
References:
[1] Russell Brandom. (2019). The Verge Press
article: There are now 2.5 billion active
Android devices.
https://www.theverge.com/2019/5/7/1852829
7/google-io-2019-androiddevices-play-store-
total-number-statistic-keynote
[2] Kotzias Platon, Caballero Juan, and Bilge,
Leyla. (2020). How Did That Get In My
Phone? Unwanted App Distribution on
Android Devices.
[3] McAfee Mobile Threat Report (2019).
\\https://www.mcafee.com/enterprise/enus/ass
ets/reports/rp-mobile-threat-report-2019.pdf
[4] Android (2022). Overview of Android
Permissions Architecture and user approval
process.https://developer.android.com/guide/t
opics/permissions/overview.
[5] A. Reina, A. Fattori, and L. Cavallaro. A
system call-centric analysis and stimulation
technique to automatically reconstruct android
malware behaviors. EuroSec, April, 2013.
[6] D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, and K. Rieck. Drebin: Effective and
explainable detection of android malware in
your pocket. Proceedings of the Network and
Distributed System Security Symposium
(NDSS), 2014.
[7] Ankita Kapratwar , “Static and Dynamic
Analysis for Android Malware Detection”,
San Jose State University, May 2016
[8] V. Rastogi, Y. Chen, and X. Jiang. Catch me
if you can: Evaluating android anti-malware
against transformation attacks. IEEE
Transactions on Information Forensics and
Security. vol. 9, no. 1, pp. 99–108, Jan 2014.
[9] Mahima Choudhary, Brij Kishore,
HAAMD:Hybrid Analysis for Android
Malware Detection. International Conference
on Computer Communication and Informatics
(ICCCI -2018). 04 – 06, 2018, Coimbatore,
INDIA.
[10] Jagsir Singh, Jaswinder Singh,(2020). A
survey on machine learning-based malware
detection in executable files, Journal of
Systems Architecture. 101861, ISSN 1383-
7621.
https://doi.org/10.1016/j.sysarc.2020.101861.
[11] T. Cho, H. Kim and J. H. Yi. (2017). Security
Assessment of Code Obfuscation Based on
Dynamic Monitoring in Android Things.
IEEE Access. vol. 5, pp. 6361-6371.
doi: 10.1109/ACCESS.2017.2693388.
[12] Yadegari B., Johannesmeyer, B., Whitely B.
and S. Debray. (2015). A Generic Approach
to Automatic Deobfuscation of Executable
Code. IEEE Symposium on Security and
Privacy, San Jose, CA, pp. 674-691.
doi: 10.1109/SP.2015.47.
[13] Z. Kan, H. Wang, L. Wu, Y. Guo and G. Xu.
(2019). Deobfuscating Android Native Binary
Code. IEEE/ACM 41st International
Conference on Software Engineering:
Companion Proceedings (ICSE-Companion),
Montreal, QC, Canada, pp. 322-323,
doi:10.1109/ICSE-Companion.2019.00135.
[14] Mercaldo Francesco, Di Sorbo Andrea,
Visaggio Corrado Aaron, Cimitile, Aniello
and Martinelli Fabio. (2018). An exploratory
study on the evolution of Android malware
quality. Journal of Software: Evolution and
Process. 30. e1978.10.1002/smr.1978.
[15] Symantec.(2019) Symantec Internet Security
Threat Report.
https://docs.broadcom.com/doc/istr-24-2019-
en
[16] D. Kim, D. Mirsky, A. Majlesi-Kupaei and R.
Barua. A Hybrid Static Tool to Increase the
Usability and Scalability of Dynamic
Detection of Malware. 13th International
Conference on Malicious and Unwanted
Software (MALWARE), Nantucket, MA,
USA, 2018, pp. 115-123.
doi: 10.1109/MALWARE.2018.8659373.
[17] Nguyen Viet Duc and Pham Thanh Giang.
(2018). NADM: Neural Network for Android
Detection Malware. In The Ninth
International Symposium on Information and
Communication Technology (SoICT 2018).
Danang City, Viet Nam. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/
3287921.3287977
[18] T. Bell.(1999). The concept of dynamic
analysis. ACM SIGSOFT Softw. Eng. Notes.
vol. 24, no. 6, pp. 216–234, 1999, doi:
10.1145/318774.318944.
[19] Ori Or-Meir, Aviad Cohen, Yuval Elovici,
Lior Rokach, Nir Nissim. (2021). Pay
Attention: Improving Classification of PE
Malware Using Attention Mechanisms Based
on System Call Analysis, IEEE International
Joint Conference on Neural Networks
(IJCNN).
[20] Chun-Yi Wang, Chi-Yu You, Fu-Hau Hsu,
Chia-Hao Lee, Che-Hao Liu, YungYu
Zhuang.(2021). SMS Observer: A dynamic
mechanism to analyze the behavior of SMS-
based malware, Journal of Parallel and
Distributed Computing. 156, 25–37.
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27
Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam