2022.
doi:10.1109/tqcebt54229.2022.10041629
[12] A. Kumar and S. Reddy, “A detailed analysis
on disaster tweet analysis using Deep
Learning Techniques: DTWEET,” 2022
Fourth International Conference on Emerging
Research in Electronics, Computer Science
and Technology (ICERECT), 2022.
doi:10.1109/icerect56837.2022.10060783
[13] S. Sharma, S. Basu, N. K. Kushwaha, A. N.
Kumar, and P. K. Dalela, “Categorizing
disaster tweets into actionable classes for
disaster managers: An empirical analysis on
Cyclone Data,” 2021 International Conference
on Electrical, Computer, Communications and
Mechatronics Engineering (ICECCME),
2021.
doi:10.1109/iceccme52200.2021.9591063
[14] Python Language- "Welcome to Python.org",
Python.org, 2022. [Online]. Available:
https://www.python.org/. (Accessed Date: 22
July 2023).
[15] R Program - “The R project for statistical
computing,” R, https://www.r-project.org/
(Accessed Date: 24 July 2023).
[16] Disaster tweets- Kaggle,
https://www.kaggle.com/datasets/vstepanenko
/disaster-tweets (Accessed Date: 22 July
2023).
[17] Pandas - Python Data Analysis Library.
Pandas.pydata.org. (2022). (Retrieved on: 24
July 2023), from https://pandas.pydata.org/.
[18] S. Loria, P. Keen, M. Honniba, R.
Yankovsky, D. Karesh, E. Dempsey,
“Textblob: simplified text processing.”,
Secondary TextBlob: simplified text
processing, 3, 2014.
[19] WordnetLemmatizer, NLTK,
https://www.nltk.org/_modules/nltk/stem/wor
dnet.html (Accessed Date: 24 July 2023).
[20] J. Friedl, Mastering Regular Expressions, 3rd
Edition. [S.l.]: O'Reilly Media, Inc., 2006.
[21] M. Jockers, "Extracts Sentiment and
Sentiment-Derived Plot Arcs from Text [R
package syuzhet version 1.0.6]", Cran.r-
project.org, 2022. [Online]. Available:
https://cran.r-
project.org/web/packages/syuzhet/index.html.
(Accessed Date: 24 July 2023).
[22] S. Tongman & N. Wattanakitrungroj,
“Classifying Positive or Negative Text Using
Features Based on Opinion Words and Term
Frequency-Inverse Document Frequency”. In
2018 5th International Conference on
Advanced Informatics: Concept Theory and
Applications (ICAICTA), pp. 159-164,
IEEE,2018.
[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V.
Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R.Weiss, V.Dubourg,
J.Vanderplas, A.Passos, & D.Cournapeau,
“Scikit-learn: Machine learning in Python”,
the Journal of machine Learning research, vol.
12, pp.2825-2830, 2011
[24] A. M Kibriya, E. Frank, B. Pfahringer & G.
Holmes, 2004,” Multinomial naive bayes for
text categorization revisited”. In Australasian
Joint Conference on Artificial Intelligence,
pp. 488-499, Springer, Berlin, Heidelberg,
2004.
[25] J. Brownlee,” Master Machine Learning
Algorithms: discover how they work and
implement them from scratch”, Machine
Learning Mastery. Chapter 13: Logistic
Regression, pp.51-55, 2016a.
[26] J. Novakovic, & A. Veljović, “C-support
vector classification: Selection of kernel and
parameters in medical diagnosis”. In 2011
IEEE 9th International Symposium on
Intelligent Systems and Informatics, pp. 465-
470, 2011.
[27] J. Goldberger, S. Roweis, G. Hinton, and R.
Salakhutdinov,” Neighbourhood components
analysis”. In Advances in neural information
processing systems, pp. 513-520, 2005.
[28] T. Hastie, T. Robert, and F. Jerome,” The
elements of statistical learning: data mining,
inference, and prediction”. Springer Science
& Business Media, 2009.
[29] J. Brownlee,” Master Machine Learning
Algorithms: discover how they work and
implement them from scratch”, Machine
Learning Mastery. Chapter 28: Bagging and
Random Forest, pp.126-129, 2016b
[30] G. Biau, 2012. Analysis of a random forests
model. The Journal of Machine Learning
Research, vol 13, no.1, pp.1063-1095,2012.
[31] J. Friedman, "Greedy function approximation:
A gradient boosting machine.", The Annals of
Statistics, vol. 29, no. 5, pp. 1189-1232, 2001.
[32] L. Bottou,” Large-scale machine learning with
stochastic gradient descent”, In Proceedings
of 19th International Conference on
Computational Statistics (COMPSTAT'2010),
pp. 177-186, Physica-Verlag HD, 2010.
[33] H. Ramchoun, M. Amine, J. Idrissi, Y.
Ghanou and M. Ettaouil, "Multilayer
Perceptron: Architecture Optimization and
Training", International Journal of Interactive
Multimedia and Artificial Intelligence, vol. 4,
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.34
Marco Alfonse, Mariam Gawich