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Abstract: - A simple algorithm for measuring the similarity between multi-column histograms is presented. The 
proposed algorithm is intended for texture segmentation of images using histograms as texture features. The 
purpose of developing such a specialized algorithm is to more accurately determine the boundaries between 
neighboring texture segments. The algorithm is specially designed so that to express the similarity value as a 
percentage. The main peculiarity of the proposed algorithm is that when calculating the similarity value, it 
considers not only the corresponding histogram columns but also takes into account their neighboring 
components. Due to this, the algorithm more adequately evaluates the similarity of histograms. The proposed 
algorithm was implemented as a computer program as an integral part of the image segmentation model. The 
efficiency of the histogram comparison algorithm is indirectly confirmed by the texture segmentation results of 
the image segmentation model in image processing experiments. 
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1   Introduction 
This paper considers the problem of evaluating the 
similarity between histograms, which are used as 
texture features for the task of dividing an image 
into texture segments. The problem of texture 
segmentation of images is a key one for the analysis 
of natural visual scenes of various natures: 
landscapes, satellite photographs, and medical 
images used by medical professionals in diagnosing 
diseases.  

The problem of texture segmentation of images 
has different complexity depending on the amount 
of information available about the processed image. 
For example, the solution to this problem is greatly 
facilitated, if the number of texture segments present 
in the image is indicated. Also, the task is greatly 
simplified if samples of the texture segments, that 
need to be extracted from the image, are provided. 
Using this information, the parameters of the 
segmentation algorithm can be appropriately tuned, 
for example, through training. This approach 

belongs to the category of supervised learning, it is 
presented in a significant number of publications, 
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10].  

Another approach to the texture segmentation 
problem implies that there is no predetermined set 
of texture classes, and the segmentation algorithm 
performs the extraction of texture regions without 
training, using some universal texture features. This 
approach belongs to the category of unsupervised 
texture segmentation, [11], [12], [13], [14], [15], 
[16], [17], [18], [19], [20], [21, [22], [23].  

The ability to evaluate the similarity between 
sets of features is one of the foundations of both 
natural and artificial intelligence. Calculation of the 
measure of similarity between sets of features is 
used to solve the texture segmentation task. For 
solving the similarity search problem (proximity 
search, best match retrieval), many methods have 
been developed that determine the similarity 
between such objects as vectors, sequences, trees, 
and graphs, [24], [25], [26], [27], [28]. 
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The closest to the topic of this work are methods 
for determining the similarity/dissimilarity of 
vectors of large dimensions. Distance is a measure 
of the "dissimilarity" or "difference" of vectors - for 
example, the Euclidean distance, Manhattan 
distance, Hamming distance, Minkowski distance, 
Mahalanobis distance, Bulldozer's distance (earth 
mover's distance, EMD (see exhaustive review, 
[29]).  

However, these well-known methods are difficult 
to use in the texture segmentation task. That's why 
we have tried to construct an efficient algorithm for 
comparison between histograms that can be easily 
applied to determine the similarity/dissimilarity of 
texture segments when solving the problem of 
texture segmentation. 

The algorithm is based on the idea of taking into 
account not only the corresponding components of 
histograms but also the components of their close 
surroundings.  
 
 
2   Histograms as Texture Features  
To evaluate the texture characteristics of different 
areas of the image, texture windows of the same size 
are used that cover the entire image (with overlaps). 
The texture characteristics measured in the texture 
windows serve to assess the similarity/difference 
between testing areas of the image.  

We use, first of all, the histogram of the 
brightness of all pixels of the texture window as 
texture features. Any image is an integer matrix, 
each element of which represents the brightness 
value of the corresponding image pixel. In black and 
white images, the brightness range is 0 – 255. So, 
the brightness histogram consists of 256 columns, 
according to the brightness range of the pixels in the 
image. The height of each histogram column 
represents the number of pixels in the texture 
window that have corresponding brightness values. 
The maximum height of the columns is equal to the 
number of pixels in the texture window. The texture 
windows of 15×15 pixels were used in the 
experiments. Therefore, the maximum height of the 
histogram column is 225.  

At first glance, the concept of a histogram is 
equal to the concept of a vector. However, this is not 
quite so. The fact is that the values of the vector 
components, in the general case, are independent of 
each other and can take any values. Unlike a vector, 
the values of the histogram components are 
interconnected in such a way that the sum of all 
components of the histogram is constant. This 
interdependence of the histogram components 
makes it possible to somewhat improve the method 

for calculating the similarity between histograms in 
comparison with the methods for calculating the 
similarity between vectors.  

The brightness histogram adequately describes 
the distinguishing texture peculiarities of a 
homogeneous segment of a fine-grained texture, 
providing its non-unique, but very informative 
description. The histogram remains invariant when 
changing the coordinates of the texture window 
inside a homogeneous texture segment. Also, in all 
natural images, the histograms of different texture 
segments differ significantly from each other.  
 
 
3   General Description of the Texture 

Segmentation Algorithm  
In [19], [20], [21], [22], a texture segmentation 
algorithm is described, which extracts all 
homogeneous fine-grained texture segments 
sequentially, in an iterative process. In each 
iteration, first of all, the initial seed point, belonging 
to the most homogeneous texture segment present in 
the image, is detected. Subsequently, this seed point 
is expanded by sequentially attaching the 
surrounding pixels of the image to it.  

A set of texture features is extracted from the 
initial seed point and its close surroundings and 
stored to perform the extraction procedure for this 
homogeneous texture segment. This set of features 
is considered characteristic (typical, representative) 
for this segment and is used for subsequent 
comparison with the surrounding areas of the image. 
If the set of features extracted from the testing 
surrounding area (pixel) coincides with the 
characteristic one, then this area is appended to the 
seed point of the extracting texture segment. The 
process of such a sequential comparison (with 
subsequent seed point pixels) continues until the 
boundaries of a homogeneous texture segment are 
reached.  
 
 
4  Justification of the Relevance of the 

Task  
Since the main texture feature used in the 
segmentation algorithm is the brightness histogram, 
the key operation of this algorithm is to evaluate the 
similarity between such histograms of two adjacent 
texture windows.  

Let us consider two histograms P and D, each of 
which consists of the same number of components 
(columns) I (i = 1, 2, …, I). Let us denote the 
heights of the i-th columns of both histograms as Pi 
and Di, accordingly. The value of the intersection 
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between any two histogram columns is designated 
by Δ, and the intersection between the 
corresponding columns Pi and Di – by Δi. Δi is equal 
to the smallest height of the two columns Pi and Di, 
i.e., Δi = min (Pi, Di). Alternatively, Δi can also be 
represented by the formula  
 
Δi = (Pi + Di – |Pi – Di|) / 2,    (1)  
 
where i = 0, 1, 2, ..., I.  
  

The similarity of the histograms P and D 
calculated by different methods will be denoted by 
the letter R, and the similarity calculated by 
summing the intersections of the corresponding 
columns will be R(0)  

 

         (2)  
 
 

The need to develop a specialized algorithm for 
the calculation of the measure of similarity between 
histograms is substantiated as follows.  

Figure 1 (Appendix) shows an example of two 
brightness histograms of two texture windows 
belonging to different textures. The centers of the 
windows are marked with white squares. Namely, 
the upper histogram belongs to the "grass" texture, 
whereas the lower one corresponds to the "asphalt" 
texture.  

As can be seen from Figure 1 (Appendix), there 
are no intersections between the histogram columns 
at all. Therefore, these histograms are completely 
different. For the texture segmentation procedure, 
the degree of similarity between them should be 
equal to zero. However, well-known methods for 
assessing the similarity/difference between vectors 
give very significant similarity values between such 
histograms.  

Below we consider only the Euclidean distance 
which is the simplest measure of 
similarity/dissimilarity between multi-column 
vectors. The Euclidean distance (Dist) is calculated 
by the formula  

where i = 0, 1, 2, ..., I.  
 
The Euclidean  distance between the histograms 

shown in Figure 1 (Appendix) is equal to 82.41. To 
convert this value into a similarity percentage 
between histograms, we use the following 
reasoning.  

The maximum difference (distance) Distmax 
between the brightness histograms of two texture 
windows occurs when one texture window is 
located on the black area of the image, and the 
second window is located on the white one. In this 
case, in the histogram of the black texture window, 
only one component with index 0 will have 
maximum value.  

In the histogram of the white texture window, a 
single non-zero column (with maximum height) will 
correspond to the component with index 255. These 
two columns will have the same height, equal to the 
number of pixels in the texture window. Texture 
windows consisting of 15 × 15 = 225 pixels were 
used in the experiments. Therefore, according to Eq. 
(3), the maximum Euclidean distance (i.e., the 
maximum difference value) between these vectors is 
Distmax = (2252 + 2252) = 318.2. The minimum 
Euclidean distance, of course, is equal to zero 
(Distmin = 0), which corresponds to complete 100% 
similarity. So, the similarity percentages between 
histograms are calculated as follows.  

If the Euclidean distance between the 
histograms is 82.41, then the percentage difference 
between them is determined by the value Dist = 
(Dist / Distmax) 100% = (82.41 / 318.2) 100% = 
25.9%. Accordingly, the percentage of similarity 
between the histograms is 100% – Dist = 100% – 
25.9%, = 74.1%. Thus, there is a significant 
difference between the desired percentage of 
similarity – 0% and the actual percentage of 
similarity calculated based on the Euclidean 
distance – 74.1%. With such a high percentage of 
similarity, it would be difficult for the segmentation 
algorithm to separate the “asphalt” and “grass” 
texture segments. At the same time, it is evident that 
if the percentage of similarity between these 
histograms was 0%, it would be much easier for the 
segmentation algorithm to find the boundary 
between these texture regions.  
 
 
5  Actual Description of the 

Histogram Comparison Algorithm  
The simplest method for calculating similarity 
between histograms is a pair-wise comparison of all 
corresponding columns of the histograms. However, 
implementing this method is only a valid solution 
for low-dimensional histograms. For multi-column 
histograms. For multi-column histograms, the total 
size of the intersection between the corresponding 
histogram columns does not adequately evaluate the 
similarity between them.  


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The proposed algorithm for histogram similarity 
estimation is based on the obvious idea of taking 
into account not only the corresponding components 
of both histograms but also the components of their 
close surroundings.  

The algorithm consists of successive 
comparisons of each i-th component of the 
histogram P - column Pi, with (1 + 2M) components 
of the histogram D, where M is the radius of the 
close surroundings of each i-th component of the 
histogram P. Let us denote the similarity of the 
histograms P and D by R(M), at the beginning, R(M) = 
0.  

At each comparison act, the i-th component of 
the histogram Pi is compared with the component of 
the histogram D, which is shifted by a certain 
number of indexes to the right or left relative to i. If 
we denote the shift number by m, then the Pi 
component is compared with the Dj component, 
where j = i+(–)m, m = 0, 1, 2, 3, …, M.  

Before comparing the Pi and Dj components, the 
height Dj is reduced by multiplying it by some 
coefficient Кm, Кm < 1. The intersection size Δ 
(between the Pi component and the Dj component) is 
used in the process of calculating the similarity 
between histograms R(M). That is, the more m=|i – j|, 
the less impact the Dj component should have on the 
value R(M). For this purpose, the coefficients Km < 1 
are introduced, which reduce the proportion of the 
size of the intersection Δ between the compared 
columns of both histograms.  

Reducing coefficients K0, K1, K2, … , Km, …. , 
KM correlate with each other as follows: K0 > K1 > 
K2 > K3 > … Km > … > KM, whereas K0 = 1. When 
comparing the components Pi and Dj, the size of the 
intersection between them Δm is calculated 
according to the following description. If Pi ≥ Dj Km, 
then the size of their intersection is Δm = Dj Km. If Pi 
< Dj Km, then Δm = Pi. Thus, for each component Pi, 
(1 + 2M) values of Δm are calculated. Among these 
(1 + 2M) values of Δm, the maximum value is 
chosen, denoted by Δi

max:  
 
             1+2M   
Δi

max =  MAX  (Δm)          (4)  
             m = 0    
 

If, Δi
max ≥ Pi, then Pi is added to the similarity 

value of histograms R(M). If, however, Pi > Δi
max, 

then the value of Δi
max is added to R(M).  

Thus, in the general case, the similarity value of 
histograms is determined by summing the 
intersections of all maximum values Δi

max calculated 
for each component Pi, i = 1, 2, …, I, with the 
corresponding Pi values. The similarity value of 

histograms can be represented by the following 
formula (see Eq. (1) for reference)   
where i = 0, 1, 2, ..., I.  

 
The radius of close surroundings M depends on 

the size of the histogram I and on the initially 
specified trend of the algorithm. The larger the 
radius M, the more pronounced the tendency of the 
algorithm to consider the compared histograms as 
similar. On the contrary, as M decreases, the 
tendency to consider histograms dissimilar 
increases.  

For texture segmentation processing, it is 
desirable to get the similarity between histograms of 
texture windows as a percentage. That is, if the 
percentage of similarity is small, then the compared 
texture windows should be attributed to different 
textures. Conversely, if the similarity percentage 
approaches 100%, then these texture windows 
should be classified as belonging to the same 
texture. Let us denote the percentage of histogram 
similarity as S.  

In the case of comparing identical histograms, 
the sum of all intersections of the corresponding 
components of the histograms R(0) will be equal to 
the sum of all components of each of the 
histograms, which is equal to 225 in the case of the 
brightness histogram.  

When comparing the brightness histograms, by 
pair-wise comparison of all their corresponding 
columns, the similarity value should be determined 
by dividing the total intersection size R(0) by the 
total intersection size between the same histograms 
P and P or D and D, which in both cases is equal to 
225. The corresponding formula is S = R(0) / 225.  

It should be clear that when taking into account 
the close surroundings of the components, the 
percentage of similarity between the histograms 
should be calculated using a similar formula. 
Namely, by dividing R(M) (see Eq. (4)), by the same 
total size of the intersection between equal 
histograms P and P or D and D, which is 225. That 
is, S = R(M) / 225. Obviously, in the case of 
comparing identical histograms, S = 1. When this 
number is multiplied by 100, the similarity value 
between histograms becomes expressed as a 
percentage, where 100% means complete sameness.  

Usually, when comparing completely different 
histograms, there are no intersections between their 
columns at all, i.e. R(0) = 0 (see the example in 
Figure 1, Appendix). Most often, in this case, the 
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similarity value between such histograms, calculated 
by the proposed algorithm R(M), also becomes equal 
to zero, accordingly, S = 0%. Thus, the range of S is 
0% – 100%.  
 
 
6 Experimental Comparison of 

Similarity Measures of Brightness 

Histograms  
To illustrate the properties of the proposed 
algorithm for measuring the percentage of similarity 
between brightness histograms, the following 
experiments were carried out.  

In the image shown in Figure 1 (Appendix), 
pairs of texture windows were located in segments 
of different textures. As can be seen in Figure 1 
(Appendix), the histograms of these texture 
windows differ significantly from each other, 
mainly in that the non-zero components of both 
histograms are located at mismatched positions 
within the histograms. From the point of view of 
common sense and a functional point of view (for 
solving the problem of texture segmentation), these 
histograms should be qualified as completely 
different. And, accordingly, the algorithm proposed 
in this paper specially designed for efficient 
separation of texture segments, estimates the 
percentage of similarity between them equal to zero.  

In a series of experiments, pairs of texture 
windows belonging to the same texture were also 
considered. Corresponding brightness histograms 
were formed, which are shown in Figure 2 
(Appendix). As can be seen in Figure 2 (Appendix), 
the non-zero components of both histograms occupy 
approximately the same position within the 
histograms, and the corresponding columns have 
significant intersections.  

The Euclidean distance between these 
histograms calculated by Eq, (3) is 48.0, and the 
percentage of similarity, converted from this 
number, is 85%. The similarity value of the 
histograms shown in Figure 2 (Appendix), 
calculated by pair-wise component comparison 
according to Eq. (2) and denoted by R(0), is equal to 
57%.  

In the process of calculating the percentage of 
similarity according to the proposed algorithm, the 
radius of the close surroundings M was limited to 
10. The reducing coefficients К1, К2, К3,…, Кm ,…, 
К10 were calculated by the formula Кm = (1 – 0.1 m). 
The use of such coefficients led to the following 
result. The percentage of similarity of the 
histograms produced by the proposed algorithm is 
77%.  

Thus, the proposed algorithm produces the 
percentage of histogram similarity R(M) which is 
increased by about 20% in comparison with R(0). 
(All mentioned percentages are the result of 
averaging over a series of experiments.)  

The following inference follows from the 
experiments. For the algorithm proposed in this 
paper, the percentage of similarity between 
histograms of different textures (such as "asphalt" 
and "grass") is 0%, and the percentage of similarity 
between histograms of the same textures (such as 
"grass" and "grass") is in the range of 60%. – 80%.  

That is, the diapason in the percentage of 
similarity from different textures to the same ones is 
approximately 70%. At the same time, for the 
algorithm based on the Euclidean distance, the 
percentage of similarity between the histograms of 
different textures (such as "asphalt" and "grass") is 
74%. The percentage of similarity for the same 
textures (such as "grass" and "grass") is 85%. That 
is, for the algorithm based on the Euclidean 
distance, the difference in the similarity percentage 
between similar textures is only 11%.  

Thus, the difference in the similarity percentage 
between different textures with the similarity 
percentage between similar textures for the 
proposed algorithm is 70% versus 11% for the 
algorithm based on the Euclidean distance. This 
excess of the range of percentage differences of the 
proposed for the algorithm based on the Euclidean 
distance. This excess of the range of percentage 
differences of the proposed algorithm over that of 
the Euclidean distance algorithm makes the 
advantage of the proposed algorithm obvious.  

In other words, the proposed algorithm turns out 
to possess greater sensitivity when it comes to the 
detection of histogram dissimilarities in the context 
of texture comparison: histograms of similar 
textures would still be detected as similar, whereas 
comparison of dissimilar texture histograms would 
produce a rather low or even zero similarity 
percentage value indicating textures being 
dissimilar.  
 
 
7   Conclusion  
A simple algorithm for measuring the similarity 
between histograms is presented. The algorithm is 
intended for texture segmentation of images using 
brightness histograms as texture features. It is 
specially designed so that to express the measure of 
similarity as a percentage. The algorithm was used 
as an integral part of the texture segmentation 
models, [19], [20], [21], [22].  
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The reason for developing a specialized 
algorithm for measuring the similarity between 
brightness histograms is the degree of 
similarity/difference between them. In contrast, the 
proposed algorithm provides a 100% diapason of 
percentage similarity between the histograms being 
compared (from complete similarity to complete 
difference). This is the main advantage of the 
algorithm and its contribution/novelty that makes it 
possible to attain a more accurate determination of 
the boundaries between the texture segments present 
in the analyzed image.  

The proposed algorithm is not complicated. Of 
course, it is not as simple as the initial version, in 
which the histograms were compared in a pair-wise 
manner, namely by calculating the sum of the 
intersections of the corresponding histogram 
columns (having the same indices). Nevertheless, in 
the software implementation of the proposed 
algorithm, only addition, subtraction, and 
multiplication operations are used, due to that the 
algorithm is fast and computationally effective.  

The efficiency of the algorithm for texture 
segmentation of images into homogeneous texture 
regions is confirmed by the segmentation results in 
experiments on processing different natural images. 
The results obtained in the experiments demonstrate 
the effectiveness of the segmentation algorithm and 
show that this algorithm performs correct (from a 
human point of view) texture segmentation of a 
wide range of images, [19], [20], [21], [22]. Thus, 
the effectiveness of the key operation of the 
segmentation algorithm, the histogram comparison 
algorithm, is also indirectly confirmed.  

Figure 3 (Appendix) is presented here, as an 
example which demonstrates the results of the 
texture segmentation of a natural image (upper part 
of the figure). At the bottom of the figure, the 
largest homogeneous texture segments extracted by 
the segmentation algorithm are shown in different 
colors. Areas of the image containing small texture 
areas and borders between texture segments are 
marked in white.  

One of the interesting directions of future 
research is connections with the approaches 
developed in the framework of Hyper Dimensional 
Computing, [24], [25], [26], [27], [28].  
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APPENDIX  

 

 
Fig. 1:  Brightness histograms of two texture windows, the upper of which belongs to the "grass" texture and 

the other – to the "asphalt" texture  
 
 

 
Fig. 2:  Brightness histograms of two texture windows belonging to the same “grass” texture.  
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Fig. 3: The results of the texture segmentation on the example of processing a black-and-white image (upper 
part of the figure). The bottom half of the figure shows the largest texture segments highlighted in different 

colors  
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