
[7] Scollon, R., Scollon, S. Multimodality and
language: a retrospective and prospective view.
In C. Jewitt (Ed.), The Routledge Handbook of
Multimodal Analysis (pp. 170–180). 2009.
London: Routledge.
[8] Jewitt, C. (2013). Multimodal methods for
researching digital technologies. In S. Price, C.
Jewitt, & B. Brown (Eds.), The Sage handbook
of digital technology research (pp. 250–265).
London: Sage.
[9] Argelaguet, R., Cuomo, A. S. E., Stegle, O.,
Marioni, J. C. Computational principles and
challenges in single-cell data integration.
Nature Biotechnology, 39:1202–1215. 2021/
Online available from DOI: 10.1038/s41587-
021-00895-7.
[10] Csurka, G. A Comprehensive Survey on
Domain Adaptation for Visual Applications.
Advances in Computer Vision and Pattern
Recognition, (9783319583464):1–35. 2017.
Online available from DOI: 10.1007/978-3-
319-58347-1_1.
[11] Zhao, J., Xie, X., Xu, X., Sun, S. 2017. Multi-
view learning overview: Recent progress and
new challenges. Information Fusion, 38:43–54.
Online available from DOI:
10.1016/J.INFFUS.2017.02.007.
[12] Lance, C., Luecken, M. D., Burkhardt, D. B.,
Cannoodt, R., Rautenstrauch, P., Laddach, A.,
Ubingazhibov, A., Cao, Z.-J., Deng, K., Khan,
S., Liu, Q., Russkikh, N., Ryazantsev, G.,
Ohler, U., Pisco, A. O., Bloom, J.,
Krishnaswamy, S., & Theis, F. J. (2022).
Multimodal single-cell data integration
challenge: results and lessons learned. Online
available from
https://doi.org/10.1101/2022.04.11.487796.
[13] Bokade, R., Navato, A., Ouyang, R., Jin, X.,
Chou, C.-A., Ostadabbas, S., & Mueller, A. V.
A cross-disciplinary comparison of multimodal
data fusion approaches and applications:
Accelerating learning through trans-
disciplinary information sharing. Expert
Systems with Applications, 165, Article
113885. (2021). Retrieved from:
https://doi.org/10.1016/j. eswa.2020.113885.
[14] Gupta, A., Anpalagan, A., Guan, L., Khwaja,
A. S. (2021). Deep learning for object
detection and scene perception in self-driving
cars: Survey, challenges, and open issues.
Array, 100057. Online available from
https://doi.org/10.1016/j.array.2021.100057.
[15] Alkhalaf, S. A robust variance information
fusion technique for real-time autonomous
navigation systems. Measurement, 179, Article
109441. 2021. Online available from
https://doi.org/
10.1016/j.measurement.2021.109441.
[16] Cuayahuitl, H. A data-efficient deep learning
approach for deployable multimodal social
robots. Neurocomputing, 396, 587–598. 2020.
Online available from https://doi.org/10.1016/j.
neucom.2018.09.104.
[17] Liu, H., Fang, T., Zhou, T., Wang, L. Towards
robust human-robot collaborative
manufacturing: Multimodal fusion. IEEE
Access, 6, 74762–74771. 2021. Online
available from https://doi.org/
10.1109/ACCESS.2018.2884793.
[18] Ma, M., Sun, C., Chen, X. (2018). Deep
coupling autoencoder for fault diagnosis with
multimodal sensory data. IEEE Transactions
on Industrial Informatics, 14, 1137–1145.
2018. Online available from
https://doi.org/10.1109/TII.2018.2793246.
[19] Yang, Z., Baraldi, P., Zio, E. A multi-branch
deep neural network model for failure
prognostics based on multimodal data. Journal
of Manufacturing Systems, 59, 42–50. 2021
Online available from
https://doi.org/10.1016/j.jmsy.2021.01.007.
[20] Al-Dulaimi, A., Zabihi, S., Asif, A.,
Mohammadi, A. A multimodal and hybrid
deep neural network model for remaining
useful life estimation. Computers in Industry,
108, 186–196. 2019. Online available from
https://doi.org/10.1016/j.compind.2019.02.004.
[21] Kumar, S., Kolekar, T., Patil, S., Bongale, A.,
Kotecha, K., Zaguia, A., Prakash, C. A low-
cost multi-sensor data acquisition system for
fault detection in fused deposition modeling.
Sensors, 22, 517. 2022. Online available from
https://doi.org/10.3390/s22020517.
[22] Lu, Y., Liu, C., Wang, K. I-K., Huang, H., Xu,
X. Digital Twin-driven smart manufacturing:
connotation, reference model, applications and
research issues. Robotics and Computer
Integrated Manufacturing, vol. 61, рр. 1–14.
2020.
[23] Alam, K. M., El Saddik, A. (C2PS: A digital
twin architecture reference model for the
cloud-based cyber-physical systems. IEEE
Access, vol. 5, рр. 2050–2062. 2017.
[24] Redelinghuys, A. J. H., Basson, A. H., Kruger,
K. A Six-Layer Digital Twin Architecture for a
Manufacturing Cell. Studies in Computational
Intelligence, vol. 803, рр. 412–423. 2018.
[25] Keith, D. Understanding Key-Value Databases.
Dataversity. 2020. Online available from
https://www.dataversity.net/understanding-
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.11