

Automatic SQL to HQL-NoSQL Querying using PostgreSQL and

Integrated Hive-HBase

OUDAY SAADA, JIHAD DABA

Department of Electrical Engineering,

University of Balamand,

LEBANON

Abstract: - The amount of digital data is constantly growing in almost all fields. This data is divided into two

categories, structured and unstructured data. Non-structural databases known as NoSQL became one of the main

fields of big data. Many companies are still using relational databases like PostgreSQL and MySQL. But with the

rapid evolution and diversity of stored data, companies find themselves obliged to use big data tools like HBase or

Hive. Big data is characterized by its capacity, speed, and ability to store diverse types of data. Data analysis and

high storage capacity are the main reasons for companies to search for new database systems. Data migration to

new systems is associated with the modification of the existing data and applications. This process costs a lot to

adopt new specialists to handle this transition. Furthermore, due to different sources of data in old systems, e.g.,

real-time applications that are continuously collecting new data, companies will not be able to leave relational

databases. For this reason, we present a system, termed Automatic Query Language, or AQL in short form, for

migrating data from PostgreSQL to integrated HBase/Hive databases. In addition, we provide a platform that

allows any user to query automatically PostgreSQL, Hive, and HBase databases using SQL query only. Querying

the system is related to where each big data tool’s performance is better. After the platform was completed, we were

able to insert and select data from both relational databases and big data components. Join operation was not a

problem because complex queries for analysis were executed using Hive which was integrated with HBase. The

tested AQL system proved that HBase can insert data with more efficiency than PostgreSQL and Hive, and that

select query in Hive has a better performance than PostgreSQL for big data size, whereas, for small data size, the

performance of PostgreSQL is better.

Key-words: - Automatic Query Language, Big data, HBase, HDFS, Hive, PostgreSQL, Relational Database, Sqoop

Received: April 11, 2022. Revised: November 15, 2022. Accepted: December 16, 2022. Published: January 26, 2023.

1 Introduction
With the huge evolution in technology, the amount of

data is getting bigger in all enterprises. The explosion

of data happens when companies are producing

valuable types of data in a non-measurable way and

at speed.

Researchers have intensified their research work

in this field to improve the ability to benefit from

these data. Most companies that are using relational

databases did not expect this big evolution of the

amount of data, and they found themselves in a

situation where relational databases cannot process

this vast amount of diverse data anymore.

Big data tools like HBase and Hive have become

the alternative solution for dealing with large

quantities and diversity of data because of their

capabilities of handling volume, value, variety,

velocity, and veracity. In addition, big data and RDBs

integration became very popular with the

understanding that there is no universal solution.

Integration of heterogeneous systems needs

experts with good knowledge to benefit from each

data store. Also, the original system architecture

could be impacted by the database integration, [1],

which is also a limitation. As is happening in almost

all companies, End-user applications remain

connected to RDBMSs. Applications are not

supported for transformation to new systems because

they only understand SQL language and they need

experts with new programming knowledge to handle

this work.

The main problem in migrating a relational

database into HBase, that is, a NoSQL database, is a

JOIN operation between two or more tables. JOIN

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 16 Volume 20, 2023

operation is of interest to many researchers as it

could be faster but not as powerful as relational

databases. HBase is integrated with Hive which is a

SQL-like interface because of two reasons:

 HBase does not support the JOIN operation.

 Hive is the king of relational data analysis

In this paper, we propose a way of integrating

relational databases with integrated HBase/hive. Our

system is termed AQL. Data migration from a

relational database into an integrated table is handled

in addition to a platform where users can insert and

retrieve data from both relational databases and

integrated Hive/Hbase tables. The main parts are

listed below.

(1) Data conversion: It offers a way of data

migration from PostgreSQL to HBase

integrated with Hive. This migration is done

using Sqoop with JDBC driver which

connects both databases. This process allows

load reduction on the existing system

(PostgreSQL) which leads to better

performance.

(2) Automatic SQL Interface for PostgreSQL

HBase/Hive: A new platform is designed to

provide users with the ability to execute any

SQL command in both PostgreSQL and

integrated HBase/Hive. This platform allows

any user with SQL knowledge to insert one

row or retrieve data from both PostgreSQL

and integrated HBase/hive tables at the same

time.

This work is needed because it facilitates the

process of analyzing data more efficiently in

companies that are not able to completely leave

existing systems. This work also helps to prevent the

existing applications from losing new data. In

addition, integrating Hive and HBase improves data

testing, which is done using high server speed.

There are other snip-offs to this work. Big data

applications in satellite imaging systems, [2], [3], [4],

[5], [6], [7], [8], [9], and more generally in coherent

imaging systems, [10], [11], have dramatically

increased lately. Satellite companies provide

commercial high-resolution muti-spectral images,

and computer companies deliver powerful cloud

facilities to process them. Most notable is NASA’s

Landsat mission with over 2600 operational imaging

satellites orbiting Earth and relying on machine

learning and artificial intelligence (AI). The number

of images acquired is overwhelming and requires big

data storage and strong analytics. Since satellite

onboard computers are not powerful enough for big

data processing or storage, these tasks are handled by

ground stations that are equipped with powerful

processors, tailoring big data analytics to specific

clients’ needs.

Big data also find increasingly important

applications in next-generation wireless networks.

The evolving 5G and the planned 6G networks

employ at their core massive multiple-input-multiple-

output (m-MIMO) systems driven by orthogonal

frequency division multiplexers (OFDM), [12], [13],

[14], [15], [16]. Such systems inevitably generate

massive data, and to procure useful analytics from m-

MIMO resources, a big data-aware 5G/6G mobile

communication system needs to be developed. A

careful selection of big data analytics allows for the

integration of big data with m-MIMO systems to

improve spectral efficiency.

The paper is structured as follows: In section 2,

the software and hardware specifications are

discussed. In section 3, the system work process of

AQL is explained. In section 4, the testing and results

of our work are presented. Section 5 summarizes the

conclusions of this work and lays the path for future

work.

2 Software and Hardware Specification
In this work, we use open-source software mounted

on specific hardware as shown in the sub-sections

below.

2.1 Software Specification
All services are installed using Ubuntu 18.04

machines. Python is the main prerequisite for

Hadoop tools. In our work, we employ Python 3.7.

Ambary server (2.7.4.0) installation is used to install

Hortonworks (HDP 3.1.4.0). One of the biggest

contributors to the open-source big data analytics

community is Hortonworks.

The services that are installed are:

 HDFS (Hadoop Distributed File System)

version 3.1.1

 Yarn version (3.1.1)

 MapReduce2 version (3.1.1)

 Tez version (0.9.1)

 Hive version (3.1.0)

 HBase version (2.0.2)

 Sqoop version (1.4.7)

 Zookeeper (3.4.6)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 17 Volume 20, 2023

PostgreSQL v.12 and pgAdmin4 are already

installed on the existing system. PuTTY is used to

access each machine from any connected

workstation.

After installing all software, we can start data

migration.

Finally, to connect PostgreSQL with the

Hortonworks data platform, PostgreSQL JDBC 4.2

driver is installed.

2.2 Hardware Specifications
Hive JOIN performance improves using a higher

number of CPUs, [17], and RAM capacity by 21% to

25%. In our study, we use a 3-nodes cluster where

one node is the master and the other two are slaves.

Each node is mounted on a single server with 60GB

RAM, 500GB SSD drive, and 16 CPU core Intel®

Xeon Gold 6132@2.60GHz.

Fig. 1: Apache Scoop architecture [18]

3 AQL System Work Process
Once the environment is ready, we can start data

migration into integrated HBase and Hive tables.

PostgreSQL data presented in our research institution

that took years to be collected are used for testing.

HBase and Hive integrated tables are created first,

then data migration from PostgreSQL into integrated

HBase/Hive tables is started. After data is migrated,

we can start testing insert and select queries time

using different sizes of data.

3.1 Data Migration
Apache Sqoop is a big data tool that allows data

migration between RDBs and big data components

like Hadoop, Hive and HBase, as illustrated in Fig. 1.

Sqoop uses a map program only when launching

many mappers and depends on user requirements to

transform imported data in a way that HDFS can

understand (since most of the big data components

are based on HDFS). Every mapper creates its own

connection to the target database using the JDBC

connector to import its assigned data.

A method for loading data in-path from a file into

integrated HBase/Hive is provided in [19]. The data

is stored in a single HBase table with a unique row

key, where querying is compared with the same data

on different Hive tables. However, there are three

ways of migrating data from PostgreSQL into HBase:

(1) Migrate all PostgreSQL-related tables into a

single table in HBase. Each migrated table is

assigned to an independent column family in

the same table.

(2) Create for each PostgreSQL table a distinct

relative table in HBase where column fields

are divided into different column families

depending on fields name relations.

(3) Create for each table a relative table in HBase

where all table columns are under the same

column family.

Many researchers worked on JOIN operations

using an HBase table where all related tables are

stored in the same HBase table using different

column families. This is a limitation since it needs

more refactoring and costs. In our work, we migrate

data from PostgreSQL into HBase using the third

scheme where each PostgreSQL table is considered

as a table in HBase, and data is stored in a single

column family name having the same HBase table

name.

 Let us consider that we have a geometry table

named “building” for all buildings in a country under

a schema named “GIS” under a database called

“Lebanon”. To migrate this table, we need first to

create a table in HBase. A column family named as

table name is assigned to the created table:
create ‘<country==>table

name>’,’<country==>column family>’

After creating the table and the assigned column

family, we can start data migration using the Sqoop

command where the JDBC connection is established

between the databases as stated below.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 18 Volume 20, 2023

mailto:6132@2.60GHz

Sqoop Import command:
connect jdbc:

PostgreSQL://localhost or ip

/database_name

username root

Password

table table_name (postgresql table)

map-column-java ‘geom’=string

(because HBase does not support

geometry type)

HBase-table (postgres_schema_name)

column-family table_name (postgres

table name)

columns "id, geom, fid, objected,

textstring, point_x,

point_y.معلومات

schema Lebanon

HBase-row-key id -m 1

Because we are working here on a defined number

of local machines, it is preferred to use only one

mapper. After the data is migrated into HBase, the

next step is to integrate it with Hive. We have to

create an external table in Hive considering that the

table has eight fields, including one Arabic field. We

need to declare a process on how to transfer tables

having Arabic field names into Hive that does not

accept Arabic fields. In addition, this integration will

not affect the old system data since Hive is a

relational-based table, and as mentioned in [20],

traditional databases migrate to a combination of

SQL and NoSQL databases, adding flexibility,

mobility, and efficiency to the characteristic of the

system. The creation of a Hive table is stated below.

Create Hive table process:
CREATE EXTERNAL TABLE (id int, geom

string, fid string, objectid

string, textstring string, point_x

string, point_y string, maalumat

string) STORED BY

'org.apache.Hadoop.Hive.HBase.HBase

StorageHandler' WITH

SERDEPROPERTIES

("HBase.columns.mapping" =

":key,buildings:geom,

buildings:fid, buildings: objecid,

buildings:textstring,

buildings:point_x, buildings:

point_y,buildings: معلومات")

TBLPROPERTIES ("HBase.table.name" =

"country"); //to assign which HBase

table.

Each field created in the Hive table should have

its map field in hbase.columns.mapping. Hive does

not accept the Arabic language that’s why we created

a field named “maalumat” (Arabic for “information”)

or in any language that is supported by Hive.

In this way, we have the same data on both HBase

and Hive tables which allows us to benefit from the

features of both databases. In addition, for testing

purposes, we use the same data on both PostgreSQL

and integrated HBase/Hive. Later on, we can delete

the existing data on PostgreSQL to improve its

performance. In addition, data that are used from a

persistent user’s application for example should not

be deleted to avoid application failure.

3.2 AQL Insert Process
Data migration into new systems and querying are

not easy as they may appear. Experts find themselves

obliged either to work with NoSQL and old system

relational databases separately or to combine them to

provide more accuracy in the system. The second

choice is more complex since it needs experts with

high knowledge about both systems.

 In our work, we employ the second scenario.

Data presented in relational databases are deleted to

improve relational databases and existing

applications’ performance. Users with ordinary SQL

knowledge can deal with the transferred data in our

platform termed AQL, allowing any user to execute

insert and select queries. The user query targets the

one with the best performance and results. For

example, insert statement targets HBase table

knowing that HBase is better for real-time

applications. This is where the role of integrating

HBase with Hive becomes important, where every

insert statement in HBase is automatically updated in

hive tables where it can be retrieved later.

SQL insert statement is divided into three parts

where the user specifies the table name, fields and

the values to be inserted. Insert statement is a

limitation for Hive because of the high delay in query

execution proved later in the last section of this

paper. The SQL insert process is stated below.

SQL insert query:
INSERT INTO table_name (column1,

column2, column3, ...)

VALUES (value1, value2, value3,

...);

While HBase is less complex than PostgreSQL

referring to the tables’ design, it is more complex for

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 19 Volume 20, 2023

querying data. HBase inserts the query depending on

many variables as stated below.
Input

'<HBase_table_name>','row_key','<co

l_family:column_name>','<value>'

The insert statement in our platform, as shown in

Fig. 2, allows users to insert one row at a time in the

existing database.

The AQL insert form is divided into four parts.

The user should insert:

Fig. 2: AQL insert form

 The name of the schema needed to connect

the database and redirect to the form of Fig. 3.

 The table name that should exist in the

schema.

 The table fields with the existing ID column

as the primary key at the beginning of the

table.

 The values that need to be saved in the field.

The user is automatically connected to the schema

it enters. After the connection is established, the table

name should exist inside the schema. Fields entered

by the user should have the same number as Postgres

table fields. From the data entered by the user, a

NoSQL query is automatically generated to insert

this row in HBase, depending on user demand.

When a user chooses to insert a row in HBase, the

table name will be the key to establishing the

connection to the HBase table that has the same

name. In addition, the table name will open a batch

file having the same table name concatenated with

(.batch) as (table-name.Batch). Each insert query is

saved before it is migrated to HBase. The

architecture of the AQL HBase query work is shown

in Fig. 3.

Fig. 3: AQL HBase query work architecture

The insert query in HBase is divided into n

numbers of queries which depend on the number of

fields needed to be inserted. For example, if a table

has 10 fields to be inserted, 10 queries will be saved

in the batch file before it is executed and imported

into HBase.

Insert query in HBase depends on storing SQL

query as (key: value). The key is the column name

and the value is the value referred to the same

column name.

Query of data insertion is conduced as:
Batch.put(

id.{“table_name:column_name”:

value}

 Each insert query contains the same ID of

inserted rows in PostgreSQL.

We can extract the size of the batch file as much

as we want before it is executed in HBase. For

example, we can resize the batch file to handle 1000

queries for the same table before it is imported into

HBase.

When working on data migration and querying

using multiple data stores, the insert statement should

be targeted into one data store to avoid data

overlapping.

3.3 AQL Select Process
Since the select query is used for data analysis, it is

one of the main reasons behind using integrated

HBase with Hive instead of using only NoSQL.

Many researchers work on retrieving data from

relational tables stored in NoSQL databases using

different methods. For example, the researchers in

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 20 Volume 20, 2023

[21] stored the whole relational databases using the

same HBase table under different column families.

Also in [22], the author provided a solution for

HBase to support JOIN operations to save data from

different relational tables stored in the same HBase

table, but no matter how much the system is strong,

query efficiency will not be as effective as Hive,

especially for complicated queries using JOIN

operation.

Hive has many limitations in using insert, update,

and delete, but when it comes to selecting, Hive is

the engine of data analysis.

The second reason for using integrated Hive with

HBase is that when it comes to real work, JOIN

operation using HBase performance will not be as

high as that of Hive. It is well known that HBase is

not designed for accepting RDBMS tables. In

addition, the researchers in [23] mentioned the

profoundness to deal with NoSQL data stores

because of the lack of a single API and query

language. HBase RAM caching is detailed below.

 Hfile: Contains data and index of table and

metadata of that data.

 Memstore: One of two memory cache where

the region server is in-memory storage, data is

accumulated until it is full, then it writes data

to a new HFile on a named disk (Flushes).

 Blockcache: One of two memory cache and it

is responsible for writing the retrieved data of

HDFS.

 Block: Each HFile is composed of a series of

small blocks.

 Write Ahed Log(WAL): A log file that saves

every change in the data until it is written to

the disk and prevents data loss before

Memstore is written to the disk.

JOIN operation is the main problem for NoSQL

database querying systems and the most used

operation in database systems, [24]. Many

researchers are working to solve this problem using

different techniques. The work in [19] has no issue in

JOIN operation using HBase because data is

integrated into a single table in HBase. It is stated in

the HBase reference guide, [25], that when the

number of integrated tables in HBase gets larger than

three column fields, it causes performance

degradation and it is one of many limitations in

HBase. To be more exact, any small PHP application

will generate more than 4 related tables depending on

the design that can generate different column

numbers and sizes. Any small application today can

generate a moderate number of columns with

different sizes.
When a client creates a column family in the

HBase table, a new Memstore in the region server is

created. Data is accumulated in MemStore until it is

full and then it writes (“Flushes”) where a new Hfile

is created on disk. More flushes with more Hfiles

will be presented on the disk.

Generating too many column families causes too

many Flush operations. This increase in the HFile

number leads to the blocking of the region server.

In addition, more columns in the same table leads

to more unnecessary I/O operations. For example, the

presence of many column families in the same table

generates many queries, where each one targets one

column family. Cao et al in [26] state that querying

HBase with multidimensional queries are not

efficient. This increase in the query statements for the

same column family leads to a time delay.
 Flush operations will also increase if the column

families number has different data sizes. For

example, if the first column family has 10000 rows

and the second one has 1000 rows, this will lead to

more HFile splits, creating more small files. This

operation also leads to system degradation.

It is common knowledge that HBase is faster than

Hive in real-time applications. But for analyzing

data, Hive is the better choice since it uses the

MapReduce program and is compatible with

relational tables. It is also common knowledge that

HBase is not made for accepting relational databases.

The testing done before using HBase to JOIN table

was mostly done using 2 or 3 tables, which does not

show any weakness in HBase performance. In

addition, JOIN operation will be an issue in HBase if

tables are stored using different VMs, [27]. In

addition, if relational tables are stored in the same

HBase table using different column families, there

will be a limitation since it needs more refactoring,

[28].

SQL Select query in our work is taken from users

using Python (flask) application. Since the design of

both PostgreSQL and Hive database tables are the

same, the query first targets the PostgreSQL database

and then the Hive tables.

 JDBC connector for connecting Hive and

PostgreSQL remains the same as in HBase. The

select query retrieves PostgreSQL data and saves it to

a table, then the query targets the Hive table and

retrieves data which is added to the first table results.

In this way, data is retrieved from migrated data and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 21 Volume 20, 2023

at the same time from new data entered into the old

relational system to avoid losing any data. The

procedure mentioned above is depicted in Fig. 4.

4 Testing and Results

4.1 Insert Simulation and Results
It is well known that Hive is used for data analysis

and not for real-time applications. Insert query in our

platform is done using HBase where saved data can

be retrieved also using Hive.

Our platform allows users to insert one row at a

time in both PostgreSQL or integrated HBase/Hive.

Query is executed using AQL in three database

systems. The delay time for each query is recorded to

compare the three systems. The first query is

executed in HBase, the second query is executed in

PostgreSQL, and the last one is executed in Hive.

The insert query performances for recorded delays

are shown in Figs. 5 and 6.

Fig. 4: Select from Hive and PostgreSQL

Figure 5 shows the delay for insert statement

execution in Hive, PostgreSQL, and HBase. We

notice that HBase has the best performance with a 9

ms delay, which is smaller than PostgreSQL and Hive

delays with 0.09 s and 0.88 s delays, respectively.

Our code can be used for real-time applications when

companies want to transfer the whole system into big

data keeping the same SQL insert queries.

Considering that the first statement delay is always

higher than the other, we exclude it from our study.

Fig. 5: Insert delay using one statement

We tested the system by repeating the insert query

10 consecutive times. For PostgreSQL, the ID of the

insert row is auto-incremented with the DEFAULT

value, whereas for Hive, we used the same query

repeated 10 times.

In addition, HBase inserts the 10 queries in the

BATCH file and executes all queries in one step.

These 10 queries generate N number of queries,

where N is equal to the sum of all fields in the total

number of queries.

 Fig. 6: Insert delay for ten consecutive statements

The average delay time in Fig. 6 is 0.803 s for

Hive, and 0.0474 s for PostgreSQL, and the average

time taken from HBase is added to the total time of

batch file execution. The average time taken by

HBase is 8.48 ms to write the queries inside the batch

file, requiring 0.47 s to execute the file. The total

average HBase time is thus
AvgT = 0.047/10 +

0.00848 = 0.05548 s.

The batch file execution process runs in the

background of the system, which is why we can

exclude it and the user will not experience this delay.

But for the total time of HBase, insert delay

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 22 Volume 20, 2023

performance remains approximately the same as that

of PostgreSQL.

4.2 Select Simulations and Results
In this section, we test select queries using two

different queries on databases with different sizes.

The database used in this simulation is taken from

our institution which took years to collect.

Five tables are created before starting the

simulation. The tables created for the simulation are

shown in Table 1.

In our experiment, two queries are used. The first

query retrieves the count of persons who need food,

medicants, and the count of needed money for

married persons that are unemployed, for rent or

school payments, for persons who are older than 45

years, and for persons who should be living in a

rented apartment in a specific cadaster. This is coded

as follows:

Table 1. Created tables for simulation

SELECT cadaster, count(need_food),

count(need_medicant), count

(need_money), count (money_for)

FROM properties p

JOIN person pn on (p.person_id =

pn.ID)

JOIN section s on (pn.section_id =

s.id)

JOIN building b on (s.building_nb =

b.building_id)

where

p.status_work = 'no' and

 pn.status_mariage = 'yes'

and (p.money_for = 'rent' or

p.money_for = 'school') and

 pn.date_of_birth <1975

and s.type_section='residental' and

b.cadaster='tripoly'

GROUP BY cadaster;

The second query retrieves the name, last name,

phone number, building number, section number,

cadaster, street name, building name, and date of

birth from both Hive and PostgreSQL for persons

who need food and money, who are older than 51

years, who are married, tenants and unemployed, in

all cadasters. This is coded as follows:
SELECT pn.name, pn.last_name,

pn.phone_number, pn.date_of_birth,

s.building_nb, s.section_number,

b.cadaster, b.steet_name,

b.building_name

FROM person pn

JOIN properties p on (pn. ID =

p.person_id)

JOIN section s on (pn.section_id =

s.id)

JOIN building b on (s.building_nb =

b.building_id)

where
p.need_food = 'yes'

and p.need_money = 'yes'

and pn.date_of_birth <1970

and p.status_work = 'no'

and s.owner_tenant = 'tenant'

and pn.status_marriage = yes

GROUP BY pn.name, b.cadaster

ORDER BY pn.date_of_birth;

The simulation is done using three different sizes

of databases. Both PostgreSQL and integrated

HBase/Hive tables have the same size of data, which

helps us understand the performance of each one

after the execution of queries. As stated in [29], when

data is less than 1 GB, the performance of relational

databases is better, whereas when data gets bigger

than 1 GB, Hive performance becomes better at

almost all types of queries. Thus, three simulations

were conducted using approximately the total data

sizes shown below:

(1) Five tables of 0.25 GB total

(2) Five tables of 30 GB total

(3) Five tables of 400 GB total

The test returned six results, where we applied two

queries for each of the three database sizes.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 23 Volume 20, 2023

4.2.1 The First Simulation

In this section, we show the test of both queries on

the first set of databases which has 0.25 GB as the

total size.

Each query was executed 10 consecutive times,

and the delay was recorded when each query was

finished. Queries one and two for Hive and

PostgreSQL are displayed in Figs. 7 and 8,

respectively.

We notice from Fig. 7 that the needed time in

Hive is more than in PostgreSQL. The average time

needed is 1.691 s for PostgreSQL and 3.59 s for

Hive. The average delay difference between them is

1.899 s.

In query two, we notice from Fig. 8 that the average

time needed is 3.95 s and 4.5 s for PostgreSQL and

Hive, respectively. The average delay delay time

decreases to 0.55 seconds. This is due to the

existence of groups by and order by clauses in the

statement. Hive uses a MapReduce job, whereas in

PostgreSQL data is run by order from top to bottom.

Data with small sizes should not be analyzed using

Hive because Hive needs more time to assign Map

Reduce jobs before starting query execution. Because

of this, data that is not big enough or that is expected

to develop slowly should not be transferred into big

data platforms.

Fig. 7: Query one for Hive and PostgreSQL

Fig. 8: Query two for Hive and PostgreSQL

In the study, we excluded the first query statement

execution time because the delay was larger than the

rest of the queries. This is because Hive takes time to

establish the connection.

4.2.2 The Second Simulation

In this simulation, Hive and PostgreSQL have the

same data size, each measuring 30 GB

approximately. Both queries are executed in both

systems and the results are depicted in Figs. 9 and 10.

As shown in Figs. 9 and 10, when the data gets

larger, the delay difference between Hive and

PostgreSQL increases. The average time needed for

query one is 76.4 s and 137.1 s for Hive and

PostgreSQL, respectively. When data gets larger up

to 30 GB, the performance of Hive becomes better

than PostgreSQL with an average difference time of

60.7 s.

In query two, the time to finish the query is on

average 123.7 s and 237 s for Hive and PostgreSQL,

respectively. The increase in query execution time is

approximately 100%, but the average difference in

delay decreased to 113.3 s.

4.2.3 The Third Simulation

In this simulation, Hive and PostgreSQL have the

same data size, with each measuring approximately

400 GB. Both queries are executed in both systems

and the results are displayed in Figs. 11 and 12.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 24 Volume 20, 2023

Fig. 9: Query one for PostgreSQL and Hive

As depicted in Figs. 11 and 12, when the data has

a size of 400 GB, the delay difference between Hive

and PostgreSQL gets larger than in the previous two

experiments. The average time needed for query one

for Hive and PostgreSQL is 885 s and 2098.7 s,

respectively. When the data gets larger up to

approximately 400 GB, the performance of Hive

becomes better than that of PostgreSQL with an

average difference time of 1213.7 s.

Fig. 10: Query two for PostgreSQL and Hive

Fig. 11: Query one for Hive and PostgreSQL

Using query two, the time to finish the query has

an average of 1112.4 s and 2863.7 s for Hive and

PostgreSQL, respectively. The average difference

time between both systems increases to reach a value

of 1751.3 s.

We conclude that when data gets bigger, Hive

performance increases compared to PostgreSQL.

After testing the performance of Hive and

PostgreSQL, the AQL system deletes the data from

PostgreSQL which does not affect the existing

applications.

Fig. 12: Query two for Hive and PostgreSQL

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 25 Volume 20, 2023

5 Conclusion
In this work, we devise a new scheme for data

migration and querying for companies that are stuck

between old relational and big data systems. Data

migration allows these companies to gain better

performance in data analysis. Our novel AQL system

allows users to insert data in both PostgreSQL and

HBase as needed.

In addition, users can conduct Hive analysis

which has the best performance for medium and

large data sizes. Furthermore, newly inserted data in

PostgreSQL is included in the analysis because our

AQL system retrieves data from both databases.
We also noted that HBase is not made for

relational databases and its performance will degrade

with a higher number of tables.

 Finally, we tested the system and proved that

HBase can insert data with more efficiency than

PostgreSQL and Hive. We also showed that the

select query in Hive has a better performance than

PostgreSQL for big data size, whereas, for small data

size, PostgreSQL performance is better. We

recommend that data migration into the Big Data

system be only conducted if the data is huge enough

or it is expected to increase with time.

References:

[1] Y. T. Liao, J. Zhou, C. H. Lu, S. C. Chen, C.

H. Hsu, W. Chen, et al., “Data adapter for

querying and transformation between SQL and

NoSQL database,” Future Generation

Computer Systems, vol. 65, pp. 111-121, 2016.

[2] J. S. Daba, M. R. Bell, “Object discrimination

and orientation determination in speckled

images,” Optical Engineering, vol. 33, no. 4,

pp, 1287-1303, 1994.

[3] J. S. Daba, M. R. Bell, “Estimation of the

surface reflectivity of SAR images based on a

marked Poisson point process model,” IEEE

International Symposium on Signals, Systems,

and Electronics (ISSSE'95), San Francisco, CA,

pp. 183-186, 1995.

[4] J. S. Daba, M. R. Bell, “Segmentation of

speckled images using a likelihood random

field model,” Optical Engineering, vol. 47, no.

1, 2008.

[5] J. S. Daba, M. R. Bell, “Statistics of the

scattering cross section of a collection of

constant amplitude scatterers with random

phase,” ECE Technical Reports, Purdue

University, p. 194, 1994.

[6] J. Dubois, “Scattering statistics of doppler

faded acoustic signals using speckle noise

models,” IEEE International Conference on

Direct and Inverse Problems of

Electromagnetic and Acoustic Wave Theory

(DIPED), Lviv, Ukraine, pp. 185-189, 2003.

[7] J. S. Daba, M. R. Bell, A. Abdi, S. Nader-

Esfahani, “Comments on statistics of the

scattering cross section of a small number of

random scatterers," IEEE Transactions on

Antennas and Propagation, vol. 48, no. 5, pp.

844-845, 2000.

[8] J. P. Dubois, O. M. Abdul-Latif, “SVM-based

detection of SAR images in partially developed

speckle noise,” IEC, Prague, pp. 321-325,

2005.

[9] J. Dubois, “Poisson modulated stochastic

model for partially developed multi-look

speckle,” Proceedings of the American

Conference on Applied Mathematics, Harvard

University, Cambridge, MA, USA, pp. 209-

213, 2008.

[10] J.P. Dubois, O. M. Abdul-Latif, “Detection of

ultrasonic images in the presence of a random

number of scatterers: A statistical learning

approach,” IEC, Prague, pp. 326-329, 2005.

[11] J. Dubois, “Segmentation of speckled

ultrasound images based on a statistical

model,” EURASIP Proceedings of the 16th

International Biosignal Conference,

Czech Republic, vol. 16, 2002.

[12] J. Dubois, O. M. Abdul-Latif, “Novel diversity

combining in OFDM-based MIMO systems,”

Proceedings of the American Conference on

Applied Mathematics, Harvard University,

Cambridge, MA, USA, pp. 189-194, 2008.

[13] J. Dubois, O. Abdul-Latif, “Improved receiver

diversity processing over SIMO fading

channels,” Proceedings of the IEEE

International Conference on Signal Processing

and Communications, 2007.

[14] O. M. Abdul-Latif, J. Dubois, “Performance of

UWB system in a partially developed fading

channel with CCI,” Proceedings of the 5th

IEEE GCC Communication and Signal

Processing Conference, Kuwait, pp.1-5, 2009.

[15] J. Dubois, “Traffic estimation in wireless

networks using filtered doubly stochastic point

processes,” Proceedings of IEEE International

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 26 Volume 20, 2023

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&cstart=20&pagesize=80&citation_for_view=cdDFV4AAAAAJ:j3f4tGmQtD8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&cstart=20&pagesize=80&citation_for_view=cdDFV4AAAAAJ:j3f4tGmQtD8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&cstart=20&pagesize=80&citation_for_view=cdDFV4AAAAAJ:j3f4tGmQtD8C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:UeHWp8X0CEIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:LPZeul_q3PIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:LPZeul_q3PIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:LPZeul_q3PIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eJXPG6dFmWUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eJXPG6dFmWUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eJXPG6dFmWUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eJXPG6dFmWUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:hC7cP41nSMkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:hC7cP41nSMkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:hC7cP41nSMkC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:VOx2b1Wkg3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:VOx2b1Wkg3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:VOx2b1Wkg3QC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eflP2zaiRacC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eflP2zaiRacC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:eflP2zaiRacC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:vV6vV6tmYwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:vV6vV6tmYwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:vV6vV6tmYwMC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:BrmTIyaxlBUC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:e5wmG9Sq2KIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:e5wmG9Sq2KIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:e5wmG9Sq2KIC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:lSLTfruPkqcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:lSLTfruPkqcC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:g5m5HwL7SMYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:g5m5HwL7SMYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:g5m5HwL7SMYC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:NaGl4SEjCO4C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:NaGl4SEjCO4C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:NaGl4SEjCO4C
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:7PzlFSSx8tAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:7PzlFSSx8tAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:7PzlFSSx8tAC

Conference on Electrical, Electronic, and

Computer Engineering, Cairo, Egypt, pp. 116-

119, 2004.

[16] J. Dubois, J. S. Daba, M. Nader, C. El Ferkh,

“GSM position tracking using a Kalman filter,”

International Journal of Electrical, Computer,

and Communication Engineering, vol. 6, no. 8,

pp. 867-876, 2012.

[17] T. Dokeroglu, M. S. Cınar, S. A. Sert, A.

Cosar, “Improving Hadoop hive query

response times through efficient virtual

resource allocation,” Flexible Query Answering

Systems, Springer, Cham, pp. 215-225, 2015.

[18] S. Vithal, “Sqoop architecture – mappers with

no reducers,” Feb. 2018.

 https://dwgeek.com/sqoop-architecture.html

[19] S. Zulfiqar, A. Faridoon, M. Imran, “A novel

architecture to integrate multi-source data into

the distributed environment using big data

infrastructure,” 15th International Conference

on Emerging Technologies (ICET), IEEE

Press, pp. 1-6, Dec 2019.

[20] M. V. Sokolova, F. J. Gómez, L. N.

Borisoglebskaya, “Migration from an SQL to a

hybrid SQL/NoSQL data model,” Journal of

Management Analytics, vol. 7, no.1, pp.1-11,

2020.

[21] K. Mershad, “MQL: Mixed Query Language

for Querying MySQL and HBase databases,”

International Conference on Innovative Trends

in Computer Engineering (ITCE), IEEE Press,

pp. 124-129, Feb. 2019.

[22] B. Liu, Y. Zhu, C. Wang, Y. Chen, T. Huang,

W. Shi, et al, “A versatile event-driven data

model in HBase database for multi-source data

of power grid,” IEEE International Conference

on Smart Cloud (SmartCloud), IEEE Press, pp.

208-213, Nov. 2016.

[23] M. Stonebraker, “Stonebraker on NoSQL and

enterprises,” Communications of the ACM, vol.

54, no. 8, pp. 10-11, 2011.

[24] S. Lynden, Y. Tanimura, I. Kojima, A.

Matono, “Dynamic data redistribution for

MapReduce joins,” IEEE Third International

Conference on Cloud Computing Technology

and Science, IEEE Press, pp. 717-723, Nov.

2011.

[25] Apache HBase Team, Apache HBase™

Reference Guide.

 HBase.apache.org/book.html#number.of.cfs

[26] C. Cao, W. Wang, Y. Zhang, X. Ma,

“Leveraging column family to improve

multidimensional query performance in

HBase,” IEEE 10th International Conference

on Cloud Computing (CLOUD), IEEE Press,

pp. 106-113, June 2017.

[27] J. C. Hsu, C. H. Hsu, C. S. Chen, Y. C. Chung,

“Correlation aware technique for SQL to

NoSQL transformation,” 7th International

Conference on Ubi-Media Computing and

Workshops, IEEE Press, pp. 43-46, July 2014.

[28] R. Ouanouki, A. April, A. Abran, A. Gomez, J.

M. Desharnais, “Toward building RDB to

HBase conversion rules,” Journal of Big

Data, vol. 4, no. 1, pp. 1-21, 2017.

[29] N. Ahmed, S. Ahamed, J. L. Rafiq, S. Rahim,

“Data processing in Hive vs. SQL server: A

comparative analysis in the query

performance,” IEEE 3rd International

Conference on Engineering Technologies and

Social Sciences (ICETSS), IEEE Press, pp. 1-5,

Aug. 2017.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2023.20.3 Ouday Saada, Jihad Daba

E-ISSN: 2224-3402 27 Volume 20, 2023

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed in the present

research, at all stages from the formulation of the

problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=cdDFV4AAAAAJ&citation_for_view=cdDFV4AAAAAJ:5nxA0vEk-isC
https://dwgeek.com/sqoop-architecture.html
http://hbase.apache.org/book.html#number.of.cfs
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

