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Abstract: This paper aims to improve one well-known method for d = 3. In the original article, two algorithms
were presented, one for d = 3 and another (Chinese remainder sieve method) that was adjustable for arbitrary d.
In its basic form, the Chinese remainder sieve method was always better than the explicit algorithm for d = 3. In
our proposed form, the modified algorithm for d = 3 is more efficient for some small n, and it also pushes the
lower bound from which an efficient algorithm exists.
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1 Introduction
Combinatorial group testing is a method that ef-
ficiently tests many individuals for diseases like
COVID-19 by pooling and testing their samples ([1],
[2], [3]). This approach conserves testing resources
and increases the speed and scalability of testing. The
idea of group testing, based initially on health care
needs, has proven to be applicable in many other
fields such as genetics (e.g., [4]), computer science
(e.g., [5], [6]), and engineering (e.g., [7], [8]).

The practical implementation of a method is of-
ten limited by testing capabilities, such as the number
of samples that can be tested simultaneously or the
number of tests that can be performed from a single
sample. This limitation necessitates the development
of methods that can effectively handle small sample
sizes. This paper presents an enhancement of a well-
known method for d=3 ([9]).

Two algorithmswere introduced in the original pa-
per ([9]). In its basic form, the Chinese remainder
sieve method consistently outperformed the explicit
algorithm for d = 3. However, in our proposed ap-
proach, the modified algorithm for d = 3 exhibits
greater efficiency for some small values of n, thereby
pushing the lower bound for the existence of an effi-
cient algorithm.

The paper is organized as follows. Our main result
– improved algorithm is in section 2, data comparison
for small n is in section 3, and the conclusions follow
in section 4.

2 Main results
The original algorithm was designed to work only
with number notation in the binary system; we will

show that it can be applied similarly, or even more
easily, in systems with a different basis.

Let the number of items be n = kq, and the
item indices be expressed in radix k. Index X =
X(q−1) . . . X0, where each digit Xp ∈ {0, 1, . . . , k −
1}.

Now, X ranges over the item index numbers
{0, 1, . . . , n − 1}, p ranges over the radix positions
{0, 1, . . . , q − 1}, and v ranges over the digit values
{0, 1, . . . , k − 1}.

Matrix M has k2
(
q
2

)
rows. Row (p, p′, v, v′) of

M is associated with distinct radix positions p and p′,
where p < p′, and with values v and v′, each of which
is in {0, 1, . . . , k − 1}. M [((p, p′, v, v′), X] = 1 iff
Xp = v a Xp′ = v′.

Let testM (p, p′, v, v′) be the result (1 for pos-
itive, 0 for negative) of testing items having a 1-
entry in row (p, p′, v, v′) in M . For p′ > p define
testM (p′, p, v, v′) = testM (p, p′, v, v′).

The following three functions can be computed in
terms of testM .

testB(p, v) has value 1 (0) if there are (not) any
defectives having value v in radix position p, i.e.

testB(0, v) = 0 if
∑k−1

i=0 testM (0, 1, v, i) = 0, and
testB(0, v) = 1 otherwise. For p > 0, testB(p, v) =
0 if

k−1∑
i=0

testM (0, p, i, v) = 0

and 1 otherwise.

test1(p) is the number of different values held
by defectives in radix position p. Thus test1(p) =∑k−1

i=0 testB(p, i).
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test2(p, p′) is the number of different ordered
pairs of values held by defectives in the desig-
nated ordered pair of radix positions. Therefore,

test2(p, p′) =
∑k−1

i=0

∑k−1
j=0 testM (p, p′, i, j).

Now, we determine the number of defective items
and the value of their digits.

Let T = maxq−1
p=0(test1(p)).

Lemma 2.1. If T = 0, there are no defective items.

Proof. Obvious.

Lemma 2.2. If T = 1 then test1(p) = 1 for all p.
Denote by Xp the element for which testB(p,Xp) =
1. Then there is just one defective item X =
X(q−1) . . . X0.

Proof. Obvious.

The following lemma describes a new case and
must be added to the original proof.

Lemma 2.3. If T = 3, then there are just three de-
fective items.

Proof. Because T = 3, exists p such that test1(p) =
3 and Xp1

, Xp2
, Xp3

such that testB(p,Xpi
) = 1.

Then for every p′ different from p and Xpi
exists

just one Xp′
i
such that testM (p, p′, Xpi

, Xp′
i
) = 1.

Searched defective items have coordinates Xi =
X(q−1)i . . . X0i

(i ∈ {1, 2, 3}).

What remains to be resolved is a case where T =
2. Two cases can occur,maxq−1

p,p′=0(test2(p, p
′)) = 2

andmaxq−1
p,p′=0(test2(p, p

′)) = 3.

Lemma 2.4. If T = 2 andmaxq−1
p,p′=0(test2(p, p

′)) =
3, there are just three defective items.

Proof. If maxq−1
p,p′=0(test2(p, p

′)) = 3, it is already
straightforward to distinguish all defective items us-
ing pair p, p′ such that test2(p, p′) = 3.

Lemma 2.5. If T = 2 andmaxq−1
p,p′=0(test2(p, p

′)) =
2, there are exactly two defective items.

Proof. Suppose there are three defective items, and
p is such that test1(p) = 2. Then one of the defec-
tives (say D) has in p value v, and the other two (say
E,F ) have a value u, u 6= v. Since E and F are dis-
tinct, they must differ in value in some other position
p′. Therefore, there will be three different order pairs
of values held by defectives in positions p and p′, so
test2(p, p′) = 3. A contradiction.

Theorem 2.6. M is the 3-separable matrix for n =
kq with k2

(
q
2

)
rows, for any positive integers k, q, k ≥

2.

Proof. It follows directly from the preceding Lem-
mas.

3 Comparison of the number of tests

required for the d = 3 method
First, let us compare the original algorithm with the
newly proposed one. The differences are described in
Table 1. The NA means t(n) > n, so applying the
algorithm is ineffective.

The original algorithm was designed only for k =
2, but using a different base could be more efficient.
The modified algorithm can be applied for smaller n,
except for three values of n n = 126, 127, and 128; it
is always better than the original one. In Table 1, we
always list t(n) only for the k that is most efficient in
the given interval.

Table 1: Comparing t(n) for d = 3.

n origin d = 3 new d = 3
1–47 NA NA

48–59 NA 48 (k = 4)
60–64 60 48 (k = 4)
65–81 NA 54 (k = 3)
62–83 NA 75 (k = 5)
84–125 84 75 (k = 5)
126–128 84 84 (k = 2)
129–243 112 90 (k = 3)
129–243 112 90 (k = 3)
244–256 112 96 (k = 4)
257–512 144 135 (k = 3)
513–729 180 135 (k = 3)
730–1024 180 160 (k = 4)

It now remains to compare whether, for some
small n, the modified algorithm is more efficient
than the previously best-presented algorithm – the
Chinese remainder sieve method with backtracking
search (denoted bktrk) ([9]). A comparison of the al-
gorithms can be found in Table 2.

Table 2: Comparing t(n) for d = 3.

n bktrk origin d = 3 new d = 3
1–47 N/A N/A N/A (k = 4)
48–49 47 N/A 48 (k = 4)
50–56 49 N/A 48 (k = 4)
57–60 53 N/A 48 (k = 4)
61–64 53 60 48 (k = 4)
65–71 53 N/A 54 (k = 3)
72–77 57 N/A 54 (k = 3)
78–79 58 N/A 54 (k = 3)
81 59 N/A 54 (k = 3)
82 59 N/A 75 (k = 5)
83 60 N/A 75 (k = 5)

84–100 60 84 75 (k = 5)

The original algorithm was worse for all n than
the Chinese remainder sieve method algorithm. How-
ever, this is no longer true for the modified algo-
rithm. The modified algorithm offers better results
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for n = 50 . . . 64 and n = 72 . . . 81. Thus, the results
were optimized by adjusting the algorithm in several
cases considered the best known.

4 Conclusions
The modification of the algorithm for three defective
items presented in this paper brings only minor im-
provements, yet it provides the best possible solution
for a few small values n. The advantage of the mod-
ified algorithm is its ease of implementation. It is
not without interest that for small values of n, dif-
ferent values of k (k = 2, 3, 4, 5) appear to be the
most effective. For larger n, in most cases, it is most
advantageous to choose k = 3. Although still for
n = 315 + 1 . . . 224, k = 4 is the most effective.

Future research should focus on applying the re-
sults presented in this paper to algorithms that run in
more than one round (e.g., [10]). The improvements
introduced here could help to improve them, espe-
cially in future rounds of testing where the number of
defective samples in a group is already limited. Find-
ing optimal algorithms for small n using ICT would
undoubtedly be interesting.
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