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Abstract: With the noise in underwater acoustic signal extracted from ocean background, the denoising algorithm 
based on the Variational Mode Decomposition (VMD) optimized by improved Grasshopper Optimization Algorithm 
(IGOA), the compressed sensing (CS) and wavelet threshold (WT) is proposed in this paper, named by 
IGOA-VMD-CS-WT, where VMD optimized by IGOA is utilized to perform sign composition and the obtained 
Intrinsic Mode Functions (IMF) are divided into effective components and noise components using cross-correlation 
coefficient of each IMF. CS is performed on sparse representation of noise components and the obtained sparse 
coefficients are processed with WT for the filters. The effective components and the denoised components are 
reconstructed to the denoised signal by the Orthogonal Matching Pursuit. The experiments show that 
IGOA-VMD-CS-WT has the highest signal-to-noise ratios and the least root mean square errors under different noise 
levels and has the better denoising effect on the denoising of the actual data. 
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1. Introduction 
N underwater acoustics, vector hydrophone with its 
convenience for submarine detection has succeeded in 

attracting wide attention. According to the principle of the fish 
lateral organs and the acoustic theory of cylinder, MEMS 
vector hydrophone performs the detection of underwater signal 
through the stimulation perception of varistor [1-2]. With small 
size, high sensitivity, low-frequency detection, and other 
excellent performance, there exist many kinds of hydrophones 
and their application [3-4]. However, owing to the complicated 
underwater acoustic environment in the ocean or lake, there 
exists inevitably noise and distortion in the signal collected by 
MEMS vector hydrophone, which affects the subsequent signal 
detection, directional positioning, classification, and 
recognition. Therefore, it is essential to adopt the denoising 
algorithms for performing signal denoising to facilitate the 
smooth development of the follow-up work. 

There are rich denoising algorithms, such as Fourier 
transform(FT) [5], wavelet transform (WT)[6], singular 
spectrum decomposition(SSD)[7], Empirical Mode 
Decomposition (EMD)[8] and their improvements, Variational 
Mode Decomposition(VMD)[9] and the joint denoising 
algorithms. Generally speaking, there exist certain denoised 
effects obtained by these algorithms, but these algorithms have 
shortcomings, which leads to the careful consideration. FT can 
show the relationship between the time domain and frequency 

domain and can be applied to the analysis and processing of 
stationary signals, but it cannot reflect the characteristics of 
specific time signals. WT is more effective and practical, and 
for the signal denoising and the image denoising, WT has the 
better-denoised results and is more suitable for the unstable 
signal denoising. The principle components in SSD need to be 
selected. Self-adaptability is one of the advantages of EMD 
and the decomposed modal functions obtained by EMD are 
screened out by their properties. And EMD is applied to 
non-linear and non-stationary signals and achieves a better 
denoising effect. However, there are shortcomings of EMD, 
such as the lack of a strictly mathematical basis, low efficiency, 
and mode aliasing, which lead to the limitations to a certain 
extent in its applications and development. VMD proposed in 
2013 is a self-adaptive, non-recursive signal decomposition 
algorithm, which performs partitioning the signal in the 
frequency domain to achieve effective separation. Different 
from EMD, VMD has a very strong mathematical foundation, 
better noise robustness, and higher operational efficiency. But 
the parameters of VMD are set up in advance. At present, a 
large number of experimental researches show that a hybrid 
denoising algorithm has better performance than a single 
denoising algorithm. For example, VMD is combined with the 
nonlinear wavelet threshold (NWT) to establish the joint 
denoising method VMD-NWT for performing denoising and 
baseline drift removal [10]. 

Recently, there are more and more metaheuristic 
algorithms which are divided into two types[11,12]: single 
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solution-based and population-based, where there is only one 
solution during the optimization phase in the former type and 
there are N solutions in every iteration during the optimization 
phase in the latter type. Especially, in the population-based 
metaheuristic algorithms, Harris Hawks Optimizer[12] is 
obtained from the cooperative behavior and chasing style of 
Harris’ haws in nature called surprise pounce; the genetic 
algorithm [13,14] mimics the Darwinian theory of evolution; the 
particle swarm optimization(PSO)[15] mimics the birds flocking 
behaviors; Grasshopper Optimization Algorithm(GOA)[16] 
mimics the behavior of grasshopper swarms in nature for 
solving optimization problems.  

Generally, the parameters of VMD are the number of 
Intrinsic Mode Functions (IMFs) and the penalty factor. The 
suitable parameters make the denoising results more effective. 
The births of metaheuristic algorithms support the 
opportunities for the parameters of VMD. In the reference [17], 
the parameters of VMD are optimized by the whale 
optimization algorithm (WOA), the power spectrum entropy 
(PSE) is taken to be the fitness function of WOA, and thus the 
whale-optimized VMD and correlation coefficient (CC) are 
combined to propose a denoising and baseline drift removal 
algorithm. In the reference [18], a hybrid algorithm of 
Multi-Verse Optimizer and PSO is proposed to optimize the 
parameters of VMD and then is combined with WT denoising 
and CC judgment to perform the signal denoising of MEMS 
vector hydrophone. 

The definition of Compressed sensing (CS) is that if a 
high-dimensional signal is compressible or sparse in a certain 
transform domain, it is mapped into a low dimensional space 
by a measurement matrix unrelated to the transform basis, and 
then the original signal is reconstructed from the small number 
of projection measurements with high probability by solving an 
optimization problem. The combinations of CS and other 
algorithms have been widely used in the medical, earthquake, 
image optimization, and other fields, such as the combination 
of EMD, CS, and WT for denoising microseismic signals [19], 
and a method of noise attenuation of the weak seismic signal 
based on CS and CEEMD [20], the hybrid algorithm based on 
improved SSA and CS for lidar signal denoising [21].    

In this paper, the improved GOA (IGOA) is proposed to 
be applied to optimize the parameters of VMD for performing 
sign composition and the obtained IMFs are divided into the 
effective components and noise components according to the 
cross-correlation coefficient of each IMF. And CS is used to 
perform sparse representation of the noise components and the 
obtained sparse coefficients are processed by being combined 
with WT for the filters. Then the effective components and the 
denoised components are reconstructed to the denoised signal. 
Thus the denoising algorithm based on VMD optimized by 
IGOA, CS, and WT is proposed in this paper, named 
IGOA-VMD-CS-WT. The simulation experiments show that 
the proposed denoising algorithm IGOA-VMD-CS-WT in this 
paper has the highest signal-to-noise ratios and the least root 
mean square errors for the simulated signals under different 
noise levels, superior to the other compared denoising 
algorithms. Finally, the proposed denoising algorithm 

IGOA-VMD-CS-WT is applied to perform the denoising of the 
actual data.  

The remaining paper is organized as follows. Section 1 is the 
introduction. Section 2 gives a brief description of the relevant 
principles and methods, and the proposed method IGOA- 
VMD-CS-WT in Section 3 is described in detail. Experiment 
results for denoising are given in Section 4 for the simulated 
signal and the Fenji lake trial data obtained from the North 
University of China. Section 5 is the conclusion. 

2. Basic Principles 
2.1 Grasshopper Optimization Algorithm 

Because VMD cannot be decomposed adaptively, it needs to 
set parameters in advance, so this paper optimizes its 
parameters by GOA.  

GOA[16] proposed in 2017 simulates the characteristics of 
small-scale movement during the locust larvae period and 
random large-scale movement during the adult period, which 
constitutes the local development and global exploration 
process of the GOA algorithm. Without considering the gravity 
factor and assuming that the wind direction always points to the 
target location, the behavior of the locust swarm can be 
represented by the following mathematical model: 
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where max min,c c are the maximum value and the minimum value 
of c , respectively, t denotes the current iteration, and T is the 
maximum number of iterations. In GOA, 

max min1, 0.000001c c  are selected. The coefficient c  is used 
for global exploration and local development of the balance 
algorithm. The coefficient c decreases the search range of the 
individual as the number of iterations increases, and is used to 
control the exploration and development of the algorithm; the 
coefficient c  on the inner side is used to control the attraction 
zone, comfort zone, and repulsion zone among locusts. And 

( )
r

rls r fe e


  .                                (3) 
Equation (3) is the function of the interaction force between 

locusts and other grasshoppers. When ( ) 0s r  , the value range 
of r is called the attraction zone. At this time, the locusts attract 
each other. Citation; when ( ) 0s r  , the value range of r  is 
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called the repelling zone, and the locusts repel each other; 
when ( ) 0s r  , it is neither attractive nor repulsive, and the 
value of r is called the comfort zone. In addition, f  and l  are 
the attracting strength parameter and the attracting scale 
parameter, value 0, 1.5f l  . 

From the above analysis, it can be seen that the basic 
implementation steps of the GOA algorithm are as follows: 

Step1: Initialize the population size N , the parameters 
max min,c c and the maximum number of iterations maxT , initialize 

the population position, and calculate the fitness value of each 
grasshopper, and select the optimal value as the target position. 

Step2: Enter the main loop, and update the parameter 
c according to formula (2). 

Step3: According to formula (1) update the individual 
position of the grasshopper and calculate each grasshopper. 

Step4: Judge whether the conditions for stopping the loop 
are satisfied. If it is satisfied, the algorithm will jump out of the 
loop and return to the target value; otherwise, the algorithm 
will repeat Step 2 and Step 3. 

This article updates the GOA algorithm and uses the updated 
GOA algorithm to optimize the parameters of VMD. 

2.2 Variational Mode Decomposition 
VMD proposed in 2014 is an adaptive modal decomposition 

algorithm, which can make the signal decomposition problem 
be transformed into a variational problem[9]. Thus the 
variational problem is obtained as follows: 
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In equation (4), the original vibration signal ( )x t  is the 
accumulation of each IMF obtained by decomposition; 
   1 2, , ,

k K
u u u u  refers to the modal components obtained 

after the original signal is decomposed;    1 2, , ,
k K

w w w w  
represents the center frequency corresponding to each IMF 
obtained by decomposition; 

t
 is the partial derivative of t ; 

( )t is the impulse function. 
To obtain the optimal solution to the variational problem, the 

Lagrange operator ( )t  and the quadratic penalty factor   
are introduced to make the constrained variational problem be 
transformed into an unconstrained variational problem, as 
follows: 
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(5) 
where ( )t  is the Lagrangian multiplier;  is the secondary 

penalty factor. 1 1 ˆˆ ˆ, , ( )n n

k k
u w t   are iteratively updated by 

the alternating direction multiplier algorithm. Then the "saddle 
point" of equation (5) can be obtained, that is, the optimal 
solution of equation (4). In the following, we will use the 

improved GOA algorithm to optimize the parameters of VMD 
and find the best decomposition result to facilitate subsequent 
operations. 

2.3 Compressed Sensing 
CS is a process of downsampling and decoding the known 

signal with sparsity[22]. The effective signal is sparse in the 
sparse domain, but the noise signal is not sparse. Therefore, CS 
can be utilized to separate the effective signal from the noise. 

The basic idea of CS is the following: If the sparsity of an 
unknown signal is K  or is transformed into K  spares by a 
sparse basis, then based on K  spares, combined with 
non-linear transformation, the original signal can be accurately 
reconstructed. The signal x  can be sparsely expressed as a 
linear combination of the standard orthogonal basis 

 1 2, , ,
N

     as follows: 

1
K

k kk
x  


 ,                                  (6) 

where 
k

 is the sparse vector of signal x , and the sparsity is k . 
The smaller the k  is, the higher the sparsity is. The signal can 
be reconstructed accurately until the observation matrix is used 
to make the signal with the sparse expression be reduced the 
dimension linearly for projection. The sparseness of the signal 
is determined by the sparse coefficients  , so a M N  
measurement matrix is selected to perform a linear 
transformation on the signal to obtain y x  . The signal x  is 

measured and then the measured value My R  is obtained. 
Thus 

y x T    ,                             (7)  
where T  is the sensor matrix and  is the sparse 
coefficient vector to be solved.  is the orthogonal basis 
matrix. If the matrix T meets the Restricted Isometry Property 
(RIP) criterion, K sparse can obtain an optimal solution from 
the M  measured value y . The problem of solving  by the 
observation matrix y  can be transformed into an optimization 
problem in the 0l  norm, as follows: 

0
ˆ arg min , . .s t T y    ,                     (8) 

where 
0

 is the 0l  norm of  . The convex relaxation 
algorithm, the greedy algorithm and the combinatorial 
optimization algorithm are usually employed to solve Eq.(8). 
The classical sparse transform methods include discrete cosine 
transform [23], discrete Fourier transform [24], discrete 
wavelet transform [25], and other transforms. 

In this paper, we choose CS to perform downsampling on the 
IMF components with the small correlation coefficients 
obtained by VMD, and the sparse vector θ is obtained. There 
are two main ways to obtain the measurement matrix: one is to 
construct it according to the signal characteristics, and the 
other is to select an existing matrix, such as a random Gaussian 
matrix. Discrete cosine transform and fast Fourier transform 
are used to be the sparse basis, Gaussian random matrix and 
partial Hadamard matrix are chosen to be the measurement 
matrix, and the orthogonal matching pursuit algorithm is used 
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to perform the reconstruction. In addition, recent research have 
shown that the amplified noise signal in the process of random 
measurement leads to the reduction of the signal-to-noise ratio 
and the noise folding emerged. Based on this, WT is used to 
filter the sparse vector θ for reducing the noise folding. 

2.4 Wavelet Threshold filtering method 
WT filtering method is that the threshold function is used to 

quantize the decomposed coefficients and then the denoised 
signal is obtained by the signal reconstruction. There are the 
common threshold functions, such as hard threshold, soft 
threshold, Stein Unbiased Risk threshold, heuristic threshold, 
and soft hard threshold tradeoff.  

The data-driven threshold proposed by Donoho [26] widely 
used at present is defined as follows:  
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  ,                        (9)  

where 
i
 is the ith IMF component, the median is the median 

function, 
i

T is the threshold value of the ith reconstruction 
coefficient 

i
  which is the ith sparse coefficient of the sparse 

vector   obtained by the CS algorithm. The wavelet obtained 
by soft threshold estimation has good sparse continuity and can 
not produce additional impact. Therefore soft threshold 
denoising is adopted in this paper, whose expression is as 
follows: 
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3. The Proposed Denoising Algorithm 

3.1 Improved Grasshopper Optimization 
Algorithm  

In the GOA, the position of the grasshoppers is updated by 
the optimal grasshopper, the current grasshopper, and the other 
grasshoppers.  And the convergence speed of GOA is slow and 
easy to fall into the local optimal grasshopper. To overcome 
this disadvantages of GOA, Levy flight and Nonlinear Weight 
are employed to improve GOA in this paper to obtain the 
improved GOA, written as IGOA. Levy flight makes 
individuals conducive to jumping out of the local optimum and 
finding out the global optimum. Nonlinear weight makes GOA 
converge to the current local optimum quickly. Levy flight [29] 
is a method to provide random factors, which are distributed as 
follows: 

~ ,1 3.Levy u t     .                            (11) 
 The nonlinear weight c  is taken to be the sigmoid function 

[30] as follows: 

10 5
_

1 0.1
1 1.5

p

Max iter

c r

e


 



,                             (12) 

where r  is a random number between 0 and 1, and p  is the 
current number of iterations, which makes the algorithm 

decrease slowly in the early stage and converge rapidly in the 
later stage. The updated position of the grasshopper is as 
follows: 
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where ˆ, , ( ),

d d ij d
ub lb s d T  are similar to the representation in  

  
Subsection 2.1.  

Different from GOA, the parameter c  in IGOA is used to be 
equation (12) and the updated position of the grasshopper in 
IGOA is used to be equation (13). And the number of the terms 
in equation (13) is more than that in equation (1) and this term 
is related to Levy fight. The pseudo-code of the IGOA 
algorithm is shown in Figure 1. 

 
Initialize cmax,cmin, and the population size N, spatial dimension dim 

Initialize maximum number of iterations and the swarm Xi(i=1,2,…,N) 

Calculate the fitness of each search agent 

T=the best search algent 

while (l<maximum number of iterations) 

     Update c using Equation (12) 

      For each search agent 

                 Normalize the distances between grasshoppers 

                 Update the position of the current search agent by Eq.(13) 

                  Bring the current search agent back if it goes outside the 

boundaries 

      end for 

      Update T if there is a better search algent 

       l=l+1 

end while 

Return T 

Figure 1. Pseudo codes of the IGOA algorithm. 

3.2 The joint denoising algorithm 
IGOA-VMD-CS-WT 
Two parameters of VMD (the number K and the penalty 

factor   of IMFs) need to be set up in advance, which causes 
the signal cannot be decomposed adaptively by VMD. Given 
the noise folding phenomenon of CS in the case of a low 
signal-to-noise ratio, WT is used to process the sparse 
coefficients after sparse representation of CS to make them 
more sparse, which reduces the noise overlap phenomenon. 

Based on the above analysis, a joint denoising method based 
on the VMD optimized by IGOA, CS, and WT is proposed in 
this paper, named by IGOA-VMD-CS-WT, where PSE [27-28]  is 
adopted to be the fitness function. 

 The concrete steps of IGOA-VMD-CS-WT are as follows: 
Step1. Obtain the main frequency  0f of the noisy signal by 

Fourier transform. The parameters of VMD are optimized by 
IGOA to adaptively select the number K  of IMFs and the 
penalty factor   . 

Step2. According to the number K  of IMFs and the penalty 
factor   obtained from Step1, the original noisy signal is 
decomposed by VMD and the K  IMF components are 
retained.   

Step3. Calculate the cross-correlation coefficients and 
center frequency between each IMF component and the 
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original noisy signal. Based on the cross-correlation value of 
each IMF component, and the absolute deviation value 
between the dominant frequency and the center frequency, the 
bound component is found to distinguish the effective 
components from the noise components. The effective IMF 
component is retained directly.     

Step4. The noise IMF components processed by 
downsampling are sparsely expressed. Thus the sparse 
coefficients  1 2, , ,

p
    are obtained, where  

represents the number of noise IMF components, and then WT 
is used to filter the sparse coefficient  to get the new sparse 
coefficients  1, 2, ,, , ,

new new new p new
    . Finally, the 

Orthogonal Matching Pursuit algorithm is used to reconstruct 
the sparse coefficients to get a denoised noise component.  

Step5. The effective components and the denoised noise 
components are reconstructed to obtain the denoised signal of 
the original noisy signal. 

The flowchart of  IGOA-VMD-CS-WT is shown in Figure 2. 
  

 
Figure 2.  Flowchart of IGOA-VMD-CS-WT 

 
In figure 2, the calculation of fitness value of every agent in the part 

of VMD optimized by IGOA is as follows: 
Every agent  in the population is composed of two parameters: the 

number K and the penalty factor   of IMFs. For every agent, 
the reconstructed signal of the input noisy signal is obtained by 
VMD. PSE is calcuated to be fitness value of every agent by 
the reconstructed signal and the input noisy signal. 

 

4. Simulation Experiments 

4.1 Simulation signal  
In this paper, the simulation signal is obtained from two 

sinusoidal signals for performing the denoising performance of 
the IGOA-VMD-CS-WT. By considering the dynamic changes 
in the marine environment, the known Gaussian white noise 
under the different decibels is added to the simulation signal to 
simulate the noisy signal received by the MEMS vector 
hydrophone.     

The simulation signals are as follows: 
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where 200 and 400 represent the frequencies of two sinusoidal 
signals, respectively, and  is the Gaussian white noise with 
the different decibels. 

In this paper, we take the signal-to-noise ratio (SNR)  
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and the root mean square error (RMSE) 
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n
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                      (16) 

to be the performance indicators of denoising, where N is the 
number of snapshots, and )(' nx and )(nx are the denoised 
signal and the original signal, respectively. 

4.2 Denoising of the simulation signal by 
IGOA-VMD-CS-WT 

Due to the limited space, we take the noisy signal with the 
noisy level at 10dB processed by IGOA-VMD-CS-WT for 
example in this paper. Figure 3(a) shows the noisy signal with 
the noisy level at 10dB. Then Fourier transform is performed 
on the noisy signal and the corresponding frequency spectrum 
is obtained, shown in Figure 3(b) and its main frequency 0f  is 
obtained further. 

The IGOA is used to optimize two parameters K  and   of 
VMD and the selected K  and   are adaptive. Here, the noisy 
simulated signal is decomposed into 7 IMF components by the 
optimized VMD. These IMF components and their 
corresponding spectra are shown in Figure 4. Table 1 shows the 
cross-correlation coefficients between every IMF component 
and the noisy simulation signal. 

From Figure 4, it can be observed that the energies of IMF1 
and IMF2 are the highest, which are the closest to 200Hz and 
400Hz, respectively. From Table 1, we can see that the 
correlation coefficients of IMF1 and IMF2 are the highest. 
Therefore, IMF1 and IMF2 are regarded to be effective signal 
components. The other components IMF3-IMF7 with the low 
correlation coefficients are regarded to be the noise signal 
components.  
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Figure 3. Noisy signal and its corresponding frequency 

spectrum. 

 
Figure 4. The IMF components and their corresponding spectra 

obtained by the optimized VMD 
 

For the noise IMF components, CS is utilized to perform 
denoising. Firstly, 10% of every noise  IMF component is 
selected to perform downsampling. Secondly, the orthogonal 
basis matrix and measurement matrix are constructed, and the 
sparse coefficients  1 2, , ,

p
    , where p  is the number 

of IMF noise components, are obtained by the sparse 
representation of the downsampled signal. Thirdly, the WT 
proposed in this paper is used to process the sparse 
coefficients, and the new sparse coefficients 

 1, 2, ,, , ,
new new new p new
    are 
obtained. Finally, the orthogonal pursuit matching algorithm is 
used to reconstruct  1, 2, ,, , ,

new new new p new
    , and then the 

effective IMF components and the denoised noise components 
are reconstructed to obtain the denoised signal of the original 
noisy signal. Table 2 shows the signal sparsity and the best 
sparsity by CS. 
 

4.3 Experimental results 
 Comparison of Denoised Effects 

In this paper, the joint denoising algorithm IGOA-VMD 
-CS-WT proposed is the combination of VMD optimized by 
IGOA, CS, and WT. To verify the effectiveness of the  
IGOA-VMD-CS-WT, we employ VMD, VMD-CS, 
VMD-WT, VMD-CS-WT, GOA-VMD-CS, GOA-VMD-WT 
and IGOA -VMD-WT for comparison with 
IGOA-VMD-CS-WT on the same noisy signal.  

Figure 5 shows the comparisons between the original 
signal without signal and the denoised signals of the noisy 

signal with 10 dB Gaussian white noise obtained by these 8 
compared algorithms, respectively. Observed in Figure 5, the 
denoised effects of these 8 compared algorithms are all better, 
the sharp burrs of the signal are all eliminated, the waveforms 
are allsmoother as a whole, there are almost no distortion 
phenomenons, and the edges of the denoisied signal by these 8 
compared algorithms have the worse denoised effects except  
Figure 4(h). The compared results show that the comparison, 
IGOA-VMD-CS-WT can be used to perform the denoising of 
the noisy signal, especially to improve the denoising of the 
edge signal of the noisy signal. 

Figure 6 shows the comparisons between the original signal 
without noise and the denoised signals of the noisy signal with 
-5 dB Gaussian white noise obtained by these 8 compared 
algorithms, respectively. 
Observed in Figure 6, the denoised signals by VMD-CS and 
GOA-VMD-CS are not smooth as a whole and there is noise 
folding, while the waveforms of the denoised signed by VMD, 
VMD-WT, VMD-CS-WT, GOA-VMD-WT, 
IGOA-VMD-WT, and IGOA-VMD-CS-WT are all relatively 
smoother. And owing to WT introduced, the noise folding 
phenomena are improved. Especially, the denoised signal by 
IGOA-VMD-CS-WT has the best fitting effect with the 
original signal without noise. 

Based on the above analyses, the compared results show 
that the denoised effect of IGOA-VMD-CS-WT is better than 
other methods. 
 
 Comparison of Denoised Performance Indicators 

The noisy signals with five different decibel Gaussian 
noises, 15dB, 10dB, 5dB, 0dB, and -5dB, are used to perform 
 denoising by the 8 algorithms: VMD, VMD-CS, VMD-WT, 
VMD-CS-WT, GOA-VMD-CS, GOA-VMD-WT, 
IGOA-VMD-WT, and IGOA-VMD-CS-WT, respectively. 
The SNRs and RMSEs obtained by these 8 algorithms are 
shown in  
Table 3, where the first column represents the decibel of 
Gaussian white noise decibels added to the original signal. 

Observed from Table 3, the SNRs obtained by 
IGOA-VMD-CS-WT are all the maximum among these 8 
algorithms, which are 23.6105 for 15dB, 19.7220 for 10dB, 
15.9566 for 5dB, 12.5489 for 0dB, and 9.2686 for -5dB, 
respectively, and the RMSEs obtained by IGOA-VMD 
-CS-WT are all the minimum among these 8 algorithms,   

 
Figure 5.  Denoised Effects of the noisy signal with 10dB 

Gaussian white noise 
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Figure 6.  Denoised Effects of the noisy signal with -5dB Gaussian white noise

 
Table 1. Correlation Coefficients between each IMF Component and the noisy simulation signal. 

 
 
 

 
Table 2. Signal Sparsity and the Optimal Sparsity 

Noise IMF Component IMF3 IMF4 IMF5 IMF6 IMF7 
Signal Sparsity 53 47 52 46 42 

Optimal Sparsity 2 2 2 4 1 
 

Table 3. The SNRs and RMSEs obtained by these 8 algorithms 
dB Performance  indicator VMD VMD-CS VMD-WT VMD-CS-WT GOA-VMD-CS GOA-VMD-WT IGOA-VMD-WT IGOA-VMD-CS-WT 

15dB SNR 16.1697 17.7802 21.6527 22.3275 21.0024 22.1576 22.9151 23.6105 

RMSE 0.1554 0.1291 0.0827 0.0766 0.0904 0.0780 0.0710 0.0660 

10dB SNR 15.7538 16.1507 18.4869 18.6940 17.2304 18.6400 19.1025 19.7220 

RMSE 0.1630 0.1558 0.1191 0.1164 0.1376 0.1172 0.1110 0.1041 

5dB SNR 13.8800 13.2914 14.6015 15.7434 13.4869 15.8678 15.9022 15.9566 

RMSE 0.2023 0.2437 0.1862 0.1641 0.2117 0.1611 0.1603 0.1593 

0dB SNR 10.2194 9.0332 11.1042 11.6070 9.1175 12.0430 12.3616 12.5489 

RMSE 0.3038 0.3554 0.2785 0.2628 0.3501 0.2504 0.2410 0.2359 

-5dB SNR 6.8692 4.4314 6.9463 7.2939 4.6269 7.3714 7.6339 9.2686 

RMSE 0.4535 0.6006 0.4495 0.4321 0.5870 0.4280 0.4154 0.3440 

 
which are 0.0660 for 15dB, 0.1041 for 10dB, 0.1593 for 5dB, 
0.2359 for 0dB and 0.3440 for -5dB. Thus the denoised 
effect of IGOA-VMD-CS-WT is significantly better than 
those of the other compared algorithms under the different 
decibel noises. That is, IGOA-VMD-CS-WT is superior to 
VMD, VMD-CS, VMD-WT, VMD-CS-WT, GOA-VMD 
-CS, GOA-VMD-WT, IGOA-VMD-WT. In addition, the 
denoised effect of IGOA-VMD-WT is slightly better than 
GOA-VMD-WT, which indicates that the improved GOA 
improves the SNR and RMSE and further that IGOA is 
better than GOA.  

Based on the comparisons of denoised results and the 
performance indicators, when the noise level is low, the 
simple CS is used to perform denoising, and then there exist 
noise folding phenomena, but once the WT denoising is 
introduced, the noise folding phenomena are improved and 
the denoised signal is better, the SNRs are higher. All of 
these further demonstrate that the proposed 
IGOA-VMD-WT algorithm has a better-denoised effect on 
the noisy signal with different decibel noise and the baseline 

drift removal, outperforms VMD, VMD-CS, VMD-WT,  
VMD-CS-WT, GOA-VMD-CS, GOA-VMD-WT, 
IGOA-VMD-WT. 

5. Lake Trial Experiments 
The measured data used in this paper are derived from fenji 

experiments conducted by the North University of China in 
2011 and 2014 in fenhe, respectively. 

5.1 Experiment 1: The measured data from the 
fenji331Hz data packet tested in 2011. 

 In this experiment, the vector hydrophone with 5-element 
linear array was fixed on the shore and the transducer was 
placed on the tugboat. The anchor was dropped at the 
different positions, and then the measured data was collected 
by the transducers. The sound source with a transmitting 
signal frequency of 331Hz is 6 meters far away from the 
vector hydrophone with a sampling frequency of 10kHz. 
The data with the snapshots1000 arbitrarily intercepted from 
the measured data of five road array signals are regarded to 

IMF component IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 
Correlation Coefficients 0.6884 0.6737 0.1211 0.1017 0.0981 0.0961 0.0973 
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be the noisy data for performing the signal denoising.   
Figure 7(a)(b)-Figure11(a)(b) show the signals of the 

1-Road array to the 5-Road array and their corresponding 
frequency spectra, respectively. And Figure7(c)(d) 
-Figure11(c)(d) show the denoised signals of 1-Road array to 
5-Road array processed by IGOA-VMD-WT and their 
corresponding frequency spectra.  

Observed in Figure 7(a)(b)-Figure11(a)(b), there exists a 
small amount of noise in 1-Road and 2-Road array signals, 
while there exist a large amount of noise in 3-Road, 4-Road 
and 5-Road array signals. Observed in Figure7(c) 
-Figure11(c), the sharp burrs of the signals have been 
effectively eliminated, the signal becomes smooth and tidy 
and the distorted part of the signal is effectively improved. 
Observed in Figure7(d)-Figure11(d), the energies of the 
signals are hardly lost and the noises have been eliminated 
effectively.  

5.2 Experiment 2: The measured data from the 
fenji measured data in 2014. 

In this experiment, the MEMS vector hydrophone with 
5-element arrays of interval distance of 0.5 meters was 
placed on the shore, and the transducer was placed on the 
tugboat. The MEMS vector hydrophone was placed under 
the water 2 meters and was kept horizontal. Thus the MEMS 
vector hydrophone could continuously output the sound 
pressure and the circuit signals. The signal signals with 
315Hz, 500Hz, 630Hz, 800Hz, and 1000Hz are obtained by 
adjusting the transducer, respectively. The data with the 
snapshots 1000 are arbitrarily intercepted from the different 
frequency packets to be regarded as noisy signals. 

Figure 12(a)(b)-Figure 16(a)(b) show the signals with 315Hz, 
500Hz, 630Hz, 800Hz, and 1000Hz and their corresponding 
frequency spectra, respectively. And Figure7(c)(d)- 
Figure11(c)(d) show the denoised signals with 315Hz, 500Hz, 
630Hz, 800Hz and 1000Hz processed by IGOA-VMD-WT and 
their corresponding frequency spectra.  

Observed in Figure 12 (a)(b)-Figure 14(a)(b), there exists the 
low-frequency noise in the upper part of the signal and the 
high-frequency noise in the lower part of the signal, and there 
exist the serious distortions in the signals. Observed in 
Figure15(a)(b)-Figure16(a)(b), there exists a slight noise and no 
serious distortion in the signals, but the waveforms of the signals 
are not smooth. And the baseline drift removals are improved. 
Observed in Figure12(c)-Figure16(c), the noises of the noisy 
measured signals are all eliminated and the waveforms of the 
denoised measured signals are all well recovered. And there are 
no distortion phenomena and the basic characteristics of the 
original signals are all well preserved. Observed in 
Figure12(b)(d) -Figure16(b)(d), the energies of  the signals are 
also well preserved with no loss. 

5.3 Experimental results 
Based on the above two experiments, the IGOA-VMD-CS -WT 
algorithm proposed in this paper can effectively eliminate the 
noise, better recover the basic characteristics of the signal, and 
improve the baseline drift removal. Therefore, the 
IGOA-VMD-WT algorithm proposed in this paper is effective 
and suitable for signal denoising. At the same time, the 
IGOA-VMD-WT algorithm proposed in this paper gives 
support for the next location, classification, and recognition of 
the signal. 

6. Conclusion 
In this paper, IGOA is used to optimize the parameters of 

VMD to establish the hybrid algorithm IGOA-VMD. Based on 
the combination of IGOA-VMD, CS, and WT, the joint signal 
denoising algorithm IGOA-VMD-CS-WT of MEMS vector 
hydrophone is proposed. The simulation experiments show that 
the proposed IGOA-VMD-CS-WT can effectively eliminate the 
noises from the noisy signals, and has the minimum RMSEs and 
the maximum SNRs. And the compared results show that the 
proposed IGOA-VMD-CS-WT outperforms the other 
compared algorithms and weakens the noise folding. Further, 
the proposed IGOA-VMD-CS-WT is applied to perform the 
denoising of the measured signals derived from fenji 
experiments conducted by the North University of China in 
2011 and 2014 in fenhe. And the denoised results show that the 
proposed IGOA-VMD-CS-WT can effectively eliminate the 
noise of the measured signals and improve the baseline drift 
removal.  

In addition, the IGOA is obtained from GOA by introducing 
the Levy flight and the nonlinear weight. But the selections of 
different nonlinear weight lead to the different IGOA and the 
combination of GOA and the other one or two warm intelligence 
algorithms generates different IGOA. These improved GOAs 
are combined with VMD, CS, and WT to establish the new joint 
denoising algorithms. The denoising performance of these 
algorithms will be verified in the future  
and be conducive to the subsequent signal location, 
classification, and recognition of signals. 
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Figure 7. The signal and the denoised signal of 1-Road array 

signal and their corresponding frequency spectra 
 

 
Figure 8. The signal and the denoised signal of 2-Road array 

signal and their corresponding frequency spectra 
 

 
Figure 9. The signal and the denoised signal of 3-Road array 

signal and their corresponding frequency spectra 
 

 
Figure 10. The signal and the denoised signal of 4-Road array 

signal and their corresponding frequency spectra 
 

 
Figure 11. The signal and the denoised signal of 5-Road array 

signal and their corresponding frequency spectra 
 

 
Figure 12. The signal and the denoised signal with 315Hz and 

their corresponding frequency spectra 
 

 
Figure 13. The signal and the denoised signal with 500Hz and 

their corresponding frequency spectra 

 
Figure 14. The signal and the denoised signal with 630Hz and 

their corresponding frequency spectra 
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Figure 15. The signal and the denoised signal with 800Hz and 

their corresponding frequency spectra 

 
Figure 16. The signal and the denoised signal with 1000Hz and 

their corresponding frequency spectra 
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