
|E|1 2 3 4
|R(E)|1 5 109 32297
Table 2: Number of covers in R(E)according to the
cardinal of E
Worse again would be the situation if we examine the
number of all possible fuzzy partitions, classifications
or chains of covers that we can define on a set.
One way to escape would be to get some algebra of
classifications, which can explain clearly the links
between their structures. Such an algebra is diffi-
cult to get because classifications are commutative
but nonassociative structures, and almost all mathe-
matical structures are associative. But there are some
candidates like, for instance, what we call ”dendri-
form algebras”(for more information on them, see,
[19]).
15 Conclusion
Let us resume the main point of these little introduc-
tion to the mathematics of classification. Accord-
ing to us, the whole set of classifications realizes a
new construction of the continuum. There are already
many constructions of the continuum in mathemat-
ics but this one does not need a particular hypothe-
sis about the infinite. One just needs Cantor theorem
about the bijection between [0,1] and Ror, more gen-
erally, Rn. We must hope now that the metaclassifi-
cation and its construction of the continuum will be
explored in the future by mathematicians, so that we
get much more information about the set of ellipsoids
or sequences of ellipsoids contained in it.
References
[1] Barr, M., *-Autonomous categories, Springer-
Verlag, Berlin, 1979.
[2] Barr, M., ”The Chu Construction: history of an
idea”, Theory and Applications of Categories, Vol.
17, No. 1, 10?16, 2006.
[3] Barwise, J. and Seligman J., Information Flow,
the Logic of Distributed Systems, Cambridge Uni-
versity Press, Cambridge, 1997, 2008.
[4] Bellacicco, A., ”Fuzzy Classifications”, Syn-
these, Vol. 33, No. 2/4, 273-281, Sept. 1976.
[5] Benzécri, J.-P., et alii., L’Analyse des données,
tome 2, correspondances, Dunod, Paris, 1973.
[6] Berge, C., Graphes et hypergraphes, Dunod,
Paris, 1970.
[7] Brucker, F., Barthélemy, J.-P., Eléments de clas-
sifications, Hermès-Lavoisier, Paris, 2007.
[8] Certaine, J., ”The ternary operation (abc) =
ab−1cof a group, Bull. Amer. Math. Soc. 49, 869-
877, 1943.
[9] Girard, J.-Y., ”Linear logic”, Theoretical Com-
puter Science, 50, 1-102, 1987.
[10] Gondran, M., Minoux, M., Graphes et Algo-
rithmes, Eyrolles, Paris, 1979.
[11] Jambu, M., Classification automatique pour
l’analyse des données, 2 tomes, Bordas-Dunod,
Paris, 1978.
[12] Jardine, N., Sibson, R., ”A model for taxon-
omy”, Mathematical Bio-sciences 2 (1968), 465-
482.
[13] Kechris, A. S., Actions of Polish groups and
classification problems, Analysis and Logic, Lon-
don Math. Soc. Lecture Note Series, Cambridge,
Cambridge University Press, 2001.
[14] Kleinberg, J., ”An impossibility theorem for
Clustering”, Advances in Neural Information Pro-
cessing Systems (NIPS), Proceedings of the 2002
Conference held in British Columbia, Canada, 15,
2002, 529-536.
[15] Lerman, I., Les bases de la classification au-
tomatique, Gauthier-Villars, Paris, 1970.
[16] Lerman, I., Classification automatique et anal-
yse ordinale des données, Dunod, Paris, 1981.
[17] Paiva (de), V., ”A dialectica-like model of lin-
ear logic”, Proc. Conf. on Category Theory and
Computer Science, Springer-Verlag Lecture Notes
in Computer Science, 389, 341-356, Manchester,
September 1989.
[18] Parrochia, D., ”Mathematical Theory of Clas-
sification”, Knowledge Organization 45(2):184-
201, January 2018.
[19] Parrochia D, Neuville, P., Towards a general
theory of classifications, Birkhäuser, Basel, 2013.
[20] Pratt, V. R., ”The Stone gamut: A coordinati-
zation of mathematics”, Proc. 10th Annual IEEE
Symp. on Logic in Computer Science, 444-454,
Montreal, 1995.
[21] Rasiowa, H., Sikorski, R., The Mathematics
of Metamathematics, Paǹstwowe Wydawnictwo
Naukowe, Varsovie, 1963, 3rd ed., 1970.
[22] Rasiowa, H., An Algebraic Approach to Non-
Classical Logics, North Holland, Amsterdam,
London, 1974.
[23] Serre, J.-P., Course in Arithmetics, Springer-
Verlag, Berlin, 1973.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.14