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Abstract: - With the development of the automation industry, robotic arms, and vision applications are no longer 
limited to fixed actions of the past. Production lines increasingly require the recognition and grasping of objects in 
complex environments, emphasizing quick setup and stability. In this paper, a rapidly constructed eye-hand system for 
robotic arm grasping, which enables fast and efficient object manipulation, particularly for stacking, is introduced. 
Initially, images were captured using a camera to generate extensive datasets from a limited number of images. 
Objects were subsequently segmented and categorized using deep learning networks for object detection and instance 
segmentation. Three-dimensional position information was obtained from an RGB-D camera. Finally, object poses 
were determined based on plane normal vectors, and gripping positions were manually marked. This reduced the time 
required for grab-point identification, model training, and pose localization. Based on experimental results, the 
grasping procedure proposed in this paper is suitable for various object-grasping scenarios. It achieved impressive 
picking success rates of 96% for unstacked annular objects and 90.86% for random bin annular objects, respectively. 
In the final experiment, following depth information filtering, a success rate of 95.1% was attained with random bin 
annular object picking. 
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1   Introduction 
Object grasping is an important research topic in the 
field of robotics. Random sorting (RBP) is an important 
research direction for robotic arm grasping, and it 
generally needs to be applied in the industry. Although 
this action is simple for humans, it is challenging for a 
robotic arm. Owing to the random stacking of objects, 
many occlusions exist in the box, and several problems, 
such as collisions between the robotic arm, object, and 
box, increase the difficulty of clamping. However, with 
recent advances in machine vision and artificial 
intelligence, this type of research has become 
increasingly reliable for practical applications. Many 
companies have actively invested in this development. 

Among the traditional methods, the triangulation 
laser measurement method was employed to generate 

two distance images under a dual laser system, 
synthesized unobstructed distance images within the 
two distances and used each beam of light reaching the 
surface of the object via the laser transmitter. The 
geometric relationship between the points was used to 
obtain the three-dimensional (3D) information of the 
point cloud on the surface of the object. The point 
cloud information was combined with the sample 
consensus (SAC) and iterative closest point (ICP) 
algorithms to transform the object point cloud. This 
information was matched with a computer-aided design 
(CAD) model of the object to assess its pose and 
determine the grip points, [1]. Other researchers 
utilized a CAD model and a depth image from an 
RGB-D camera, converting them into a scene point 
cloud, [2]. A growing number of recent algorithms use 
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deep learning convolutional neural networks (CNN) for 
sampling and evaluation, such as that proposed by 
Pinto and Gupta. Through evaluation, they obtained the 
optimal clamping position and clamping posture, [3]. 
Various contact mechanics models, including those 
introduced in previous studies, are also available for 
evaluation, [4]. Similarly, used a 3D model to 
reconstruct a 3D scan from multiple views and 
simulated an object model to obtain a synthetic dataset. 
Finally, the object was cut out using the R-CNN to 
obtain the object point cloud information. The 
algorithm calculated the gripping position, [5]. The 
above goals were to obtain correct identification and 
clamping stability and to achieve a high clamping 
success rate. However, these methods require the 
creation of a large number of images and labeled data; 
therefore, they are relatively time-consuming and 
costly. However, in certain applications, setting up the 
clamping process quickly is desirable. 

In this paper, an object-grabbing program that can 
be built quickly is introduced. It was expected to grab 
annulus-shaped objects, commonly found in factories; 
however, tape was used to test the reusability of 
subsequent objects. First, the clamping position of the 
object was preset, and the center point of the object was 
expected to be the clamping position. The desired 
object was cropped from the RGB image using deep 
learning, and the 3D position of the object was 
obtained through algorithms and camera depth 
information. Subsequently, the posture and position of 
the object relative to the camera were obtained from the 
3D information of the object, and the information 
obtained by the camera was converted into the 
information required by the robotic arm, such that the 
robotic arm can obtain the grasping position the object 
and the grasping posture of the arm. Objects can also 
be captured. 

We accelerated the data collection and data labeling 
time for deep learning and did not use methods, such as 
generative grasp convolutional neural networks 
(GGCNN) for grasp visualization, [6] or [7], where a 
hybrid deep structure of visual and tactile sensing using 
a reference rectangle method to identify graspable 
regions of an image was proposed. Various methods, 
used the powerful learning ability of large 
convolutional networks to predict the global grasp of a 
complete image of an object, [8]. ResNet50 was used 
for feature extraction, [9]. Although the accuracy of 
ResNet50 is good, its speed is low. We chose a lighter 
Inception model architecture and only used depth 
information to compute the grasped objects. This 
resulted in a fast and low-cost grasping system. 

2   System Description 
The system, hardware, and software architectures are 
introduced in this section. 
 
2.1   System Architecture 
Figure 1 shows the architecture of the robotic arm 
system. It is divided into the following parts: 
preprocessing, hardware calibration, image recognition, 
information integration, and communication. First, we 
set the object to be grasped and its grasping point. In 
this study, the center point of the tape was spread out 
with jaws for gripping. The hardware was then 
corrected, including image correction processing for 
the RGB-D camera and hand-eye correction for the 
robotic arm and camera. Next, deep learning was used, 
which included fast data collection and annotation. 
Finally, RGB-D cameras were combined to complete 
object recognition.  

In the follow-up, we used a calculation method 
designed to integrate and calculate the RGB-D 3D 
information obtained from image recognition to 
determine the grasping posture of the robotic arm. 
Finally, the entire grasping process was completed 
through communication between the PC and the robotic 
arm. 

 
Fig. 1: System architecture 
 
2.2   Hardware Architecture 
The main hardware used in this study included a robotic 
arm (Kuka iiwa 7 R800), an RGB-D camera (Kinect 
V2), and a controller (TOYO CHS2-S40), as shown in 
Figure 2. The robotic arm has seven degrees of freedom 
and exhibits high flexibility, fast moving speed, and 
high efficiency. The controller was mounted on the 
flange of the robot arm and controller using a self-
designed fixture and gripper, respectively. The robotic 
arm and RGB-D camera had an eye-to-hand 
architecture. 
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Fig. 2: Robotic painting system: (1) robotic arm, (2) 
RGB-D camera, (3) controller, (4) gripper, (5) grab 
object 
 
2.3  Software Architecture 
In this study, multiple hardware and software techniques 
were combined. Depending on technical requirements, 
selecting an appropriate development platform and 
communication method is important. Python 3.0 was 
used for deep learning, image recognition, and data 
processing. Java was used to compile the robotic arm 
program. The RGB-D camera and computer only used 
USB 3.0 for connection, and the robot arm and gripper 
used EtherCAT, which is an easy-to-configure 
automation system, as a communication protocol. 

To enable system communication, integrating the 
communication between the controller, sensor, and 
actuator software is important. In this study, the host 
system consisted of a personal computer (client) and a 
robot (server). The personal computer was the client, 
and the results of the deep learning and image 
recognition were converted by calculation and sent to a 
robotic arm on the server. Figure 3 shows the 
communication architecture of the system. 
 

 
Fig. 3: System communication 
 

3   Methodology 
The research methodology is described in this section in 
four parts: system integration, deep learning, grasping 
position calculation, and robotic grasping control. 
 
3.1  System Integration 

 
3.1.1 Image Correction 

 Since RGB-D cameras have image distortion 
problems, we referred to the correction method 
proposed in [10], and then used the Zhang correction 
method proposed at the International Conference on 
Computer Vision (ICCV). This method uses a plane 
checkerboard for camera calibration, [11], overcomes 
the shortcomings of the high-precision 3D correction 
required by the photographic correction method, and 
solves the problem of poor robustness of the self-
correction method. In this study, the self-printing 
checkerboard was adopted for calibration for 
convenience, and 20 checkerboard photographs were 
captured from different directions as shown in Figure 
4. 

 

 
Fig. 4: Photographs of the checkerboard captured from 
different directions 
 
3.1.2 RGB-D Image Matching 

Since the color and depth lenses of the Kinect V2 are 
not in the same position, the color image pixel size 
was 1920 × 1080, whereas the depth image pixel size 
was 512 × 424. Therefore, matching the color and 
depth images was necessary. The same point in the 
world coordinates was observed using the color and 
depth lenses, as shown in Figure 5. The calibration 
results are presented in Figure 6.  
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Fig. 5. Schematic of the same point observed by color 
and depth lens 
 

 
Fig. 6. (1) Color image, (2) Depth image, (3) Image 
matching resul 

 
3.1.3 Hand-eye Correction of Robotic Arm and 

Camera 

In the vision of robotic arms, one of the key issues is 
hand-eye correction, which is divided into eye-to-hand 
and eye-in-hand corrections according to the definition 
of its position fixed by the camera. In this study, an 
eye-to-hand system architecture was adopted, that is, 
the camera was installed outside the robotic arm, and 
the bases of the camera and robotic arm were fixed in 
a position. We considered the quick solution to the 
classic problem of hand-eye correction. Many 
researchers, [12], [13], [14], [15] have studied the 
calculation of Formula (1). Various solutions exist to 
this problem. Since the Open Source Computer Vision 
Library (OpenCV) includes related open-source 
libraries that are convenient for quick use and 
calculation, we used the calculation solution proposed 
in [12], to obtain the relative position of the robotic 
arm and camera. 

𝐴𝑋 = 𝑋𝐵                             (1) 
 
 
 
 

3.2  Deep Learning 
 

3.2.1 Data collection 

Owing to the need for subsequent deep learning, 
collecting object image data for training deep learning 
networks is necessary to identify objects. Here, a 
Kinect V2 was used to capture photographs, which 
were used as a dataset. We randomly placed a large 
number of power-supply tapes on the workbench, as 
shown in Figure 7(1), to create a random stacking 
environment. To quickly label and meet the 
requirements of this study, after each data map was 
obtained, several objects were removed to obtain a 
new data map, as shown in Figure 7(2) for the follow-
up data. Figure 7(1) shows a data graph comparison of 
removed objects. Although this method only reduces 
the objects for humans, it provides a new data map to 
the system. This method was used 11 times in this 
study to rapidly increase the amount of data, using 
different random stacking environments. Thus, the 
number of objects in the stacking environment was 
reduced individually to generate a total of 122 images 
as the deep learning network training dataset. 

The collected 122 images as a dataset were still 
slightly insufficient for deep learning networks. To train 
image recognition with good accuracy and 
generalization, in addition to the structure of the model, 
the most important aspect is the number of datasets. The 
larger the amount of data, the more complete it is; the 
more complex the structure, the better the training 
results. Generally, the collection of image data is often 
the most time-consuming process, and in the case of 
limited data, the method used in this study is the 
simplest and most widely used method: augmentation. 
Data augmentation can improve the effectiveness of 
deep-learning object detection, [16]. We randomly 
enhanced the original images with noise reduction, 
flipping at different angles, and brightness processing, 
as shown in Figure 8. After data enhancement, 976 
images were added, including 1098 original images that 
were used for subsequent deep learning. 

 

 
Fig. 7: (1) Stacked environment data graph, (2) New 
data graph with objects removed 
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Fig. 8: Image data enhancement 
 
3.2.2 Image Data Annotation 

Before deep learning, apart from data collection, 
image annotation is the most time-consuming task. 
Humans can easily perceive the location and type of 
objects. However, before entering deep learning, first, 
the objects must be circled, and the machines need to 
be trained on the object types. This process is called 
data annotation. To expedite object labeling, the 
aforementioned data collection method can be applied 
for expediting image labeling. The same method can 
be used to copy the frame selection object frame, on 
the next image data, delete the frame selection frame 
of the removed object, or select a similar frame 
selection frame. It can be directly applied to a new 
data map to expedite its labeling. 

To improve the success rate of gripping by the robotic 
arm and avoid gripping collisions, the training objects 
could only be recognized when the occluded range was 
less than 20%. This setting improves the object 
recognition rate and significantly reduces the error rate 
and number of annotations required for the image, as 
shown in Figure 9. 

 

 
Fig. 9: Schematic of image annotation 
 
3.2.3 Object Recognition 

 In deep learning object recognition, we used the Mask 
R-CNN proposed in [17]. Mask R-CNN is a very 
flexible framework that can add different branches to 
achieve different tasks, such as target detection, target 

classification, instance segmentation, semantic 
segmentation, and human body posture recognition. 
We used the COCO pre-training model, [18], to reduce 
the training time and a lightweight CNN model, 
Inception, to identify various features of graphics with 
perfection and importance, [19]. A power supply tape, 
with simple features, was the object trained in this 
study. According to the characteristics of Inception, 
the training graph has larger features. The training 
weight is negligible for relatively few smaller features. 
Therefore, in theory, the training speed of Inception is 
faster than that of ResNet. 

 
3.3  Grasping Position Calculation 

 
3.3.1 Object Grab Position Evaluation 

To establish a fast gripping process, a method of self-
defining gripping points was adopted in this study. 
This method is different from that proposed in [20]. 
They proposed a five-dimensional grasping box as a 
grasping representation and a system with a two-level 
deep network based on a two-dimensional image. As 
shown in Figure 10, a shallow CNN determined all 
possible grasping rectangles, retained some grasping 
rectangles with higher scores, and then determined the 
highest-scoring grasping rectangles among the 
remaining grasping rectangles through a deep CNN. 
That is, the shallow CNN determined and obtained the 
best grasping rectangles. After capturing the 
rectangular frame, the normal direction of the point 
cloud in the center of the rectangular frame was used 
as the approach vector of the manipulator; the 
detection accuracy rate reached 75%, and the 
processing time of each image was approximately 13 s, 
[20]. The processing time of this detection algorithm is 
relatively low, and the computation is extremely large 
and time-consuming. 

Therefore, in this study, the center point of the object 
was defined as the gripping point and used to open the 
gripper as the gripping method. At this point in the box, 
the object can be gripped under most postures. Thus, the 
collisions between the gripper and the object can be 
effectively avoided during gripping, and the success rate 
of gripping can be improved. This allowed clamping in 
a stacked environment. This method saved the time of 
labeling the clipped frame and modeling the clipping 
system as only RGB-D was used for calculation. This 
reduced the equipment requirements for image 
processing, and the computing time was also higher 
than when using a large number of point cloud 
computing methods. 
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Fig. 10: The common grab detection process 
 
 
3.3.2 Grasping Pose Evaluation of Objects  

Evaluating the power tape in the box and the posture 
of the object, which is related to the gripping and 
success rate of gripping, is necessary. The scattered 
and unstacked objects usually have two attitudes: lying 
flat or standing, as shown in Figure 11. Among these, 
grabbing objects in a flat state does not face problems. 
Since an eye-to-hand system was used in this study, 
the camera could not move with the robotic arm. The 
system failed to identify the central grasping position 
of a standing object and to comprehend whether the 
four sides of the box would follow the robotic arm 
when grasping. This is called an interference problem. 
Thus, the robotic arm could not grasp the standing 
object at a position relative to the center point of the 
object. Therefore, if the object was standing or its 
center point was unrecognizable, the object could not 
be grasped, and a mechanical arm had to be used. The 
arm pushes the object down to a flat state, re-identifies 
it, and clamps it. 

In a stacking state of the objects in a box, usually, 
the objects are inclined to a certain angle, as shown in 

Figure 12. The attitude angle of the object to the camera 
was converted into the attitude of the object to the robot 
arm after the conversion of the hand-eye correction. 
Finally, designing the grasping angle by considering a 
situation in which the four sides of the box do not 
interfere with the grasping is necessary. The robotic arm 
was expected to grab the object at the same attitude 
angle. 

In addition to calculating the gripping pose, depth 
information was used to determine the object pose. First, 
the objects cut by the Mask R-CNN instance were 
divided into four regions, as shown in Figure 13. Then, 
we extracted seven 3D spatial information points from 
each of the four regions and one 3D spatial information 
point from each of the three regions. 

We set them as 𝐴(𝑥1, 𝑦1, 𝑧1), 𝐵(𝑥2, 𝑦2, 𝑧2), 𝐶(𝑥3 
, 𝑦3, 𝑧3)and set the plane normal vector as �⃑� = (𝑥, 𝑦, 𝑧). 
Next, the angle of its normal vector was calculated 
using Formula (2), and A, B, and C were substituted 
into the three-point coordinates to obtain Formula (3), 
which can be obtained by the Formula (4) plane 
equation vector and calculate its angle, as shown in 
Figure 14. Then, the center point of the object was set as 

the origin of the plane angle, and another azimuth 
quadrant and the angle in the quadrant were determined 
based on the object information and calculated normal 
vector angle, as shown in Figure 15. Finally, the thus 
obtained object position and attitude were converted 
into 𝑋、𝑌、𝑍、𝑅𝑥、𝑅𝑦、𝑅𝑧 of the robot arm through 
calculations and sent to the robot arm. 

{�⃑� × 𝐴𝐵⃑⃑⃑⃑  ⃑ = 0

�⃑� × 𝐴𝐶⃑⃑⃑⃑  ⃑ = 0
                                 (2) 

{
𝑥(𝑥1 − 𝑥2) + 𝑦(𝑦1 − 𝑦2) + 𝑍(𝑧1−𝑧2)

𝑥(𝑥1 − 𝑥3) + 𝑦(𝑦1 − 𝑦3) + 𝑍(𝑧1−𝑧3)
        (3)                                                         

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑍 + 𝐷 = 0                      (4) 
 

 

 
Fig. 11: Flat and standing object indication 
 

 
Fig. 12: Grab posture when objects are stacked 
 

 
Fig. 13: Four regions of the instance cutting object 
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Fig. 14: Schematic of normal vector angle calculation 
 

 
Fig. 15: Object Plane Quadrant Angle 
 
3.4  Robotic Grasping Control 
The robotic arm was set to move from the object 
placement area to the object grasping area for six 
movements. To simplify the entire process, the robotic 
arm posture was calculated by reading the PC. The 
robotic arm was then moved to the top of the object 
through three pre-set positions, and finally, the arm was 
allowed to perform the grasping action. 
 
 
4   Result and Discussion 
From the experiments, we verified the results and 
training time of deep learning using Inception. 

The objects in the box were stacked, and the robotic 
arm grabbed them until all the objects were clamped or 
their image could not be recognized. When the 
algorithm incorrectly judged the calculated position of 
the object as not within the gripping area, the gripping 
system was stopped. The grasping failure occurred 
when the pose calculated by the algorithm based on 
depth information differed from the required position 
pose. Failure to grasp indicates that the object cannot 
be successfully grasped or stably placed in the area 
after grasping. In an unrecognized state, image 
recognition faces algorithmic errors, which prevent the 
correct position from being assessed. 

Finally, we improved the experimental results using 
the depth information, and consequently, the grabbing 
rate increased from 90.86% to 95.1%. 

4.1  Results of Deep Learning 
In this study, Inception was used as the training model for 
the Mask R-CNN. The total number of data maps was 
1098, of which 997 and 101 were used as the training and 
test sets, respectively. The first training result was 
obtained after approximately 380,000 iterations. When 
the most commonly used 50% IoU was used, the 
accuracy reached 0.962 at approximately 30,000 
iterations; at 45,000 iterations, the accuracy reached 
0.962. 0.985. At 75% IoU and approximately 40,000 
iterations, the accuracy reached 0.955. When the number 
of iterations was approximately 50,000, the accuracy 
reached 0.983, as shown in Figure 16. In terms of speed, 
recording every 1,000 iterations required approximately 
17 s. Recording of 500,000 iterations was completed in 
approximately 2.5 hours plus the storage and operation 
time. With the previous data collection, the entire process 
could be completed in approximately 4–5 hours, and the 
speed could be considered significantly high. The 
recognition results are presented in Figure 17. 
 

 
Fig. 16: Deep Learning Results (Average Precision) 
 

 
Fig. 17: Mask R-CNN recognition results 
 
4.2  Stacked Gripping Results 
In the stacking state, 350 clamping experiments were 
performed, and the recognition rate of deep learning 
object recognition in the stacking state was found to be 
good. However, in various instances, the object 
recognition was insufficient. This resulted in errors in the 
clamping position calculations. Although the attitude 
evaluation was successful 314 times, a positional 
deviation that was different from the plane placement was 
still observed. Out of the 36 errors in attitude evaluation, 
in 33 instances grasping failure occurred, including both 
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the correct and incorrect attitude evaluation, failure to 
grasp, and misplacement errors caused by incomplete 
object recognition. Finally, the number of successful 
clippings, including the evaluation errors, totaled 317. 
The identification and gripping rates are summarized in 
Table 1. 
 

Table 1. Object stacked grab rate 
 Evaluate 

Object recognition 
success rate 100% 

Object pose evaluation 
is correct 89.71% 

Object pose evaluation 
error 10.29% 

The total number of 
gripping 

350 
times 

 Grippin
g rate 

The object posture 
assessment is correct and 
the gripping is successful 

87.99% 

Object pose assessment 
fails to grip correctly 1.72% 

Object pose evaluation 
error, the gripping is 

successful 
2.87% 

Object pose evaluation 
error gripping failed 7.42% 

The total gripping 
success rate 90.86% 

 
4.3   Result Improvement 
In this section, the ways to improve the experimental 
results are discussed. In most cases, successful gripping 
was accomplished using the correct posture. In several 
cases, although the posture was incorrect, clipping was 
successful. The majority of gripping failure instances 
occurred owing to incorrect attitude judgment. This can 
be attributed to the use of the depth image data for 
calculating the position and attitude and insufficient 
accuracy of the Kinect V2 depth image, which resulted in 
the misjudgment of attitude. In addition, the small 
number of grasping failures can be attributed to the 
incomplete cutting of the instance. Even if the grasping 
posture is calculated correctly, the gripper cannot move 
within the grasping tolerance of the center of the object; 
therefore, it cannot grasp an object successfully. 

The important data used in attitude evaluation is depth 
information. However, the error of object attitude 
evaluation was as high as 10%. In the experimental test, 
an object was placed in the gripping area to test the 

stability of the depth information at four points on the 
object. The depth information was then displayed 100 
times at the four points. The results are shown in Figure 
18. Even at the same time point, the depth values 
determined at each time point were significantly different. 
The algorithm used three of the four points as the normal 
vector and attitude calculation method. According to the 
result, the error was ±5 mm, which was also the reason 
for the wrong attitude evaluation. 

To improve the stability of the abovementioned 
unstable depth information and achieve a higher gripping 
rate, we modified the original depth information 
extraction method and used a camera at the same point 
before extracting the information. The depth information 
was extracted several times, and the low-pass rate wave 
method was used to extract the waveform with the highest 
weight ratio from the depth information. The results are 
shown in Figure 19; the depth of the information error 
was significantly improved. 

Finally, based on the improved depth information, we 
performed a gripping test in a stacking environment. A 
total of 102 grip tests were conducted, and 96 successful 
attitude evaluations and six attitude evaluation errors 
including five gripping failures were obtained. The 
second time included both the correct and incorrect 
attitude evaluations, clamping failure occurrence, and 
misplacement error caused by incomplete object 
recognition. The number of successful gripping events 
included evaluation errors and 97 successful gripping 
events. This was also compared with 109 gripping tests of 
the original depth information acquisition method. The 
stability and gripping rate improved to a certain extent. 
The identification and grip rates are listed in Table 2. 

 

 
Fig. 18: Depth information before filtering 
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Fig. 19: Depth information after filtering 

 
Table 2. Comparison of the gripping rate before and 

after filtering 
 
  before filtering after filtering 

Object 
recognition 
success rate 

100% 100% 

Object pose 
evaluation is 

correct 
89.91% 94.12% 

Object pose 
evaluation error 10.09% 5.88% 

The total number 
of gripping 109 times 102 times 

 Gripping rate 
(before filtering) 

Gripping rate 
(after filtering) 

Correct object 
posture 

assessment and 
successful 
gripping 

88.07% 93.14% 

Incorrect object 
pose assessment 

and incorrect 
gripping  

1.84% 0.98% 

Object pose 
evaluation error; 

successful 
gripping 

3.67% 1.96% 

Object pose 
evaluation error 
gripping failed 

6.41% 3.92% 

The total 
gripping success 

rate 
91.74% 95.1% 

 
 
5   Conclusions 
In this study, robotic arms, computer vision, and deep 
learning were integrated to develop a simplified and 
faster-to-implement grasping system compared to the 
time-consuming and intricate stacking grasping systems. 
The focus was on mass-produced objects. In the 

experimental phase, we opted for simpler objects for 
grasping tests by employing a manual method to set the 
gripping points. This approach facilitated swift data 
collection and labeling and expedited the preliminary 
steps for deep learning. For the training model, we 
selected Inception owing to its faster training capabilities. 
Overall, ResNet outperformed Inception in terms of 
recognition accuracy; however, Inception was selected 
owing to its faster model training. The final experimental 
results were consistent with our expectations. 

Furthermore, in contrast to other studies, our approach 
does not rely on point clouds or CAD modeling. Instead, 
we utilized color and a limited amount of depth 
information to establish the posture of an object in a 3D 
space. This enabled the robotic arm to grasp objects based 
on the posture direction. In experiments using this 
grasping method, we achieved success rates exceeding 
95% for both unstacked and stacked objects. 
Consequently, our study offers advantages in terms of the 
speed at which the entire grasping system can be 
established and the overall success rate. 

Although this study introduced a grasping system that 
can be quickly deployed and attains a commendable 
success rate, the system can be improved further. 
 Diversifying the types of objects that can be 

identified. In this study, we focused on a single-
object type, which limits its applicability. Our 
goal was to enable the robotic arm to handle 
various objects that could be randomly stacked 
within the grasping area without compromising 
the success rate.  

 Furthermore, we aim to improve the depth point 
accuracy by employing a more stable RGB-D 
camera, thus enhancing the overall attitude 
evaluation success rates and grip efficiency. 

 To address challenges, such as collisions, and 
further improve the success rate, we envisage 
incorporating a force sensor into a robotic arm in 
the future. This sensor will allow the system to 
detect errors during the grasping process by 
relying on force feedback to determine whether 
the gripper has contacted the intended object. By 
analyzing the force data, the robotic arm can 
assess if a successful grip has been achieved or if 
it should return to the grasping waiting area for 
image recognition. 
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