
feature selection algorithm, Expert Systems with
Applications, 161, 2020, 113697.
[5] Zarei, E., Barimani, N., & Nazari Golpayegani,
G., Cardiac Arrhythmia Diagnosis with an
Intelligent Algorithm using Chaos Features of
Electrocardiogram Signal and Compound
Classifier, Journal of AI and Data Mining,
10(4), 2022, pp.515-527.
[6] Wang, M. H., Huang, M. L., Lu, S. D., & Ye, G.
C. (2020). Application of Artificial Neural
Network and Empirical Mode Decomposition
with Chaos Theory to Electrocardiography
Diagnosis, Sensors and Materials, 32(9), 2020,
pp. 3051-3064.
[7] Eltrass, A. S., Tayel, M. B., & Ammar, A. I,
Automated ECG multi-class classification
system based on combining deep learning
features with HRV and ECG measures, Neural
Computing and Applications, 34(11), 2022, pp.
8755-8775.
[8] Kuila, S., Dhanda, N., & Joardar, S, ECG signal
classification and arrhythmia detection using
ELM-RNN, Multimedia Tools and Applications,
81(18), 2022, pp. 25233-25249.
[9] SAYGILI, A., A novel approach to heart attack
prediction improvement via extreme learning
machines classifier integrated with data
resampling strategy, Konya Mühendislik
Bilimleri Dergisi, 8(4), 2020, 853-865.
[10] Fathurachman, M., Kalsum, U., Safitri, N.,
& Utomo, C. P., Heart disease diagnosis using
extreme learning based neural networks, In
2014 International Conference of Advanced
Informatics: Concept, Theory and Application
(ICAICTA), 2014, August, pp. 23-27, IEEE.
[11] Irene, D. S., Sethukarasi, T., & Vadivelan, N.,
Heart disease prediction using hybrid fuzzy K-
medoids attribute weighting method with DBN-
KELM based regression model, Medical
Hypotheses, 143, 2020, 110072.
[12] Safii, I., Kamisutara, M., & Faahrudin, T. M.,
Imam Safii Heart Disease Classification using
Gain Ratio Feature Selection with Hidden Layer
Modification in Extreme Learning Machine.
IJCONSIST JOURNALS, 2(02), 2021, pp. 71-
76.
[13] Xu, Y., Zhang, S., Cao, Z., Chen, Q., & Xiao,
W., Extreme learning machine for heartbeat
classification with hybrid time-domain and
wavelet time-frequency features, Journal of
Healthcare Engineering, 2021.
[14] Singh, R. S., Saini, B. S., & Sunkaria, R. K.
(2018). Detection of coronary artery disease by
reduced features and extreme learning machine.
Clujul Medical, 91(2), 166.
[15] Anand, A., Kadian, T., Shetty, M. K., & Gupta,
A.,Explainable AI decision model for ECG data
of cardiac disorders, Biomedical Signal
Processing and Control, 75, 2022, 103584.
[16] Tzou, H. A., Lin, S. F., & Chen, P. S.,
Paroxysmal atrial fibrillation prediction based
on morphological variant P-wave analysis with
wideband ECG and deep learning, Computer
Methods and Programs in Biomedicine, 211,
2021, 106396.
[17] Duffy, G., Jain, I., He, B., & Ouyang, D,
Interpretable deep learning prediction of 3d
assessment of cardiac function, In PACIFIC
SYMPOSIUM ON BIOCOMPUTING 2022,
2022, pp. 231-241.
[18] Ganeshkumar, M., Ravi, V., Sowmya, V.,
Gopalakrishnan, E. A., & Soman, K. P,
Explainable deep learning-based approach for
multilabel classification of electrocardiogram,
IEEE Transactions on Engineering
Management, 2021.
[19] Apama, C., Rohini, P., & Pandiyarasan, V.,
Interpretation of ResNet50 model for MI related
cardiac events using Explainable Grad-CAM
approach, In Current Directions in Biomedical
Engineering, 2022, September, Vol. 8, No. 2,
pp. 723-726. De Gruyter.
[20] Raza, A., Tran, K. P., Koehl, L., & Li, S.,
Designing ecg monitoring healthcare system
with federated transfer learning and explainable
AI, Knowledge-Based Systems, 236, 2022,
107763.
[21] Le, K. H., Pham, H. H., Nguyen, T. B., Nguyen,
T. A., Thanh, T. N., & Do, C. D, LightX3ECG:
A Lightweight and eXplainable Deep Learning
System for 3-lead Electrocardiogram
Classification, arXiv preprint
arXiv:2207.12381, 2022.
[22] Taniguchi, H., Takata, T., Takechi, M.,
Furukawa, A., Iwasawa, J., Kawamura, A., ... &
Tamura, Y., Explainable artificial intelligence
model for diagnosis of atrial fibrillation using
holter electrocardiogram waveforms,
International Heart Journal, 62(3), 2021, pp.
534-539.
[23] Sanjana, K., Sowmya, V., Gopalakrishnan, E.
A., & Soman, K. P., Explainable artificial
intelligence for heart rate variability in ECG
signal, Healthcare Technology Letters, 7(6),
2020, 146.
[24] Goldberger, A., Amaral, L., Glass, L.,
Hausdorff, J., Ivanov, P. C., Mark, R., ... &
Stanley, H. E., PhysioBank, PhysioToolkit, and
PhysioNet: Components of a new research
resource for complex physiologic signals,
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.29
Sreeja M. U., Supriya M. H.