
Android X-Ray - A System for Malware Detection in Android Apps using

Dynamic Analysis

DAKSHINAMOORTHY KARTHIKEYAN, ARUN SIVAKUMAR,
CHAMUNDESWARI ARUMUGAM

Department of Computer Science and Engineering,
Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu,

INDIA

Abstract: - In recent years, mobile malware takes anywhere between several hours to several days to screen an
app for malicious activity. More than 6000 apps are added to the Google Play Store everyday on average.
Security analysts face an uphill battle against malware developers as the complexity of malware and code
obfuscation techniques are constantly increasing. Currently, most research focuses on the development and
application of machine learning techniques for malware detection. However, their success has been limited due
to a lack of depth in the data sets available for training models. This paper uses a new method of Dynamic
Analysis for Android apps to extract large amounts of information on the behavior of any app which can then
be used for training models or to enable security analysts to take an informed decision quickly.

Key-Words: - Malware, dynamic analysis, security, android

 Received: September 6, 2022. Revised: October 30, 2022. Accepted: November 6, 2022. Published: November 7, 2022.

1 Introduction
In this modern age of Software and fast moving

technology, hackers are becoming more and more

innovative in hiding the malicious activity of their

software from users as well as traditional tools.

Tools like antivirus software's are based on older

techniques such as Hash comparison,

crowdsourcing, system resource usage monitoring

or network flow analysis. They may also make use

of code analysis algorithms including system call

identification, runtime library usage, or embedded

string search. So the modern problem requires a

modern solution.
Over 2.5 billion Android mobile active devices

exist as per statistics record in 2019, [1]. Recent

research, [2], has pointed out that close to 80% of

Android malwares are hidden inside seemingly

benign apps distributed through public app stores

like the google play store. A report from McAfee

Labs shows that 7.4 million components of mobile

malware were identified in 2018, with an increase of

82% from last quarter of 2017, [3]. Today, the

existing permissions-based app cautions the

individuals about the consent required by an app

before installing it, [4]. Therefore, the responsibility

falls to the owners of app stores to ensure that such

apps do not appear on their stores. This job is

typically carried out by highly trained security

analysts and the majority time is spent on analyzing

the app to get information about its behaviors, like

which files it accessed or network activity. By

utilizing the dynamic analysis method in this work,

this time can be cut down from several hours to a

few minutes.

Many researchers have provided Android

malware security solutions using dynamic analysis

method, [5]. Dynamic analysis method examines the

behavior of malware at runtime, [6], and makes it

challenge-able to adversary, [7]. This method can

control malware when executed using a sandboxed

environment or emulator, [8]. It discovers malware

when the application is in execution state and

acquires the data pertaining to the application's

behavior by setting up an environment using

sandbox, virtual machine and other forms, [9].

The main objective of this proposed work is to

provide a tool where the user can upload any

Android app and select a list of malware's to scan

for, or suspicious app behaviors to check for. The

app will be installed and executed on a virtual

machine running the modified version of Android

Operating System(OS). The user will be able to

interact with the virtual machine, while the

background activity of the app is monitored. If any

of the security rules are triggered or the app is seen

accessing unauthorized resources, the tool will flag

the app as a malware and inform the user.

The major contributions in this paper are as

follows.

 Users can upload an android app and scan a list

of existing malware's for detecting suspicious

behaviors.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 264 Volume 19, 2022

 The executable file, android app is analyzed to

monitor the behavior and actions of the app to

detect the existing malware.

 Interact and monitor the background activity of

the app. Any violation of the system will flag

the app as a malware.

 Further on detection, an alert is notified to the

user about the existing malware.

The organization of the work proceeds as follows.
Section 2 introduces the literature survey, which
contains the new technology, research, and
methodology used in the existing work associated
with this work and Section 3 discusses the system
design, system components, resources and
components. Section 4 discusses the experimental
setup and workflow. Section 5 summaries the results
and discussion on the analysis of the malware.
Finally, with future work the paper is concluded.

2 Literature Survey
Singh et. al., [10], described the taxonomy of
features that may be used by a machine learning
approach to dynamic analysis of malware: Memory
and registers usage, instruction traces, network
traffic and API call traces. T. Cho et. al., [11]
performed a security based assessment with various
code obfuscation techniques. While there has been
some research into the field, [12], [13], it is made
difficult by the fact that each program uses a
different variant of the obfuscation scheme with
varying levels of code 3 complexity. Mercaldo et.
al., [14], conducted an analysis of a dataset
containing 20,000 Android applications, both
malware and benign on the basis of the APIs used.

Even small changes in the code like hiding the
API call behind an additional layer of obfuscation is
sufficient to fool an algorithm-based anti-malware
solution, the proof of which is seen in semantics of
internet security threat report, [15], showing that
246 million variants of existing malware's were seen
in 2018 alone. The hybrid static approach
introduced by Kim et. al.,[16], would go a long way
in improving the scalability of the project.
Regarding the previous research into automating the
malware detection process, Viet Duc et. al.,[17],
introduced a neural network to identify malwares
that made use of 7 types of features.

All research to date using Application
Programming Interface(API) calls as a feature in
classification appears to use only the names of the
methods or class in which they are defined. This
approach may produce a good result in the research
context but it may not be practically applicable to

the thousands of apps that need to be scanned every
day. The reason for this is that there are millions of
functions within Android OS used by benign and
malicious apps. Malicious behaviour does not come
from the mere calling of the function, but it arises
from how, or for what purpose the method is being
called. Such data is typically impossible to retrieve
in any other OS, but thanks to the open source
nature of Android, it is possible to make
modifications such that whenever an API is called,
it will print out the values of the parameters to a
serial console using Android’s built-in logging
system, at which point it can be extracted to create
the report or train a model.

3 System Design
The system design, system components used and
connection between them for detection is discussed
here. Dynamic malware analysis is the process to
detect malware by setting up an environment,
identifying the malware behaviour patterns, [18],
and analyzing the sequence of system calls invoked
by malware, [19]. Chun et al., [20], designed an
application layer software to integrate existing
dynamic analysis frameworks.

Here, in this proposed system, a dynamic
malware analysis approach is applied to detect
malware and it is shown in Figure. 1. The user can
upload any number of Android Package Kit(APK)
files for testing in the frontend user interface. An
Android virtual machine with versions of Android
10.0 and Linux Kernel 4.4 is used for execution and
monitoring of the app. Many logs are collected
during the installation process of the app. To
identify the malware activity a Virtual Private
Network(VPN) server is used as it takes a copy of
network activity from the virtual machine and
transfers the data to the log collection module for
analysis. The analysis module classifies the
collected data and reports to users in the frontend
user interface.

Fig. 1: Proposed system

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 265 Volume 19, 2022

Resources used in this work for detection of
malware are as follows.

 Files opened/read/ deleted/modified
 Triggered a phone call / SMS
 Read call logs/sms
 Downloaded and installed another app
 Network access - list of URLs and files

downloaded
 Hardware sensors accessed
 Notification access
 Permissions used.

The components used here for this work are
represented in Figure 1. The brief description of the
components is discussed below.

Frontend User Interface comprises the main
homepage, where the user can upload any number
of APK files for testing. Logging statements and
condition checking blocks will be built into the
implementations of all major APIs in Android and
the Java Virtual Machine(JVM), as well as the linux
kernel. The capability in the 'Native code and Java
API Logs' component was built by patching various
APIs in the JVM. The patches made to JVM are
listed below:

 Redirected standard output and standard
error streams to a separate stream monitored
by the Collection module

 Patched the APIs in java.io package to
trigger a message in X-Ray when any file is
accessed.

Native code and Java API Logs provide access to all
sensitive device information, such as the file system,
radios, device sensors, communication with other
apps, etc. To identify apps during execution
activity, the backend will provide a VPN server as
the only possible method of outside network access.

Listing 1.1:Input code

 class helloWorld {

 public static void main(String[] args) {

 System.out.println("Hello");

 }

 public void testing(int x) {}

 private int privFun() {

 return -1;

 }

}

The backend VPN server forwards a copy of all

network activity through network connection logs,
from the virtual machine and stores it so that the

data can be used for analysis. The log collection
module collects and combines log data obtained
from various sources like LogCat, liblog, the VPN
Server and the kernel dmesg output into a single
datastore for analysis and report generation. The
analysis module is responsible for segregating
records into categories like device sensors, file
system access, inter-process communication,
network access, etc. and classifying the records as
malicious or safe activity. From the consolidated
datastore of all log records, a comment is presented
to the user.

Listing 1.2 Output code

import android.util.Log;

class helloWorld {

 public static void main(String[] args) {

 Log.xray("helloWorld", "main" + "|args="

+ args);

 System.out.println("Hello");

 }

 public void testing(int x) {

 Log.xray("helloWorld", "testing" + "|x=" +

x);

 }

 private int privFun() {

 return -1;

 }

}

4 Detection and Performance

Attainment
The procedure for experimental setup to launch the
sandboxed Android Virtual Machine is divided into
five stages as follows.
 Download Android OS source code
 Set the build target to x86 Android Cuttlefish

VM
 Add X-Ray logging code to OS
 Build the full OS and generate artifacts
 Launch the Cuttlefish VM with Virtual

Network Computing(VNC) server.

After the download of the X-Ray modified Android
OS source code, [21], this research work uses
Android Cuttlefish Virtual Machine, [22], as the
build target, as this enables multi-tenancy on the
server and allows multiple VMs to run efficiently on
the same server in parallel. These Android
framework classes files are passed to the JavaParser
module for generating Abstract Syntax Tree (AST).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 266 Volume 19, 2022

Fig. 2: Flowchart for addition of log statements in
Java files

To build code generating software, each node of
AST is traversed. If the node of AST contains a
Public Method the MethodModifier function will
prepend the Android X-Ray function as the first
child of that node. By adding X-Ray function as the
first child of any function, it can be ensured that the
function will never be executed without also
triggering the execution of the X-Ray function. The
Android X-Ray function is a custom function that
integrates with Android's logging system and will
send the method name, parameters passed,
parameter values to the back end via the log
collection module.

The steps followed for modification of Android
OS code is depicted as a flowchart in Figure. 2 and
the sample java program and modification is listed
in Listing 1.1 and Listing 1.2 respectively. Android
uses a combination of GNUMake and the Google
Soong, [23], to build a system for compiling the
source code and generating system images to run on
the virtual machine. The build system produces the
following artifacts after compiling the code which
are required for launching the Cuttlefish virtual
machine. The Cuttlefish engine is launched with
VNC server enabled that uses Kernel-based Virtual
Machine(KVM), [24], emulation and launches as
many instances as required by the system. It also

sets up TAP network adapters, [25], that provide an
internet connection to the machine by tunnelling the
network traffic of each virtual machine
independently through a separate adapter.

The APK file of the app to be tested is uploaded
through the front-end web-page. App installation
module uses Android Asset Packaging Tool
(AAPT), [26], tool to extract app metadata including
the package name and the list of activities. Each
application is executed using the Monkey tool that
generates pseudo-random streams of user events for
about one minute generating 2000 gestures with a
delay of 500ms between each event and the logs are
collected. The log collection module spawns a
subprocess to monitor the output of adb logCat. The
module iterates through the log entries and removes
any garbage logs which are not related to the X-Ray
analysis system. It then uses the syntax of the
”Log.xray()” command to identify the API that
triggered execution of each log, and applies a
command-specific regular expression to those log
entries corresponding to functions that have
parameters with important values.

The log entries are then grouped by the source.
The total number of occurrences of each unique
class or function call is calculated and added as an
attribute of the group. A benign app will typically
have fewer frequency of API calls or permission
requests than a malicious one. Most of the features
required for malware classification algorithms are
derived from the X-Ray output in a straightforward
way. The vanilla Android OS comes with 4 million
unique files loaded on the first boot, [27].
Therefore, from each log entry for access to a file,
the features of root partition, file extension and file
access in read or write mode were created. It is now
possible to perform Categorical Encoding, [28], on
the newly created features and the model has
successfully represented the most important data
from the file system access logs.

For the network activity logs, the X-Ray system
monitors the console for any Domain Name Server
(DNS) queries and saves the query hostname. It
queries the IPVoid APIs to get up-to-date historical
information on malicious activity from that address,
along with details about how the address is being
used. By summarizing the collected logs and
performing feature extraction on the submitted
APKs, it is possible to collect the data for each
submitted app and prepare a dataset for training.
Further, a random classifier, [29], then can be
applied to classify a new app as malicious or benign
based on the historical data.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 267 Volume 19, 2022

Fig. 3: Raw console output of logging functions

5 Results and Discussion
The dataset is collected from 200 benign apps
downloaded from Google Play Store and 150
malicious apps from the AndroZoo repository of
malicious android applications, [30]. The AndroZoo
dataset is a static dataset and is easily obtainable by
anyone who wants to reproduce this experiment.
Each app is run through all stages of the X-Ray
system from app installation to log summarization,
and the final data is saved into the dataset. In order
to collect the log information at various points,
certain changes need to be made to the Android OS
so that the relevant data can be extracted during
execution of the test app.

Fig. 4: Summary of output logs

The system takes advantage of Android's built in
logging subsystem, [31], which can write any string
data to standard output. The standard output is
monitored by the log collection submodule. This
module is responsible for identifying the source of
each log entry, parsing the relevant data and sending
the information to the analysis submodule for
further processing. For making these changes to the
source code, the system takes advantage of the open
source library JavaParser, [32], which enables the
system to programmatically parse, modify and save
a java source code file.

Hence, the procedure for collecting log data is
fairly simplified - a virtual machine running the
modified OS is launched, and the test app is
launched inside it while the standard output is

monitored using Android's available LogCat tool,
[33]. However, a log entry is created only when a
function is actually executed, i.e. presence of a
function call in an app does not guarantee that a
corresponding log entry will be found as the app
may execute a code path that doesn't contain the
function call. To minimize this risk, the system
makes use of another tool provided by Android
known as Monkey, [34], a pseudo-random event
generator that can randomly send touch and
keyboard events to the app, increasing the coverage
of the system. By implementing the various modules
of the system as described in Figure. 1, it is possible
to automate the collection and installation of apps
submitted for testing, launch them in an Android
VM and collect the output logs which are then
summarized and displayed to the user as an alert
message.

Sample outputs of the system on providing the
wikipedia android app, [35], for analysis are
described in this section. Firstly, a subset of the raw
text data printed to standard output by the logging
functions added to the OS. Figure 3 displays the raw
console output of logging functions. This raw text
is the input to the log collection module. Since each
log entry follows a similar structure - the keyword
"xray" followed by the class name and function
name, followed by the parameter values separated
with a '|' character, this module can easily identify
the source of each message, extract the relevant data
from the string and store it in a data structure more
suited for analysis, namely JSON.

To further simplify the downstream analysis
work, the JSON entries may be segregated into
different categories at this stage, such as permission
requests, DNS lookups, file access, etc. A sample of
the JSON output derived at this stage is shown in
Listing 1.3. A sample network activity summary is
listed in Figure. 4. The extraction of features from
Network Activity and File System Logs is
represented in Figure. 5.

Dimensionality reduction and PCA
transformation was applied on the features extracted
from the X-Ray log dataset before training the
model. PCA transformed X-Ray logs dataset is
represented in Figure 6. Random forest
classification model was used to classify the app
malicious or benign. The F1 score obtained here in
this process is 94.2%. Some challenges faced in this
work are as follows.

 Parsing the very detailed logs output by
Native code and Java API Logs module.

 Removing duplicate log entries (Android
APIs may internally call other APIs, and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 268 Volume 19, 2022

each call will output a unique X-Ray log
message).

Listing 1.3 Log Collection output
{

 "opened_files": {

 "/data": 6,

 "/data/app": 1,

 "/data/app/vmdl1152042043.tmp": 5,

 "/data/system/install_sessions/app_icon.1152042043.png":

 4, "/data/app/vmdl1152042043.tmp/base.apk": 9

 },

 "checked_permissions":{

"android.permission.ACCESS_NETWORK_STATE|app=org.wi

kipedia.beta": 10,

"android.permission.NETWORK_SETTINGS|app=org.wikipedi

a.beta": 2,

"android.permission.MAINLINE_NETWORK_STACK|app=org

.wikipedia.beta": 2,

"android.permission.INTERACT_ACROSS_USERS|app=org.wi

kipedia.beta": 1,

"android.permission.INTERACT_ACROSS_USERS_FULL|app

=org.wikipedia.beta": 1,

"android.permission.INTERNAL_SYSTEM_WINDOW|app=org

.wikipedia.beta": 1

 },

 "dns_lookups": [

 "meta.wikimedia.org",

 "en.wikipedia.org",

 "in.appcenter.ms",

 "upload.wikimedia.org"

]

}

Some of the identified shortcomings of the work are
listed below.
1. Log Collection: This work provides a method

of logging the execution of any Java API,
however a large part of the OS including the
linux kernel, drivers and low level APIs are
written in C/C++. An approach similar to the
proposed one using JavaParser may be
employed on these classes to improve the scope
of Log Collection.

2. Noise Reduction: Since a log event is triggered
every time a function executes regardless of
how the call was triggered, the generated logs
tend to contain a high amount of noise. A
mechanism to either avoid logging of calls
known to be of normal behaviour, or to filter
them out in a post-processing stage would
improve the quality of data collected.

3. AI Automation: With the aggregation of log
data for a large number of apps, an ML model
may be trained to classify apps as malicious or
benign using the dataset. It would then be
possible to reduce the backlog of apps to be
manually tested by filtering out the obviously
malignant apps automatically.

Fig. 5: Extracted features from Network Activity
and File System Logs

Few challenges left for future work are as follows.

 Distinguishing between logs output by an
app

 Logs produced during normal system
operation (Some progress was made using a
Process ID (PID) filter, but there is still
more work to be done).

Fig. 6: PCA Transformed X-Ray logs dataset

6 Conclusion and Future Work
This work attempted to bridge the gap between the
innovative tools available to hackers in preventing
the detection of malware in Android apps and the
corresponding tools available to the security analyst
charged with defending the Android ecosystem from
them. Security analysts needed to manually
decompile and inspect the bytecode of every
submitted app to extract the information of used
APIs, accessed network and local system resources,
requested permissions, etc. Whereas the malware
developer can use any simple method such as
obfuscation and redeploy the app without making
any changes to the code. By using dynamic analysis
combined with the X-Ray logging system and ADB
monkey to speed up manual user interaction with
the apps, the proposed system has been efficient in
cutting down the time required for dataset
preparation from several hours to a few minutes.
While the system can significantly improve the
efficiency and accuracy of malware detection in
Android, there is a high scope for future works to
build upon it.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 269 Volume 19, 2022

References:

[1] Russell Brandom. (2019). The Verge Press
article: There are now 2.5 billion active
Android devices.

 https://www.theverge.com/2019/5/7/1852829
7/google-io-2019-androiddevices-play-store-
total-number-statistic-keynote

[2] Kotzias Platon, Caballero Juan, and Bilge,
Leyla. (2020). How Did That Get In My
Phone? Unwanted App Distribution on
Android Devices.

[3] McAfee Mobile Threat Report (2019).
 \\https://www.mcafee.com/enterprise/enus/ass

ets/reports/rp-mobile-threat-report-2019.pdf
[4] Android (2022). Overview of Android

Permissions Architecture and user approval
process.https://developer.android.com/guide/t
opics/permissions/overview.

[5] A. Reina, A. Fattori, and L. Cavallaro. A
system call-centric analysis and stimulation
technique to automatically reconstruct android
malware behaviors. EuroSec, April, 2013.

[6] D. Arp, M. Spreitzenbarth, M. Hubner, H.
Gascon, and K. Rieck. Drebin: Effective and
explainable detection of android malware in
your pocket. Proceedings of the Network and

Distributed System Security Symposium
(NDSS), 2014.

[7] Ankita Kapratwar , “Static and Dynamic
Analysis for Android Malware Detection”,
San Jose State University, May 2016

[8] V. Rastogi, Y. Chen, and X. Jiang. Catch me
if you can: Evaluating android anti-malware
against transformation attacks. IEEE

Transactions on Information Forensics and

Security. vol. 9, no. 1, pp. 99–108, Jan 2014.
[9] Mahima Choudhary, Brij Kishore,

HAAMD:Hybrid Analysis for Android
Malware Detection. International Conference

on Computer Communication and Informatics
(ICCCI -2018). 04 – 06, 2018, Coimbatore,
INDIA.

[10] Jagsir Singh, Jaswinder Singh,(2020). A
survey on machine learning-based malware
detection in executable files, Journal of

Systems Architecture. 101861, ISSN 1383-
7621.
https://doi.org/10.1016/j.sysarc.2020.101861.

[11] T. Cho, H. Kim and J. H. Yi. (2017). Security
Assessment of Code Obfuscation Based on
Dynamic Monitoring in Android Things.
IEEE Access. vol. 5, pp. 6361-6371.

 doi: 10.1109/ACCESS.2017.2693388.
[12] Yadegari B., Johannesmeyer, B., Whitely B.

and S. Debray. (2015). A Generic Approach

to Automatic Deobfuscation of Executable
Code. IEEE Symposium on Security and

Privacy, San Jose, CA, pp. 674-691.
 doi: 10.1109/SP.2015.47.
[13] Z. Kan, H. Wang, L. Wu, Y. Guo and G. Xu.

(2019). Deobfuscating Android Native Binary
Code. IEEE/ACM 41st International

Conference on Software Engineering:

Companion Proceedings (ICSE-Companion),
Montreal, QC, Canada, pp. 322-323,
doi:10.1109/ICSE-Companion.2019.00135.

[14] Mercaldo Francesco, Di Sorbo Andrea,
Visaggio Corrado Aaron, Cimitile, Aniello
and Martinelli Fabio. (2018). An exploratory
study on the evolution of Android malware
quality. Journal of Software: Evolution and

Process. 30. e1978.10.1002/smr.1978.
[15] Symantec.(2019) Symantec Internet Security

Threat Report.
 https://docs.broadcom.com/doc/istr-24-2019-

en
[16] D. Kim, D. Mirsky, A. Majlesi-Kupaei and R.

Barua. A Hybrid Static Tool to Increase the
Usability and Scalability of Dynamic
Detection of Malware. 13th International

Conference on Malicious and Unwanted

Software (MALWARE), Nantucket, MA,
USA, 2018, pp. 115-123.

 doi: 10.1109/MALWARE.2018.8659373.
[17] Nguyen Viet Duc and Pham Thanh Giang.

(2018). NADM: Neural Network for Android
Detection Malware. In The Ninth

International Symposium on Information and

Communication Technology (SoICT 2018).
Danang City, Viet Nam. ACM, New York,
NY, USA, 7 pages. https://doi.org/10.1145/
3287921.3287977

[18] T. Bell.(1999). The concept of dynamic
analysis. ACM SIGSOFT Softw. Eng. Notes.
vol. 24, no. 6, pp. 216–234, 1999, doi:
10.1145/318774.318944.

[19] Ori Or-Meir, Aviad Cohen, Yuval Elovici,
Lior Rokach, Nir Nissim. (2021). Pay
Attention: Improving Classification of PE
Malware Using Attention Mechanisms Based
on System Call Analysis, IEEE International

Joint Conference on Neural Networks
(IJCNN).

[20] Chun-Yi Wang, Chi-Yu You, Fu-Hau Hsu,
Chia-Hao Lee, Che-Hao Liu, YungYu
Zhuang.(2021). SMS Observer: A dynamic
mechanism to analyze the behavior of SMS-
based malware, Journal of Parallel and

Distributed Computing. 156, 25–37.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 270 Volume 19, 2022

[21] Repo - The Multiple Git Repository Tool.
2022. https://gerrit.googlesource.com/git-
repo/

[22] Cuttlefish Virtual Android Devices - a
configurable virtual Android device that can
run both remotely. 2022.

 https://source.android.com/setup/create/cuttlef
ish-cts

[23] The Android Open Source Project. Soong
Build System for flexible and fast code
compilation.2022.
https://source.android.com/setup/build

[24] Liu Di, Zhang Yun, Zhang, Ni and Hu, Kun.
(2014). A Research on KVM Based
Virtualization Security. Applied Mechanics

and Materials. 543-547.3126-3129.
10.4028/www.scientific.net/AMM.543-
547.3126.

[25] Ganguly Arijit Wolinsky, David Boykin, P.
and Figueiredo, Renato. (2007). Decentralized
Dynamic Host Configuration in Wide-Area
Overlays of Virtual Workstations. 1-8.
10.1109/IPDPS.2007.370664

[26] Syaifudin, Yan. (2021). How does Android
Testing Tool work? Case study: Robolectric.
0.13140/RG.2.2.19597.87523.

[27] The Android Open Source Project. Manifest
of git repositories on Android OS
https://android.googlesource.com/platform/ma
nifest/

[28] Kedar Potdar, Taher Pardawala, and Chinmay
Pai. (2017). A Comparative Study of
Categorical Variable Encoding Techniques for
Neural Network Classifiers. International

Journal of Computer Applications. 175. 7-
9.10.5120/ijca2017915495.

[29] Ho, Tin Kam (1995). Random Decision
Forests (PDF). Proceedings of the 3rd

International Conference on Document

Analysis and Recognition, Montreal, QC, 14–
16 August 1995. pp. 278–282. Archived from
the original (PDF) on 17 April 2016.
Retrieved 5 June 2016.

[30] Kevin Allix, Tegawend´e F. Bissyand´e,
Jacques Klein, and Yves Le Traon. 2016.
AndroZoo: collecting millions of Android
apps for the research community, In

Proceedings of the 13th International

Conference on Mining Software Repositories

(MSR ’16). Association for Computing
Machinery, New York, NY, USA, 468–471.

 DOI:https://doi.org/10.1145/2901739.290350
8

[31] Kotecha Jay, and P, Prabu. (2018). An
Investigation on android background services

for controlling the unauthorized accesses
using android LOG system. International

Journal of Engineering and Technology. 7.
301. 10.14419/ijet.v7i2.6.11268.

[32] Hosseini, Roya and Brusilovsky, Peter.
(2013). JavaParser: A Fine-Grain Concept
Indexing Tool for Java Problems. CEUR

Workshop Proceedings. 1009. 60-63.
[33] Jang, Hae-Sook. (2012). Android Log Cat

Systems Research for Privacy. Journal of the

Korea Society of Computer and Information.
17. 10.9708/jksci/2012.17.11.101.

[34] Hasan Hayyan, Ladani Behrouz and Zamani
Bahman. (2020). Enhancing Monkey to
trigger malicious payloads in Android
malware. pp.65-72.
10.1109/ISCISC51277.2020.9261909.

[35] Wikipedia Android app (2022) -
https://github.com/wikimedia/apps-android-
wikipedia

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

Dakshinamoorthy Karthikeyan, Arun Sivakumar
implemented the entire project and drafted the
research paper. Chamundeswari Arumugam was
responsible for guiding, integrating and shaping
this as a research paper.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS
DOI: 10.37394/23209.2022.19.27

Dakshinamoorthy Karthikeyan,
Arun Sivakumar, Chamundeswari Arumugam

E-ISSN: 2224-3402 271 Volume 19, 2022

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

