[5] D. Thanh, V. B. Prasath, L. Hieu, et al.,
“Melanoma skin cancer detection method
based on adaptive principal curvature, colour
normalisation and feature extraction with the
ABCD rule,” Journal of Digital Imaging, vol.
33, pp. 574–585, 2020.
[6] I. M. Widyantara, A. T. Kusuma, N. M.
Wirastuti, “Preprocessing pada segmentasi
citra paru-paru dan jantung menggunakan
anisotropic diffusion filter, Open Journal
Systems-Teknologi Elektro, vol. 14, no. 2, pp.
6-10, 2015.
[7] K. Korotkov, R. Garcia, “Computerized
analysis of pigmented skin lesions: A review,”
Artificial Intelligence in Medicine, vol. 56, no.
2, pp. 69-90, 2012.
[8] I. Maglogiannis, C. N. Doukas, “Overview of
advanced computer vision systems for skin
lesions characterization,” IEEE Transactions
on Information Technology in Biomedicine,
vol. 13, no. 5, pp. 721-733, 2009.
[9] Z. She, Y. Liu, A. Damatoa, “Combination of
features from skin pattern and abcd analysis for
lesion classification,” Skin Research and
Technology, vol. 13, no. 1, pp. 25-33, 2007.
[10] N. R. Abbasi, H. M. Shaw, D. S. Rigel, R. J.
Friedman, W. H. McCarthy, I. Osman, A. W.
Kopf, D. Polsky, “Early diagnosis of cutaneous
melanoma: Revisiting the abcd criteria,” Jama,
vol. 292, no. 22, pp. 2771-2776, 2004.
[11] Q. Abbas, I. Fondón, M.
Rashid, “Unsupervised skin lesions border
detection via two-dimensional image analysis,”
Computer Methods and Programs in
Biomedicine, vol. 104, no. 3, pp. e1–e15, 2011.
[12] S. Lankton, A. Tannenbaum, “Localizing
region-based active contours,” IEEE
Transactions on Image Processing, vol. 17. no.
11, pp. 2029-2039, 2008.
[13] L. Ma, B. Qin, W. Xu, L. Zhu, “Multi-scale
descriptors for contour irregularity of skin
lesion using wavelet decomposition,” 2010 3rd
International Conference on Biomedical
Engineering and Informatics, vol. 1, IEEE
Press, pp. 414-418, 2010.
[14] S. Sabbaghi, M. Aldeen, R. Garnavi, G.
Varigos, C. Doliantis, J. Nicolopoulos,
“Automated colour identification in
melanocytic lesions,” Engineering in Medicine
and Biology Society (EMBC), 2015 37th
Annual International Conference of the IEEE,
IEEE Press, pp. 3021-3024, 2015.
[15] D. Pearl, “Stochastic model to explain the
biology and epidemiology of the ultraviolet
induction of skin cancer,” Mathematical
Population Dynamics, Proceedings of the
Second International Conference, Lecture
Notes in Pure and Applied Mathematics, vol.
131, CRC Press, 1991.
[16] J. S. Daba, M. R. Bell, “Segmentation of
speckled images using a likelihood random
field model,” Optical Engineering, vol. 47, no.
1, 2008.
[17] J. Dubois, “Scattering statistics of doppler
faded acoustic signals using speckle noise
models,” IEEE International Conference on
Direct and Inverse Problems of
Electromagnetic and Acoustic Wave Theory
(DIPED), Lviv, Ukraine, pp. 185-189, 2003.
[18] J. S. Daba, M. R. Bell, “Estimation of the
surface reflectivity of SAR images based on a
marked Poisson point process model,” IEEE
International Symposium on Signals, Systems,
and Electronics (ISSSE'95), San Francisco, CA,
pp. 183-186, 1995.
[19] J. S. Daba, M. R. Bell, A. Abdi, S. Nader-
Esfahani, “Comments on statistics of the
scattering cross-section of a small number of
random scatterers," IEEE Transactions on
Antennas and Propagation, vol. 48, no. 5, pp.
844-845, 2000.
[20] J. P. Dubois, O. M. Abdul-Latif, “SVM-based
detection of SAR images in partially developed
speckle noise,” IEC, Prague, pp. 321-325,
2005.
[21] J.P. Dubois, O. M. Abdul-Latif, “Detection of
ultrasonic images in the presence of a random
number of scatterers: A statistical learning
approach,” IEC, Prague, pp. 326-329, 2005.
[22] J. Dubois, “Poisson modulated stochastic
model for partially developed multi-look
speckle,” Proceedings of the American
Conference on Applied Mathematics, Harvard
University, Cambridge, MA, USA, pp. 209-
213, 2008.
[23] J. Dubois, “Segmentation of speckled
ultrasound images based on a statistical
model,” EURASIP Proceedings of the 16th
International Biosignal Conference,
Czech Republic, vol. 16, 2002.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.7