X(k,1), k ∈ {1, 2, … , (𝑛 + 1)2 } 
takes the value 1, the corresponding arc between the 
nodes (customers) of the graph is part of the 
traveller’s cycle. By processing these variables, we 
can obtain the order of passing the vertices, i.e. 
components of the Matlab vector CYCLE, as the 
code shows on lines No. 66 to 79 of the Appendix. 

The last flow variables X(k,1), for k ∈
{𝑝 + 1, 𝑝 + 2, … , 𝑝 + 𝑛 }, where 𝑝 = (𝑛 + 1)2, are 
specifically the departure times of the vehicle from 
the nodes (customers) k at the optimal cycle. The 
vector of the departure times 𝒕 is created on line No. 
80 of the Appendix. 

The real departure time 𝑡𝑆𝑡𝑎𝑟𝑡 (tStart in Matlab) 
of the vehicle from the depot is calculated by a 
command on line No. 81. The time 𝑡𝑅𝑒𝑡 (tRet in 
Matlab) of the vehicle’s arrival back to the depot 
after visiting all customers is calculated by a 
command on line No 82. The total duration of the 
business trip 𝑡𝑇𝑜𝑡𝐷𝑢𝑟 = 𝑡𝑅𝑒𝑡 − 𝑡𝑆𝑡𝑎𝑟𝑡 is calculated on 
line No 83. 

 

Table 1. The transformations of variable labels to 
              Matlab identifiers 

Variable 
label 𝑛 

𝑨 
𝒃 𝑨𝑒𝑞 𝒃𝑒𝑞 𝑪 𝑫 

Matlab n A b Aeq beq C D 
 

Variable 
label 𝒍𝑏 𝒖𝑏 𝒍𝑤 𝒖𝑤 𝒇 𝑘𝑓  𝒎 

Matlab lb ub lw uw f kf m 
 

Variable 
label 𝑑𝑖𝑗  𝑥𝑖𝑗  

Matlab D(i+1,j+1) X((n+1)*i+j+1,1) 
 

Variable 
label 𝑐𝑖𝑗 𝒕 

Matlab C(i+1,j+1) X(p+1:end,1) 
 

Variable 

label 
𝑿 𝑿𝑖𝑛𝑡𝑐𝑜𝑛 𝑡0 𝑡𝑖 

Matlab X intcon t0 X(p+i) 
 

Variable 

label 
𝑡𝑆𝑡𝑎𝑟𝑡 𝑡𝑅𝑒𝑡  𝑡𝑇𝑜𝑡𝐷𝑢𝑟 𝑑𝑇𝑜𝑡𝐷𝑖𝑠𝑡  

Matlab tStart tRet TotDur TotDist 

 
For a clear output of the gained solution it is 

useful to create vectors of departure and arrival 
times 𝑡𝐴𝑟𝑟 (tArr in Matlab) and 𝑡𝐷𝑒𝑝 (tDep in 
Matlab) from and to customers with items in the 
order of the shortest cycle nodes. It is useful to 
extend the vector of departure times 𝒕𝐷𝑒𝑝 by adding 
a new first item 𝑡𝑆𝑡𝑎𝑟𝑡 (the departure time from the 
depot). For the last item of the arrival times vector 
𝒕𝐴𝑟𝑟, it is useful to add 𝑡𝑅𝑒𝑡 (the arrival time to the 
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depot). It is also good to arrange the lower and 
upper bounds of time windows  
𝒍𝑤  and 𝒖𝑤 in the order of the nodes visited. The 
vectors 𝒕𝐷𝑒𝑝, 𝒕𝐴𝑟𝑟, 𝒍𝑤  and 𝒖𝑤 are created and 
modified using commands on lines No. 84 to 91. 
The output time items of all mentioned vectors are 
expressed in the clock time format 'hh:mm'. The 
total distance 𝑡𝑇𝑜𝑡𝐷𝑖𝑠𝑡 (TotDist in Matlab) travelled 
during the sales trip is calculated by executing the 
commands on lines No. 92 to 99. 
 

5  Application 
Our created optimization program was applied to 
the delivery of frozen and refrigerated goods from a 
central warehouse (vehicle depot) in a company in 
the Czech Republic. The optimization of one line 
with ten customers is chosen for the presentation. 
The GPS coordinates of the vehicle depot are 
longitude 𝐸0 = 15.90840 and latitude 𝑁0 = 50.02660. 
The customers GPS coordinates𝐸𝑖, 𝑁𝑖, time window 
lower and upper bounds 𝑙𝑤𝑖

, 𝑢𝑤𝑖
  (clock), and 

service times 𝑚𝑖 (minutes) are given in Table 2. 
 

Table 2. The customer's GPS coordinates, time     
window bounds, and service times 

𝑖 𝐸𝑖 

(⁰) 

𝑁𝑖 

(⁰) 

𝑙𝑤𝑖
 

 

𝑢𝑤𝑖
 

 

𝑚𝑖 

(min) 

1 15.7741 49.9841 6:00 8:00 23 

2 16.4334 49.9015 10:00 14:00 21 

3 14.5875 49.9039 6:00 11:00 22 

4 14.8589 49.9939 6:00 8:00 21 

5 14.5668 50.0419 6:00 12:00 21 

6 16.2156 49.9883 8:00 14:00 22 

7 15.3376 49.9463 6:00 8:00 24 

8 14.0708 49.9624 6:00 9:00 23 

9 14.2490 49.9196 6:00 12:00 21 

10 16.2042 49.9052 8:00 13:00 22 

 
The depot and customer locations are plotted in 

Figure 1. The data of distances and time distances 
bet-ween each two nodes have been obtained 
directly from navigation applications. All distances 
and time distances are contained in the distance 
matrix 𝑫 and time distance matrix 𝑪 in Table 3 and 
Table 4. 

 

Fig. 1: Positions of the depot and customers 
according to GPS coordinates 

Table 3. The distance matrix 𝑫 
Dist. 
(m) 

j 
0 1 2 3 4 5 

 
 
 
 
 

i   

0 0 14172 49463 111603 85370 109170 

1 141780 0 59899 102123 75890 99690 

2 49454 59734 0 156662 130429 154229 

3 112058 102104 156666 0 26711 20196 

4 85750 75796 130358 26609 0 24176 

5 109477 99523 154085 20138 24130 0 

6 27459 40398 22489 137326 111093 134893 

7 51454 39296 93858 63847 37614 61414 

8 144563 137484 197204 50579 65232 42444 

9 135290 129140 183702 35563 53747 33171 

10 29914 40194 19780 137122 110889 134689 
 

Dist. 
(m) 

                              j 
6 7 8 9 10 

 
 
 
 
 

i   

0 27459 50951 143159 137742   29893 

1 40571 39392 136367 128162 40329 

2 22489 93831 196394 182801 19767 

3 137338 63824 50661 34512 137096 

4 111030 37516 66234 52748 110788 

5 134754 61243 42792 33726 134515 

6 0 74495 177058 163465 13220 

7 74530 0 103161 89986 74288 

8 177876 103944 0 18336 177634 

9 164374 90860 18382 0 164132 

10 13241 74291 176854 163261 0 

 
Table 4. The time distance matrix 𝑪 

Time 
(sec) 

j 
0 1 2 3 4 5 

 
 
 
 
 

i   

0 0 678 1955 4646 3492 4454 

1 678 0 2346 4314 3160 4122 

2 1956 2329 0 6382 5227 6189 

3 4644 4312 6379 0 1199 945 

4 3486 3154 5221 1194 0 1002 

5 4446 4114 6180 942 1000 0 

6 1238 1643 1050 5695 4541 5503 

7 2137 1637 3704 2735 1581 2543 

8 6088 5773 7938 2202 2849 1913 

9 5642 5325   7391   1470 2211 1467 

10   1202     1574   769   5627     4473     5435   
 

Time 
(sec) 

                              j 
6 7 8 9 10 

 
 
 
 
 

i   

0   1238     2142     6133     5684     1201   

1 1662 1637 5810 5352 1593 

2 1050 3705 7982 7419 770 

3 5695 2733 2208 1488 5625 

4 4537 1575 2861 2232 4468 

5 5496 2535 1925 1485 5427 

6 0 3018 7296 6733 548 

7 3020 0 4315 3773 3951 

8 7254 4271 0 903 7185 

9 6707 3746 906 0 6638 

10 548 2950 7227 6664 0 

 

5.1 The Smallest Cycle Duration with        

 Respecting Time Windows 
By running the TSPTW_SOLVER.m function with 
the above given input parameters (Table 2 and Table 
4), the optimal solution was found. The smallest 
duration cycle concerning time windows is given by 
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the sequence of nodes 0-1-7-4-8-9-3-5-10-2-6-0. 
The found cycle is drawn in Figure 2. The total time 
spent on the delivery route is 8 h 49 min 19 sec and 
the corresponding travel distance is 435.650 km. 
 

 
 
Fig. 2: The smallest duration cycle of the seller’s     
 journey with respecting the time windows 
 

Table 5. The arrival and departure times of the 
smallest duration cycle concerning time windows 
Time 

(clock) 
 

Start 
The arrived and dep. times of cycle 

0-1-7-4-8-9-3-5-10-2-6-0 
Re- 
turn 

i 0 1 7 4 8 9 - 

𝑙𝑤𝑖
 - 6:00 6:00 6:00 6:00 6:00 - 

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:50 7:40 8:49 9:27 - 

𝑡𝐷𝑒𝑝𝑖
 5:48 6:23 7:14 8:01 9:12 9:48 - 

𝑢𝒘𝒊
 - 8:00 8:00 8:00 9:00 12:00 - 

i - 3 5 10 2 6 0 

𝑙𝑤𝑖
 - 6:00 6:00 8:00 10:00 8:00 - 

𝑡𝐴𝑟𝑟𝑖
 - 10:12 10:50 12:42 13:16 13:55 14:38 

𝑡𝐷𝑒𝑝𝑖
 - 10:34 11:11 13:04 13:37 14:17 - 

𝑢𝒘𝒊
 - 11:00 12:00 13:00 14:00 15:00 - 

 
The calculated vehicle departure and arrival 

times 𝑡𝐷𝑒𝑝𝑖
, 𝑡𝐴𝑟𝑟𝑖

, and the lower and upper bounds 
𝑙𝑤𝑖

, 𝑢𝑤𝑖
 of time windows are in Table 5. The time 

values shown in the table are rounded to the nearest 
minute. 

 
5.2 The Smallest Duration Cycle Without 

Time Windows 
If all customers do not require any time window, 
then there exists n! different cycles that the seller 
can use to visit all customers. The mean value of the 
travel time after all possible cycles (without service 
times) is ∑ (

1

𝑛
∑ 𝑐𝑖,𝑗

𝑛
𝑖=0 )𝑛

𝑗=0 . We can find the cycle of 
actual minimum travel time. For this purpose, we 
modify the previous mixed-integer linear 
programming problem by cancelling constraints (5), 
(6), and changing (11) to a constraint: 
𝑡𝑒 + 𝑚𝑗 ≤ 𝑡𝑗 ≤ 𝑡𝑒 + ∑ (

1

𝑛
∑ 𝑐𝑖,𝑗

𝑛
𝑖=0 )𝑛

𝑗=0 + ∑ 𝑚𝑖
𝑛
𝑖=1 , 𝑗 ∈ 𝐼. 

  (15) 
We assume that all customers accept the arrival 

of the vehicle at the earliest 𝑡𝑒 = 6 a. m. By running 
this modified M-function, the solution for the cycle 
of minimal travel time can be found. This is the 
node sequence 0-6-2-10-1-7-4-5-8-9-3-0, and the 
corresponding cycle is shown in Figure 3. To solve 
the described TSP, the Matlab code published in [4] 
can also be used. 

 

 
Fig. 3: The smallest duration cycle of the 
seller’s journey without respecting the time 
windows. 
 

The calculated vehicle departure times tDepi
 and 

arrival times  tArri
  for each node 𝑖 are included in 

Table 6. The time values shown in the table are 
rounded to the nearest minute. This business trip 
lasts exactly 8 h 36 min 34 sec and the 
corresponding travel distance is 419.740 km. This 
means in our case that, when respecting the time 
windows, the travel time is 12 min and 45 seconds 
longer and the distance traveled is 25.910 km 
longer.  

 
Table 6. The arrival and departure times of the 

 smallest duration cycle without time windows 
Time 

(clock) 
 

Start 
The arrived and dep. times of cycle 

0-6-2-10-1-7-4-5-8-9-3-0 
Re- 
turn 

i 0 6 2 10 1 7 - 

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:39 7:13 8:01 8:51 - 

𝑡𝐷𝑒𝑝𝑖
 5:39 6:22 7:00 7:35 8:24 9:15 - 

i - 4 5 8 9 3 0 

𝑡𝐴𝑟𝑟𝑖
 - 9:42 10:19 11:12 11:51 12:36 14:15 

𝑡𝐷𝑒𝑝𝑖
 - 10:19 10:40 11:35 12:12 12:58 - 

 
5.3 The Smallest Length Cycle without Time 

       Windows 
As is clear from the elements of the used matrices 𝑪 
and 𝑫, the time distances between the same pairs of 
nodes are not exactly proportional to the length 
distances. The reason may be, for example, the 
different quality of the roads used. Driving time is 
shorter on higher quality roads than when using 
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lower class ones. The consequence may be that the 
shortest cycle in time may not be the shortest in 
length and vice versa. 

We can present it in our case. If we optimize our 
TSP problem without time windows based on the 
use of the distance matrix 𝑫, we obtain the optimal 
solution, given the node sequence 0-5-8-9-3-4-7-1-
10-2-6-0, which is shown in Figure 4. For 
optimization we used the code published in [5]. 

 

 
Fig. 4: The minimal length cycle without respecting  
time windows 
 

The length of this cycle is 419.441 km and the 
total time spent on the delivery route is 8 h 36 min 
53 sec. The cycle length is 299 m less than the cycle 
length in the previous case, but the travel time is 19 
s longer. The last obtained cycle is minimal in terms 
of travel distance but not minimal in terms of time. 
The calculated vehicle departure times 𝑡𝐷𝑒𝑝𝑖

 and 
arrival times 𝑡𝐴𝑟𝑟𝑖

 (in hh:mm) for each node i are 
included in Table 7. 

 
Table 7. The arrival and departure times of the 

smallest  duration  cycle  without  time windows 
Time 

(clock) 
 

Start 
The arrived and dep. times of cycle 

0-5-8-9-3-4-7-1-10-2-6-0 
Re- 
turn 

I 0 5 8 9 3 4 - 

𝑡𝐴𝑟𝑟𝑖
 - 6:00 6:53 7:31 8:16 8:58 - 

𝑡𝐷𝑒𝑝𝑖
 4:45 6:21 7:16 7:52 8:38 9:19 - 

i - 7 1 10 2 6 0 

𝑡𝐴𝑟𝑟𝑖
 - 9:45 10:37 11:26 12:01 12:40 13:20 

𝑡𝐷𝑒𝑝𝑖
 - 10:09 11:00 11:48 12:22 13:02 - 

 
6  Conclusion 
This paper proposes a new practical algorithm for 
the TSPTW solution for any number of customers, 
by using a developed Matlab code. The TSPTW is 
formulated as a mixed-integer linear programming 
problem with a new approach, which respects the 
given matrix of distances, time windows, service 
duration times of customers, and constant speed of 
the vehicle. The solution lies in minimizing the 
vehicle trip duration that services all nodes 

(customers). In practice, there is not strict 
proportionality between the time and the length of 
the path connecting the nodes. Therefore, the 
shortest path in time may not be the shortest in 
length. The designed objective function using 
members with appropriate multiples of departure 
times allows minimization of customer departure 
times and avoids unnecessary waiting times. 

The main output of this paper is a computational 
algorithm implemented in an M-function created in 
Matlab code, which allows a general solution of the 
newly formulated TSPTW problem for any number 
n of customers. The created M-function 
TSPTW_SOLVER.m is given in the Appendix at 
the end of this paper. 

The application in section 5 shows one practical 
TSPWT solution for 10 customers on an ordinary 
PC, this calculation takes 7.23 sec. For comparison, 
the optimal solutions for the shortest time and the 
shortest distance when no time windows are applied, 
are shown. 

The M-function TSPTW_SOLVER.m is 
practically usable on a regular personal computer 
for up to 20 customers. For less than 13 customers, 
the calculation takes a few seconds. With a larger 
number of customers, the calculation can take tens 
of minutes or more. The program was successfully 
tested for up to 60 customers. 

Entering too short and inappropriately combined 
time windows can easily make the problem 
unsolvable. It is therefore important to negotiate 
with customers and use time windows only when 
necessary. 

Testing of the created program showed that it is 
highly usable in practice. Respecting the results 
obtained during the delivery of goods ultimately 
enables fuel savings. 

The author intends to extend his future research 
to solving the vehicle routing problem with time 
windows (VRPTW) and respecting the 
predetermined priority of customers. In the next 
stage of the TSPTW and VRPTW solution, the use 
of artificial intelligence is expected. 
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M-function, which is applicable for solving TSPTW 
for any number of 𝑛 customers. The created M-
function TSPTW_SOLVER.m is in the Appendix. 
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APPENDIX 
 
TSPTW_SOLVER.m 
1: function[X,CYCLE,AllDist,AWT,tStart,tArr]=… 

     TSPTW_SOLVER(n,D,C,lw,uw,m) 

 2: Ctemp=C'; Ctemp=Ctemp(:); p=(n+1)*(n+1);  

 3: for i=1:p 

 4:    if Ctemp(i)==0 

 5:       Ctemp(i)=Inf; 

 6:    end 

 7: end 

 8: kf=min(Ctemp)/86400/n; Ctemp=[]; 

 9: CT=C'; f=CT(:); f=[f;kf*ones(n,1)]; 

10: t0=min(lw-C(1,2:end)); 

11: A=zeros(n^2,(n+1)^2+n); k=0;  

12: for i=1:n 

13:    for j=1:n 

14:       if i~=j 

15:           k=k+1; A(k,(n+1)*i+1+j)=C(i+1,j+1)… 

               +m(i)+uw(i)-lw(j); 

16:           A(k,p+i)=1; A(k,p+j)=-1;  

17:           b(k,1)=uw(i)-lw(j)+m(i) -m(j); 

18:       end 

19:    end 

20: end 

21: for j=1:n 

22:    k=k+1; A(k,(n+1)*i+1+j)=C(1,j+1)+t0-lw(j); 

23:    A(k,p+j)=-1; b(k,1)=-lw(j)-m(j); 

24: end 

25: Aeq=zeros(3*n+3,p+n); 

26: for i=1:n+1    

27:    for j=1:n+1  

28:       Aeq(i,(i-1)*(n+1)+j)=1; 

29:    end 

30:    Aeq(i,(i-1)*(n+1)+i)=0;  

31:    beq(i,1)=1; 

32: end 

33: for i=1:n+1  

34:    for j=1:n+1  

35:       Aeq(n+1+i,(j-1)*(n+1)+i)=1; 

36:    end  

37:    Aeq(n+1+i,(i-1)*(n+1)+i)=0;  

38:    beq(n+1+i,1)=1; 

39: end 

40: for i=1:n+1  

41:    Aeq(2*n+2+i,(i-1)*(n+1)+i)=1;  

42:    beq(2*n+2+i,1)=0;  

43: end 

44: lb=zeros(p,1); 

45: for i=1:n 

46:     if lw(i)<t0+C(1,1+i) 

47:        lb(p+i,1)=t0+C(1,1+i)+m(i);  

48:     else  

49:        lb(p+i,1)=lw(i)+m(i); 

50:    end 

51: end 

52: k=0; 

53: for i=1:n+1  

54:    for j=1:n+1  

55:       k=k+1;  

56:       if i==j  

57:          ub(k,1)=0;  

58:       else  

59:          ub(k,1)=1;  

60:       end 

61:    end 

62: end  

63: ub(p+1:p+n,1)=uw+m;  

64: intcon = 1:p; options = optimoptions'intlin…    
      prog','MaxTime',420,'MaxNodes',3000000); 

65: X=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,[],…  

      options); X=round(X); 

66: for i=2:n+1  

67:     if X(i)==1 

68:        CYCLE=0; Nok=2; CYCLE(Nok)=i-1; 

69:        TEST=i; break;  

70:     end 

71: end 

72: while TEST~=1 

73:     for j=1:n+1  

74:         if X((CYCLE(Nok))*(n+1)+j)==1   

75:             Nok=Nok+1; CYCLE(Nok)=j-1;  

76:             TEST=j; break;  

77:         end 

78:     end   

79: end 

80: t=X(p+1:end);  

81: tStart=(t(CYCLE(2))-m(CYCLE(2))-C(1,… 

      CYCLE(2)+1)) 

82: tRet=t(CYCLE(end-1))+C(CYCLE(end-1)+1,1);  

83: TotDur=tRet-tStart; 

84: tDep=[tStart,t(CYCLE(2:end-1))];  

85: tDep=hours(tDep); tDep.Format='hh:mm'; 

86: tArr=[t(CYCLE(2:end-1))-(m(CYCLE…  

      (2:end-1))),tRet]; 

87: tArr=hours(tArr); tArr.Format='hh:mm'; 

88: uw=hours(uw(CYCLE(2:end-1))); 

89: uw.Format='hh:mm'; 

90: lw=hours(lw(CYCLE(2:end-1))); 

91: lw.Format='hh:mm'; 

92: TotDist=0; 

93: for i=1:(n+1)  

94:     for j=1:(n+1) 

95:       if X((n+1)*(i-1)+j)==1  
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96:          TotDist=TotDist+D(i,j); break; 

97:     end 

98:    end 

99: end 
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