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Abstract: - Classifying the patterns of defects in semiconductors is critical to finding the root cause of 

production defects. Especially as the concentration density and design complexity of semiconductor wafers 

increase, so do the size and severity of defects. The increased likelihood of mixed defects makes finding them 

more complex than traditional wafer defect detection methods. Manually inspecting wafers for defects is costly, 

creating a need for automated, artificial intelligence (AI)-based computer vision approaches. Previous research 

on defect analysis has several limitations, including low accuracy. To analyze mixed-type defects, existing 

research requires a separate model to be trained for each defect type, which is not scalable. In this paper, we 

propose a model for segmenting mixed defects by applying a pre-trained CNN-based TransUNet using N-pair 

contrastive loss. The proposed method allows you to extract an enhanced feature by repressing extraneous 

features and concentrating attention on the defects you want to discover. We evaluated the model on the Mixed-

WM38 dataset with 38,015 images. The results of our experiments indicate that the suggested model performs 

better than previous works with an accuracy of 0.995 and an F1-Score of 0.995. 
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1 Introduction 
The process of making semiconductor wafers is 

broadly categorized into front-end and back-end 

processes and is made through eight different 

processes, [1]. The front-end process is the process 

of designing and etching semiconductor chips onto 

wafers, while the back-end process is the process of 

cutting the chips from the wafers, wrapping them in 

insulation, and laying wires to reliably deliver 

power, [2], [3]. In specific, the front-end process, 

sometimes referred to as the wafer process, is the 

process of repeating the formation and cutting of 

different types of materials on the face of a wafer to 

create electronic circuits to make a single 

semiconductor chip, [4]. Previous processes include 

photolithography, which prints patterns of 

semiconductor circuits on wafers, etching to cut 

away parts other than the circuit pattern, deposition 

to create insulating thin films to separate and protect 

the metal from the circuit for electrical signal 

transmission, and metalization to create wiring, [5], 

[6]. With such a wide variety of processes, there are 

many different patterns of defects that can appear on 

a wafer. After wafer manufacturing, we run several 

tests to inspect defects and display them as wafer 

maps of binary numbers. The result of classifying 

the dies on the wafer map in this way shapes a 

particular pattern and is visually represented, [7]. 

The different patterns of defects in the wafer map 

are associated with the fabrication process. So, 

exactly categorizing the pattern of defects in a wafer 

map can help determine the source of defects in the 

manufacturing process. These classifications are 

important because they give engineers clues for 

troubleshooting, [8]. 
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A semiconductor wafer is a circular plate made 

by growing a column of single crystals, such as 

silicon (Si) or gallium arsenide (GaAs), which are 

the core materials of semiconductor integrated 

circuits. A semiconductor integrated circuit is an 

electronic component that integrates many devices 

on a single chip to perform and organize various 

functions. This means that, since semiconductor 

integrated circuits build their circuits on thin 

circular plates or wafers, the wafer is the foundation 

of the semiconductor. 

Wafer mapping is commonly used for data 

analysis of semiconductor manufacturing processes. 

Wafer mapping generates a color-coded map of 

semiconductor device performance on the surface of 

a wafer based on the test results of each chip failure. 

The created wafer maps have one or more patterns 

depending on the distribution of the defect chips. In 

semiconductor processes, different defect patterns 

occur because the defect chip pattern will look 

different depending on the source of the irregularity. 

Therefore, wafer maps defect analysis of defective 

chip patterns provides critical information for 

finding anomalies in semiconductor processes and 

determining the cause of defects. Fig. 1 shows a 

wafer map. 

 

 
Fig. 1: Example of wafer map. 

 

Modern developments in micronization 

techniques and increases in wafer size have 

increased the likelihood of creating more than two 

defect patterns, [9], [10]. Recent advances in Fig. 1. 

Example of wafer map. AI technology has spurred 

research focused on deep learning. The study, [11] 

suggested using CNN to classify mixed defect 

patterns. In [12], the authors suggested a deformable 

CNN. In [13], the authors suggested an infinite 

warped mixture model for clustering mixed-type 

defects. In [14], the authors applied augmentation 

techniques for the segmentation of mixed defect 

patterns and proposed a masked R-CNN. In [15], the 

authors proposed an Improved U-Net with a 

Residual Attention Block for mixed-defect wafer 

maps. 

Taking classification one step further, 

segmentation is used as a way to detect defects. 

Classification simply categorizes the input image, 

but segmentation can provide inferences about the 

data on a pixel level. This can greatly help users 

make decisions by providing them with additional 

information. There is a lot of segmentation research 

going on, especially in the medical field, to find 

diseases. In [16], the authors applied a model that 

applies attention gates on U-Net to perform medical 

image segmentation. With attention gates, the model 

is trained to maintain target structures of different 

patterns and scales in focus automatically. A recent 

study suggested a cascaded neutralization dual 

attention U-Net for achieving enhanced tumor 

segmentation, [17]. In [18], the authors suggested a 

new U-Net architecture that uses aggregated 

residual blocks and a soft attention mechanism to 

segment COVID-19-infected areas. They proposed a 

cascading structure to scale low-resolution quality 

prediction and a dual-attention module to enhance 

the feature representation of tumor segmentation. In 

[19], the authors proposed TransUNet for medical 

image segmentation 

Mixed defects are harder to recognize because as 

the defects are mixed, the pattern becomes more 

complex, and different defects overlap. So, we use a 

pre-trained CNN-based TransUNet to deliver 

classification and segmentation results targeted at 

defect areas to engineers. We specifically contribute 

as follows: 

1. N-pair contrastive loss-based pre-training to 

generate good Feature maps that focus on 

defect details you want to find.  

2. Applying multi-task learning to TransUNet 

for wafer defects.  

3. Reduce unnecessary labor and time by 

creating pseudo-label data required to train 

segmentation models with automatic defect 

masking techniques.  

The structure of the paper is as follows. Section 2 

describes the background and related work. Section 

3 explains in detail the architecture and 

characteristics of the proposed model. Section 4 

explains the experimental setup and results. Finally, 

Section 5 sets out our conclusions and suggestions 

for future research. 

 

 

2 Background & Related Work 
 

2.1 TransUNet 
Hybrid CNN-Transformer as Encoder. Instead of 

taking a pure transformer for an encoder, TransUNet 

uses a CNN transformer. It is a hybrid model that 
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initially uses a Convolutional Neural Network as a 

feature extractor to build a feature map for the input. 

Patch embedding is performed on a 1×1 patch 

extracted from the Convolutional Neural Network 

feature map instead of the raw image. Cascaded 

Upsampler (CUP). The decoder consists of several 

upsampling stages that decode hidden features for 

the resulting segmentation mask output. Together 

with the hybrid encoder, the CUP forms a U-shaped 

architecture, with skip-connections that enable 

feature aggregation at different resolution levels. 

Fig. 2 shows the architecture of TransUNet 

 

 
Fig. 2: Overall architecture of TransUNet. 

 

2.2 Related Works on Defect Classification 
In [11], the authors suggested using CNN to classify 

mixed defect patterns. They train distinct 

classification models to classify single defects and 

then use all models to find the occurrence of mixed-

type defects. However, this method is not efficient, 

as it requires a significant increase in both the 

storage and computing power overhead, making it 

less scalable. In addition, separate training is 

required for every model. They also only study four 

single defect patterns: ‘zone’, ‘circle’, ‘scratch’, and 

‘ring’. In contrast, we test our model on 8 single-

type and 13 mixed-type defect patterns. For defect 

classification, the study, [13], proposed a 

deformable convolutional network (DCNet). For 

extracting a feature representation of a defect, 

DCNet uses transform convolution (DC) to focus on 

a sampling region of the defective dies. The output 

layer has multi-labels and one-hot encoding. This 

converts mixed types of defects into separate, single 

defects so that you can effectively identify each 

defect. 

 

3 Pre-trained CNN-based TransUNet 
 

3.1 Pre-training TransUNet using N-pair 

Contrastive Loss 
In this study, we use an N-pair Contrastive Loss 

Function to pre-train a CNN on the encoder of the 

TransUNet and then trained the entire TransUNet 

using cross-entropy loss and dice loss. The cross-

entropy loss is the most commonly used loss 

function for supervised learning. But, we use N-pair 

contrastive loss in pre-train to ensure that features of 

the same class are closer than features of different 

classes. In our experiments, using this loss 

outperform supervised learning using cross-entropy 

loss. Encoder training based on N-pair contrast 

losses can provide a better representation of the 

latent dimension of wafer maps. It increases the 

accuracy of the whole network. 

By pre-training the encoder with N-pair contrast 

loss, the distance between similar embeddings is 

reduced. This allows for better feature learning in 

the encoder stage and helps with the segmentation 

of the decoder. To produce a feature representation 

of the input image, we pre-trained the encoder on 

150 epochs using N-pair contrast loss. Fig. 3 shows 

the proposed pre-training structure. 

 

 
Fig. 3: Overall architecture of proposed pre-training. 

 

N-pair loss is a generalized version of triplet 

loss, consisting of one anchor, one positive sample, 

and (N − 1)  negative samples. If N = 2 , this is 

equivalent to a triplet loss. This is optimized for 

identifying a positive sample from multiple negative 

samples. Consider the training data 

{x, 𝑥+, 𝑥1,⋯ , 𝑥𝑛−1}, where 𝑥+  is a positive sample 

of x and 𝑥+, 𝑥1,⋯ , 𝑥𝑛−1 are negative. The (N + 1)-
tuple loss is defined as follows, where f is the 

embedding kernel defined by the deep neural 

network. 

 

L(x, 𝑥+, {𝑥𝑖}𝑖=1
𝑁−1; 𝑓)

= log⁡(1 + ∑ exp(𝑓𝑇𝑓𝑖 − 𝑓𝑇𝑓+)

𝑁−1

𝑖=1

) 

(1) 

 

The multi-class N-pair loss (N-pair-mc) is 

defined as follows: 

 

𝐿𝑁−𝑝𝑎𝑖𝑟−𝑚𝑐({(𝑥𝑖, 𝑥𝑖
+)}𝑖=1

𝑁 ; 𝑓)

= ⁡
1

𝑁
∑log⁡(1 +∑exp⁡(𝑓𝑖

𝑇𝑓𝑗
+ − 𝑓𝑖

𝑇𝐹𝑖
+))

𝑗≠𝑖

𝑁

𝑖=1

 

(2) 
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3.2 Pseudo-Defect Masking 

To train the segmentation model, we need images 

and masks that serve as a label. Generally, labeling 

is performed by humans using an image masking 

program. These traditional approaches are time-

consuming and need a lot of labor. To overcome 

that problem, we use a technique that automatically 

masks defects. A defect represented by a wafer map 

consists of a set of defects on a die. So, we perform 

the masking in a way that separated the connected 

pixels. We used the measure. label feature of Scikit-

image, and Fig. 4 shows the connectivity option. We 

use 2-connectivity based on what we did with the 

connectivity option, as shown in Fig. 5. 
 

 
Fig. 4: Connectivity option description. 
 

 
Fig. 5: Execution result by option. 

 

 

4 Experiment and Results 
 

4.1 Experiment Environments 

To check our proposed model’s performance, we 

conduct classification and segmentation with wafer 

maps including both single and mixed defects. 

Every experiment was run on four V100 GPUs with 

16 CPU cores, 528 GB of MEM, and 32 GB of 

RAM, using the torch open-source library. Table 1 

summarizes the system specification. 

 

Table 1. System specification 

Hardware 

Environment 
Software Environment 

CPU: 16Cores 

MEM: 528GB 

GPU: V100 x 4 

Linux 

Torch 1.4.0 

Python3.7 

 

 

 

4.2 Datasets 
Mixed-Type Defects. We are aiming to identify 

mixed defects. Therefore, we chose to use a mixed 

wafer defect dataset offered by the Intelligent 

Manufacturing Institute and Donghua University. It 

contains both single defects and mixed defects. 

Single defect classes are organized as follows 

Center, Donut, Edge-Loc, Edge-Ring, Loc, Scratch, 

Random, and Near-full. The center is defects 

clustered in the center. Donut is a ring formed by 

defects in the center. Edge-Loc is a cluster localized 

at the edge. Edge-Ring is Ringed clusters around 

boundaries. Loc is localized clusters that occur 

regularly. Scratch is a distribution of defects in long, 

narrow areas. Near-full is abnormal failure patterns. 

Random is random defects with no pattern. Fig. 6 

shows a Single wafer map defect. Fig. 7 shows a 

mixed-type wafer map defect. For mixed-type 

Defects, we used 10,400 of the two-type mixed 

defects images as training data and 2,600 as 

evaluation data. 
 

 
Fig. 6: Single wafer map defect: (a) Center (C); (b) 

Donut (D); (c) Edge-Loc (EL); (d) Edge-Ring (ER); 

(e) Loc (L); (f) Near-full; (g) Scratch (S); (h) 

Random. 
 

 
Fig. 7: Mixed-type wafer map defect: (a) Center + 

Edge-Loc; (b) Center + Scratch; (c) Donut + Edge-

Ring; (d) Donut + Scratch; (e) Center + Edge-Loc + 

Loc; (f) Center + Edge-Ring + Scratch; (g) Donut + 

Edge-Loc + Loc; (h) Edge-Loc + Loc + Scratch. 
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4.3 Results 
Mixed-Type Defect Result. We compared our 

performance to previous works in Table 2. Our 

model was better than previous studies. After pre-

training the CNN among TransUNet’s encoders 

using the N-pair contrastive loss function, the self-

attention-based transformer layer concentrated on 

the defect and treated the neighboring defective dies 

as noise, resulting in improved results. We can also 

see better performance compared to previous 

studies. For accuracy or F1-Score, our model shows 

improvement. Fig. 8 illustrates the confusion matrix 

of mixed-type defects. In problems such as 

statistical classification in machine learning, a 

confusion matrix is a table that allows us to 

visualize the performance of a classification 

algorithm trained with supervised learning. Each 

column of the matrix represents an instance of the 

predicted class and each row represents an instance 

of the true class (or vice versa). Precision, indicated 

by the yellow diagonal line, was able to achieve a 

result of 0.995. Table 3 details the model’s 

performance in detecting two types of mixed 

defects. The F1-Socre for two-type mixed defects 

reached 0.995. 

 

Table 2. Comparison with other models 

Model Accuracy F1-Score 

Our Model 

 [12] 

 [13] 

 [14] 

 [15] 

0.995 

0.826 

0.962 

0.977 

0.980 

0.995 

0.824 

0.962 

0.977 

0.974 

 

 
Fig. 8: Testing results of mixed-type defects: 

normalized confusion matrix (C + EL, C + ER, C + 

L, C + S, D + EL, D + ER, D + L, D + S, EL + L, 

EL + S, EL + L, ER + S, L + S). 
 

 

Table 3. Mixed-type testing result 
Defect 

Type 

F1-Score 

baseline w/multitask w/pretrain+multitask 

C + EL 

C + ER 

C + L 

C + S 

D + EL 

D + ER 

D + L 

D + S 

EL + L 

EL + S 

ER + L 

ER + S 

L + S 

0.903 

0.955 

0.954 

0.981 

0.930 

0.968 

0.924 

0.975 

0.875 

0.890 

0.852 

0.917 

0.965 

0.895 

0.959 

0.953 

0.984 

0.941 

0.972 

0.942 

0.979 

0.887 

0.921 

0.875 

0.918 

0.969 

0.990 

0.993 

0.997 

1.000 

1.000 

1.000 

0.995 

0.995 

0.998 

0.984 

0.999 

0.986 

0.999 

 

Fig. 9 shows some samples of inference results 

for two-type mixed defects. It is composed of the 

original image, pseudo-label, and inference results. 

When benchmarked against the pseudo-label mask, 

we can check that it correctly predicts a single 

defect. Since the pseudo label data serves as the 

label, segmentation results are produced as close to 

the pseudo label. Since the masking was done 

programmatically, there were mismatches in the 

defects, but there was no problem detecting the 

defects. It could even correctly predict the majority 

of defects that were a mix of both types, but it was 

difficult to recognize when two defects overlapped. 

By more than a certain percentage, such as when 

Local and Edge-Loc defects overlapped, or when 

Scratches overlapped with other defects. 
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Fig. 9: Inference results in two-types mixed defects: 

(a) Center + Edge-Ring defect; (b) Center + Loc 

defect; (c) Center + Scratch defect; (d) Donut + 

Edge-Loc defect; (e) Donut + Loc defect; (f) Donut 

+ Scratch defect; (g) Edge-Loc + Loc defect; (h) 

Edge-Loc + Scratch defect; (i) Edge-Ring + Scratch 

defect; (j) Loc + Scratch defect. 
 

 

5 Conclusion 
In this study, we used an N-pair Contrastive Loss 

Function to pre-train a CNN on the encoders of the 

TransUNet and then learn the entire TransUNet, 

resulting in good feature maps that emphasize the 

details of defects we were looking for. Human 

defect labeling is a very inefficient method because 

it is subjective and labor-intensive. In this study, we 

used automatic masking to solve the inefficiency 

problem. Our suggested approach delivered better 

results than the previous approach. Accuracy was 

0.995, and F1-Score was 0.995. These results 

provide engineers with the exact location of the 

error, which helps them determine the cause of the 

problem. The study allowed us to detect mixed 

defects, and the automatic masking technique saved 

us unnecessary labor and time. This saves labor for 

existing workers and provides accurate defect 

detection. 

We tested the model in public large wafer map 

datasets, but further validation on real-world 

datasets can be considered in future work. We can 

also use methods like transfer learning. In the future, 

we will concentrate our research on decreasing the 

size of the model and increasing performance. 
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