[14] E. M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov, Ideals over a
non-commutative ring and their application in cryptology, Workshop on
the Theory and Application of Cryptographic Techniques, pp. 482-489,
Springer, Berlin, Heidelberg, 1991.
[15] P. Gaborit, G. Murat, O. Ruatta, and G. Z´
emor, Low rank parity
check codes and their application to cryptography, The Proceedings of
Workshop on Coding and Cryptography (WCC), pp. 168-180, Borgen,
Norway, 2013.
[16] S. W. Golomb, Shift Register Sequences, Laguna Hills, CA: Aegean
Park, 1982.
[17] G. Gong, L. Harn, Public-Key Cryptosystems Based on Cubic Finite
Field Extensions, IEEE Transactions on Information Theory, vol. 45,
no. 7, pp. 2601-2605, 1999.
[18] R. Hill, A First Course in Coding Theory, Oxford University, Oxford,
1986.
[19] J. Hoffstein, J. Pipher, and J. Silverman, NTRU: A ring-based public-key
cryptosystem, Algorithmic number theory, pp. 267-288, 1998.
[20] K. A. S. Immink, Spectrum shaping with DC2- constrained channel
codes, Philips J. Res., vol. 40, pp. 40-53, 1985.
[21] H. Janwa and O. Moreno, McEliece public key cryptosystems using
algebraic-geometric codes, Designs, Codes and Cryptography, 8(3), pp.
293-307, 1996.
[22] G. Khachatrian, M. Kyureghyan, Pemutation polynomials and a new
public-key encryption, Discrete Applied Mathematics, vol. 216, pp. 622-
626, 2017.
[23] J. L. Kim, Y. -S. Kim, L. Galvez, M. J. Kim, N.Lee, McNie: A new
code-based public-key cryptosystem, arXiv: 1812.05008v2 [cs.CR], 27
Jan. 2019.
[24] D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory,
IT-32, pp. 51-53, January 1986.
[25] E. Krouk, A. Ovchinnikov, Code Based Public-Key Cryptosystem Based
on Bursts-Correcting Codes, AICT 2017: The Thirteenth Advanced
International Conference on Telecommunications, IARIA, 2017.
[26] G. Landais and J. P. Tillich, An efficient attack of a McEliece cryptosys-
tem variant based on convolutional codes, In International Workshop on
Post-Quantum Cryptography, pp. 102-117, Springer, Berlin, Heidelberg,
2013.
[27] R. Lidl, H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and
Its Applications, University of London: London, UK, vol. 20, 1983.
[28] R. Lidl, G. L. Mullen, and G. Turnwald, Dickson Polynomials, Pitman
Monographs and Surveys in Pure and Applied Mathematics 65, New
York: Willey, 1993.
[29] C. L¨
ondhal and T. Johansson, A New Version of McEliece Based on
Convolutional Codes, In ICICS, vol. 7618, pp. 461-470, 2012.
[30] R. J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding
Theory, DSN progress report 42(44), pp. 114-116, 1978.
[31] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography, New York: CRC Press, 1997.
[32] L. Minder and A. Shokrollahi, Cryptanalysis of the Sidelnikov cryp-
tosystem, Advances in Cryptology-EUROCRYPT 2007, pp. 347-360,
2007.
[33] R. Misoczki, J. P. Tillich, N. Sendrier, and P. Barreto, MDPC-McEliece:
New McEliece variants from moderate density parity-check codes, IEEE
International Symposium on Information Theory-ISIT 2013, pp. 2069-
2073, 2013.
[34] C. Monico, J. Rosenthal, and A. Shokrollahi, Using low density parity
check codes in the McEliece cryptosystem, In Information Theory,
Proceedings, IEEE International Symposium, p. 215, 2000.
[35] NIST, A proposed federal information processing standard for digital
signature standard (DSS), Federal Register, vol. 56, pp. 42980-42982,
1991.
[36] H. Niedderreiter, Knapsack-type cryptosystems and algebraic coding
theory, Problems of Control and Information Theory, vol. 15, no. 1934,
1986.
[37] W. N¨
obauer, Cryptanalysis of a public-key cryptosystem based on
Dickson polynomials, Math. Slovaca, vol.38, pp. 309-323, 1989.
[38] R. Overbeck, A new structural attack for GPT and variants, Mycrypt
2005: Progress in Cryptology, LNCS, vol. 3715, pp. 50-63, 2005.
[39] R. L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital
signatures and public-key cryptosystems, Communications of the ACM,
https://doi.org/10.1145/359340-359342, February 1978.
[40] O. Regev, On lattices, learning with errors, random linear codes and
cryptography, Journal of the ACM, vol. 56, no.6, Art. 34, 40, 2009.
[41] N. Sendrier, On the concatenated structure of a linear code, Applicable
Algebra in Engineering, Communication and Computing, vol. 9, no. 3,
pp. 221-242, 1998.
[42] P. W. Shor, Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer, SIAM journal on computing,
vol. 26, no. 5, pp. 1484-1509, 1997.
[43] V. M. Sidelnikov, A public-key cryptosystem based on binary Reed-
Muller codes, Discrete Mathematics and Applications, vol. 4, no. 3, pp.
191-208, 1994.
[44] V. M. Sidelnikov and S. O. Shestakov, On insecurity of cryptosystems
based on generalized Reed-Solomon codes, Discrete Mathematics and
Applications, vol. 2, no. 4, pp. 439-444, 1992.
[45] V. Skachek, T. Etzion, and R. M. Roth, Efficient encoding algorithm for
third-order spectral-null codes, IEEE Trans. Inform. Theory, vol. 44, pp.
846-851, March 1998.
[46] P. Smith, LUC public-key encryption,Dr. Dobb’s J., pp. 44-49, January
1993.
[47] P. Smith and C. Skinner, A public-key cryptosystem and a digital
signature system based on the Lucas function analogue to discrete
logartihms, in Proc. Asiacrypt’94, pp. 298-306, November 1994.
[48] D. R. Stinson, Cryptography: Theory and Practice, Boca Raton, FL:
CRC Press, 1995, The CRC Series on Discrete Mathematics and Its
Applications.
[49] C. Wieschebrink, Cryptanalysis of the Niederreiter public key scheme
based on GRS subcodes, In International Workshop on Post-Quantum
Cryptography, pp. 61-72, Springer, Berlin, Heidelberg, May 2010.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.10