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Abstract: - Precise definitions and derivatives of the time-dependent continuous and discrete uniform 

probability density functions and related information and entropy functions are investigated. A stochastic 

system is formed that can represent a uniform noise source having a time-dependent variance and forming a 

uniform non-stationary stochastic process. The information and entropy function of the system are defined, and 

their properties are investigated in the time domain, including the limit cases defined for infinite and zero 

values of the time-dependent variance. In particular, the singularity properties of the entropy function will be 

investigated when the time-dependent variance reaches infinity. Like in thermodynamics, where the physical 

entropy of a system increases all the time, the information entropy of the stochastic system in information 

theory is also expected to increase towards infinity when the variance increases. All investigations are 

conducted for both the continuous and discrete random variables and their density functions. The presented 

theory is of particular interest in analyzing the Gaussian density function having infinite variance and tending to 

a uniform density function.  
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1 Introduction 
The theory of stochastic processes having a 

probability density function (pdf) that is a function 

of time is important in the analysis of non-stationary 

stochastic processes. In this paper, this theory is 

further extended to the information theory by 

defining and deriving the time-dependent 

information and entropy functions. It is assumed 

that the pdf function of a stochastic process is 

uniform and its variance linearly depends on time. 

The process is analyzed starting with the results in 

information theory published in Shannon’s seminal 

paper [1]. According to the presented theory, the 

randomness in the system generating the process 

will increase in time, and the average information 

per a random event, or the system entropy, will tend 

to infinity. Furthermore, it will be shown that the 

probability of all random events will tend to zero 

when the variance tends to infinity. We say the 

probabilities of events reach equilibrium when all 

probability values reach theoretical zero carrying the 

information contents that tend to infinity.  

 This theory is analogous to thermodynamics 

theory. Namely, the second law of thermodynamics 

states that the physical entropy of the enclosed 

system always increases and has an identical 

expression as the information entropy defined in this 

paper, as noted, for example, in Glattfelder’s paper 

[2].  Furthermore, the results of this paper will show 

that the system entropy is finite and tends to infinity 

when the probability of each random event tends to 

zero carrying the information content that tends to 

infinity.  

 Having in mind the thermodynamics theory, 

the presented system operates irreversibly out of the 

thermodynamic equilibrium with the ability to reach 

the thermodynamic equilibrium. An analysis of a 

system operating out of the thermodynamic 

equilibrium is presented in Nicholson’s paper [3].  

 Inside the system, generating a uniform non-

stationary stochastic process, the entropy function 

would be singular when the time-dependent 

variance reaches infinity, i.e., the entropy will 

suddenly change from infinity to zero, even though 

that contradicts Leibniz’s famous statement Natura 

non facit saltus (nature makes no jump) [4]. In 

addition, the information function gets infinite 

values due to the related all-zero pdf function. 
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 We will assume that the interval of time 

between any two consecutive realizations of the 

process is negligibly small compared to the 

observed interval of time t∞, and the amplitude 

values of the process in that interval of time are 

mutually independent. Likewise, the entropy of the 

system increases logarithmically towards infinity, 

reaches infinity, and then drops down to zero 

theoretically in infinity, as symbolically presented 

by a dashed thick line in Fig.1.  

 Inside the system, four basic stochastic 

processes can be generated: continuous- and 

discrete-time and continuous-valued processes, and 

continuous- and discrete-time and discrete-valued 

processes. The random variables defining these 

processes are described by the time-dependent 

continuous and discrete uniform probability density 

functions, respectively. Detailed analysis of these 

pdf functions and related information and entropy 

functions will be presented in the following 

sections.   

 

2 Time-dependent uniform pdf of a 

continuous random variable 

 
2.1 Definition of a time-dependent 

probability density function  
Due to the importance of the probability density 

function (pdf) for our analysis, we will start with its 

precise definition which will be consistently used in 

presenting our theory. The uniform pdf of a 

continuous random variable X is defined as  
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for the positive values 0 ≤ Xc ≤ ∞. Furthermore, we 

will express the variance as a linear function of 

time, i.e., 2 2

c t   for a constant 2  defined in the 

interval 0 ≤ σ2 ≤ ∞. The function is graphically 

presented in Fig. 1a), for the mean value equal to 

zero and the varying values of Xc that define the 

variance 2 2 / 3c cX  . For our analysis, we could not 

rely on the definition in Montgomery and Runger's 

book [5], where zero values of pdf are not 

considered. The closest and a nearly proper 

definition is in Papoulis and Pillai book [6], Peebles 

book [7], Manolakis book [8] which defined the 

variance but not its limits, even though the limit 

values of the pdf function that have positive values 

are not specified. The definition in Gray’s book [9], 

and Proakis's book [10] are incomplete and cannot 

be used as such to develop our theory.  

In our rigorous definition, we specify the 

interval of limit values to be 0 ≤ Xc ≤ ∞, which also 

includes the equation sign due to the necessity to 

explain the behavior of the pdf function and related 

information function at zero and infinite values of 

parameters Xc and σc, i.e., when these parameters not 

only tend to infinity but when they reach infinity. It 

is also strictly specified the interval of uniform 

density values different from zero as -Xc ≤ x ≤ Xc, 

which allows us to define the values of the 

information function for every x in the interval -∞ ≤ 

x ≤ ∞ and calculate the entropy of the information 

function of the uniformly distributed random 

variable X. Namely, alongside pdf function, we will 

investigate the behavior of the information function 

I(X) and the entropy H(X) of random variable X. 

These three functions are presented in Fig. 1. 

 Unlike Shannon, who defines, in his famous 

paper [1], the entropy of a continuous random 

variable with the pdf function fc(x), we will first 

define and analyze the information function as a log 

function with the base 2 of the pdf function in 

equation (1) and express it as  
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which simplifies our understanding of the physical 

sense of both the information function and the 

related entropy function that is expressed as the 

mean value of the information function.  

 The information function values are increasing 

inside the interval Xc when the interval width is 

decreasing as shown in Fig. 1, for the intervals 

defined by Xc = 0, 1/8, 1/4, 1/2, 1, and 2 with the 

corresponding values of the pdf function being ∞, 4, 

2, 1, 1/2, and 1/4, respectively, which are presented 

in italic font. If the interval Xc drops to zero, the pdf 

function becomes the Dirac delta function, 

represented by an arrow line pointing + ∞ in Fig. 

1a). If the interval Xc tends to infinity, the pdf 

function tends to zero. 

If we form a continuous-time i.i.d. stochastic 

process X(t), defined by the random variable X at 

each time instant t, we may define the related 
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realization of this process as uniform random 

signals x(t). The theory of these processes uses the 

same notation as presented in chapter 19 of Berber’s 

book [11]. Suppose three pdf functions of uniform 

random variables X are defined by Xc = 2, 0, and 1. 

The three realizations of the related stochastic 

processes, also called random signals in the 

presented theory, are presented in Fig. 2a) on the 

same coordinate system for the sake of simplicity. 

The first realization, or the random signal x1(t), 

takes the values between -2 and 2 in the time 

interval from 0 to 2. The second realization is a 

horizontal line overlapping the abscissa defining 

certain events of generating zero amplitudes at each 

time instant inside the interval from 2 to 6. The third 

realization takes the values from -1 to 1 in the 

interval from 6 to 8.  
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Figure 1 a) Continuous uniform pdf function, and 

b) related information and entropy functions.  
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Figure 2  a) Realisations of three continuous-time, 

and b) three discrete-time stochastic processes.  

 

 The theory presented in this section can be 

applied to discrete-time stochastic processes. A 

realization of this process is expressed as a random 

function of the discrete-time variable n instead of t, 

as shown in Fig. 2b). In explaining and using these 

processes we will follow the notation and theory 

presented in chapter 4 of Berber’s book [11]. 

 Contrary to the system with a fixed statistical 

property of the random experiment, we can imagine 

a process that is generated in time according to the 

varying distributions presented in Fig. 3, starting 

with an all-zero pdf function producing an 

undefined random signal. This signal is followed by 

a random signal defined by the Dirac pdf delta 

function and finishes with a distribution defined by 

Xc → ∞, producing a random signal with possible ± 

∞ amplitudes. Let us analyze the limit cases when 

the pdf function parameter σc or Xc tends to infinity 

and zero, which are essential for understanding the 

properties of a non-stationary process having a time-

dependent variance.    

 Parameter σc or Xc tends to infinity. In this 

case, when the variance of the pdf function tends to 

infinity causing the defined positive pdf function 

values to tend to zero, we may have 

  

2 2

or

2 2

1
lim ( ) lim

2

1 1
lim lim 0

2 3 2 3

c c

c

c c

c
X X

c

tt
c

f x
X

t



   

 


 



  

  (3) 

 

as is notified in Fig. 3 by a horizontal line on the left 

graph. All random values x are spread in the infinite 

interval from –∞ to +∞ and occur with the 

probability that tends to zero (dashed arrow line) 

and reaches infinity (bold arrow line). When the 

variance tends to infinity, the probabilities are 

infinitesimally small, and the process still has its 

realizations defined on an infinite interval of 

possible values.  
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Figure 3  System represented by hypothetical 

realizations of one undefined process and four 

continuous-time random processes characterized by 

four uniform pdf functions for Xc = 0, 1, 2, and ∞.  
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Therefore, when Xc reaches infinity, the random 

signal values are generated with the probability of 

zero causing the process and its realization to 

vanish. We can say that the process is presented by 

an empty graph. Someone can argue that these 

random values cannot exist due to the zero 

probability of their generation and can be ignored 

and, consequently, the defined zero values of the 

limiting pdf function can be pointless. However, we 

will show that this function has meaning in the 

physical world from the information function point 

of view and cannot be ignored.  

 Parameter σc or Xc tends to zero. If one of the 

parameters, σc, Xc, or t tends to zero, the pdf function 

becomes the Dirac delta function according to 
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having the infinite value at x = 0. A realization of a 

stochastic process, which is defined by this limit 

uniform pdf function that is represented by the Dirac 

delta function, is shown in Fig. 4. All amplitude 

values are zero because the probability of their 

generation is one. 
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Figure 4  A realization of a stochastic process 

defined by random variable X that is defined by the 

uniform pdf function as a Dirac delta function at the 

point x = 0.  

 

2.2 Information function  
Due to its importance for our analysis, we will 

define and investigate the properties of the 

information function expressed y eq. (2) for two 

limit cases when σc or Xc tends to infinity or zero.  

 Parameters σc or Xc tends to infinity. For the 

first case, the information function is 
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for all x values, -∞ ≤ x ≤ ∞. We can understand this 

function in the following way. When the interval 

±Xc of random variable X stretches to infinity, all 

values of the random variable will exist and appear 

with the infinitesimally small probability nearly 

equal to zero. Thus, having these small probabilities 

of appearance, the information content of all of 

them will be close to infinity. The random events 

persist to exist, and they can happen with a 

probability close to zero.  

 In infinity (i.e., when the interval Xc reaches 

infinity) the pdf function values become zero, thus 

the probability of any event becomes zero, and a 

realization of that stochastic process is an empty 

graph. The random events persist to potentially 

exist, and they can happen with the probability of 

zero. From a theoretically strict point of view, the 

random signal does not exist in time, i.e, there are 

no changes in signal values, or there are no changes 

in time.  The pdf function is zero in the entire 

interval of x values, as defined in (3) and shown in 

Fig. 5a), the information function is ∞ for all x 

values, as shown in Fig. 5b). A realization x(t) of the 

related stochastic process X(t) is an empty 

coordinate system.  
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Figure 5 Continuous uniform pdf function and 

related information function defined for the infinite 

variance value. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2022.19.12 Stevan Berber

E-ISSN: 2224-3402 117 Volume 19, 2022



 Parameter σc or t tends to zero. In this case, 

the information content is 
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which is presented in Fig. 6b) alongside the 

corresponding pdf function shown in Fig. 6a). 
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Figure 6 Continuous uniform pdf function and 

related information function defined for the zero-

variance value. 

 

 Therefore, in the case when the pdf function is 

a delta function, the minimum information content 

is –∞ and is represented by the inverted Dirac delta 

function. For this case, we are certain that any 

realization x of random variable X will be zero and 

there is no uncertainty (information) about the value 

of this realization, i.e., the information takes the 

minimum value which is –∞. However, the 

information content takes and remains of the +∞ 

value everywhere else on the x-axis where the pdf 

function of X has zero values. A realization of the 

related stochastic process is a horizontal line having 

an amplitude of zero as shown in Fig. 4. Zero x 

value occurs for sure, that is a certain event. 

Therefore, there is a substantial difference between 

the graphs in Fig. 5 and 6. 

 The same behavior of the information function 

can be observed if interval Xc tends to zero, as 

presented in Fig. 7. The function values are 

increasing from minus infinity, for zero value 2Xc, 

to infinity for the infinite value of 2Xc, which 

complies with the findings in equations (5) and (7).  

 

2.3 Entropy  
          By following Shannon’s theory presented in 

his famous paper[1], the entropy of a continuous 

random variable with the defined pdf function fc(x) 

can be expressed as 
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 We say that the entropy is defined as the mean 

value of the information function (2), and represents 

the information (uncertainty) content per a random 

value x of random variable X. The contribution to 

entropy value is zero for all x values outside of the 

2Xc interval where the pdf function is zero. The 

entropy values are numbers that can be positive, Xc 

> 1/2, zero for Xc = 1/2, and negative for Xc < 1/2. 

The positive values of the entropy are increasing 

inside the interval Xc when the interval width is 

increasing as shown in Fig. 1b), for the intervals 

defined with Xc = 1 and 2 with the corresponding 

values of the function being 1 and  2, which are 

presented in italic font. For Xc < 1/2, the entropy is 

negative and increases in absolute value.   

 One note more on the entropy: In this 

theoretical analysis, we accept Shannon’s definition 

of entropy in contrast to its definition as a 

differential entropy which can be found in some 

books, for example, in Haykin’s book [12]. We 

consider it unnecessary to introduce the differential 

entropy due to the continuity of the random variable 
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X and the strict definition of entropy as an integral 

transform, which makes the presented theory to be 

consistent. Let us analyze the limit cases for the 

entropy when the pdf function parameter σc, t, or Xc 

tends to infinity or zero. 

 Parameter σc, t, or Xc tends to infinity. If the 

interval Xc tends to be infinite, someone can 

calculate mistakenly the entropy using expression 

(9) as  
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which is specifically valid for the case when Xc →∞, 

but not for the case when Xc = ∞, i.e., when Xc 

reaches infinity. However, following (10), the 

influence of zero values of the pdf function in 

infinity is not considered. If the interval Xc reaches 

infinity the entropy should be calculated using its 

definition, which will include the zero-valued pdf 

function, i.e., 

 

2 2( ) lim ( ) log ( ) 0log 0 0
c

c

c c
X

H X f x f x dx dx



 




 

   
       

   
 

  

or 

 

2

2

( ) lim ( ) log ( )

0log 0 0

c c
t

H X f x f x dx

dx












 
  

 

 
   
 





     (11) 

 

 Another confirmation of validity for (11) can 

be obtained as follows. When Xc tends to infinity, 

the random variable takes values in the infinite 

interval stretching from –∞ to +∞ that occur with 

the probability of zero. To consider these probability 

values we can confirm (11) by calculating the 

entropy as 
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If the limit of the integral is equal to the integral of 

the limits, we may have 
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The first limit is zero and the second is of an 

indeterminate form. Applying the L’Hopital’s rule, 

the second integral is also zero, i.e.,  
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or in respect to the time variable t, we may have 
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 Therefore, considering the values of the 

information and corresponding probability values, 

the entropy, as the measure of the average 

information content inside the random values x, is 

zero. These entropy values are presented in Fig. 1b) 

by cycles connected by a full curve that reaches 

infinite entropy.  

 Parameter σc or Xc tends to zero. When 

parameters σc or Xc tends to zero, the entropy value 

can be calculated as follows 

 

0 2
0
0

2 2

1
( ) lim ( ) log

( )

( ) log ( ) log (0)

c

c

c
T

c

H X f x dx
f x

x x dx



  












     





 (14)  

  

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2022.19.12 Stevan Berber

E-ISSN: 2224-3402 119 Volume 19, 2022



 For our analysis, we have separately defined 

and used the information function I(X) as defined by 

equation (2), which contains the information content 

of the random variable X. Therefore, for the uniform 

density, the information content defined inside the 

Xc interval is numerically equal to the calculated 

entropy, as can be seen in Fig. 7.   

 Precise graphical presentations of relevant 

functions as shown in Fig. 8. It is important to note 

the following: While the interval Xc tends to infinity 

the entropy value tends to infinity. In infinity, the 

intervals of zero values of entropy disappear and the 

entropy calculated in the entire infinite interval 

becomes zero. In contrast to entropy, if the 

appearance of all values of random variable X is 

happening with the probability of zero, the 

information content of all of them is infinite as will 

be seen from the following analysis.  

  2Xc 

    1  2  4  8 16 32 64 128

  

1 

I0=-∞ 

H0=-∞  

  

fX, I(X), H(X) 
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-3 

H=0  

I∞=∞  H(X) tends to infinity  

 

H(X) reaches 

infinity  

 

H∞→∞ 

 

H∞=0  

  

 
 

Figure 7 Continuous uniform pdf function, the 

related information, and entropy, as functions of the 

size of interval 2Xc.  

 

 
 

Figure 8  Precise presentation of the continuous 

uniform pdf function, information, and entropy as 

functions of the interval 2Xc.   

 

In the infinity, the events, the realizations of random 

variable X, potentially exist and they can happen 

with the probability of zero, i.e., theoretically never. 

Consequently, from the generation of the random 

signal x(t) strict point of view, which is a realization 

of the stochastic process X(t), there are no changes 

in the appearance of these random values x(t) at 

time instants t. However, the information content of 

all possible random values is infinite.    

 

3 Discrete uniform random variables 
 

3.1 Probability density function 
 It is important to note that we will distinguish 

and use two types of the discrete uniform pdf 

functions: a pdf function expressed in terms of the 

Dirac delta functions, and a pdf function expressed 

in terms of the Kronecker delta functions. Even 

though these two types can be used to represent the 

same pdf function, they are different in practical 

applications and have different meanings in defining 

related information functions.  

 When the Dirac delta functions are used, the 

pdf function will be expressed as a function of a 

continuous random variable value x. On the infinite 

uncountable set of real values x, we will define an 

infinite countable number of discrete points for 

integer values x = s, where the pdf function has 

either values different from zero or zero values that 

are defined by the final weights of Dirac delta 

functions. Consequently, the intervals between any 

two adjacent delta functions contain continuous 

values of x with the pdf function of zero value, as 

shown in Fig. 9a).  When Kronecker delta functions 

are used, the pdf function will be expressed as a 

function of discrete random variable values x = s 

having amplitudes defined by the weights of the 

Kronecker functions. Consequently, the pdf values 

inside intervals between any two adjacent delta 

functions will be undefined, because they are not 

zero, or we say that these intervals contain nothing 

instead of the pdf values.  

 We must use these presentations of pdf 

functions to derive appropriate expressions for the 

information function and entropy and understand 

their properties. These presentations are consistent 

with the theoretical explanation presented by Berber 

[14], for the case when the Dirac delta functions are 

used and Kronecker delta functions are assumed as 

an additional possible solution. Delta functions are 

used to present the discrete pdf functions in Papoulis 

and Pillai's book [6], even though the type of the 

delta function is not specified. In the same book, a 

primitive definition of the uniform discrete pdf is 
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presented on p. 98, which cannot be considered as a 

precise one to be used in our theoretical 

developments. A presentation of the pdf function in 

terms of the impulse delta function is given in 

Peebles book [7], where a detailed analysis of the 

Dirac delta function (called the unit-impulse 

function) is presented. The uniform discrete pdf 

function can be expressed in terms of Dirac delta 

functions as 
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, (15) 

One example of this function is graphically 

presented in Fig. 9a) for the size of the discrete 

interval defined by S  =  2. It is important to note 

that the pdf function is defined on a continuous 

interval –∞ < x < +∞ of possible random variable 

values, having the values fd(x) ≥ 0 at a set of 

countable finite discrete instants of random values x, 

and zeros everywhere else. 

 We can also use here the Kronecker delta 

functions to express the discrete pdf function in this 

form 
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This density is graphically presented in Fig. 9b) for 

the discrete interval S = 2, which defines the 

variance 2 ( 1) / 3d S S   =2. The pdf function can be 

time-dependent if we just express S as a function of 

time. Because this change of variables will not 

change the generality of the explanation, it will be 

avoided here.  

 In summary, we can say that the interval of the 

random variable values x is continuous if the pdf 

function values are zero everywhere else except at 

points s, which are defined by the Dirac delta 

functions.  The Dirac delta function can be replaced 

by the Kronecker delta function assuming that the 

variable x is a discrete random variable having the 

integer values from –∞ to +∞. In this case, the 

values of the pdf function are defined at discrete 

instants s and are not defined between them. We say 

that the values of the pdf function do not exist 

between points s. The pdf functions based on 

Dirac’s and Kronecker's presentation are shown in 

Fig. 9a) and 9b), respectively, with the related 

random signals generated according to these pdf 

functions and presented in Fig. 9c) and 9d), 

respectively.  

 The random signal in Fig. 9c) is a continuous-

time discrete-valued signal. Any amplitude of the 

signal x(n) is generated with the related probability 

fd(x) and preserves that value until the next time 

instant (n+1) because the probability of generating 

amplitudes between x(n) and x(n+1) is zero. For that 

reason, we can express this signal as a function of 

continuous-time t, as in Fig. 9c). In contrast to this 

signal, the signal in Fig. 9d) is a discrete-time 

discrete-valued signal. These two signals combined 

with the signals presented in section 1.1 complete 

the set of basic signals that can be generated in the 

system. Therefore, the use of the Dirac and 

Kronecker delta functions have some differences 

and will be separately analyzed. 
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Figure 9 Discrete uniform pdf function represented 

by a) Dirac and b) Kronecker delta functions and the 

realizations (random signals) of related stochastic 

processes c) and d). 

   

 Let us analyze the limit cases when the density 

parameters σd or S tend to infinity and zero. We are 

to notify the differences in presenting the pdf 

function by Dirac and Kronecker functions. 

 Parameter σd or S tends to infinity. The 

limits of the pdf function, expressed by the Dirac 

delta functions, when the variance tends to infinity, 

can be obtained as follows 
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Precisely calculating, the limit values of the pdf 

function are expressed in terms of Dirac delta 

functions as 
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because the values 1/(2S+1) tend to zero when S 

tends to infinity. In this case, all random values are 

distributed in the infinite interval stretching from –∞ 

to +∞ and occurring with the probability of zero. 

The pdf function for this case is presented in Fig. 

10a), and the related random signal in Fig. 10c). 

 If the same pdf function is expressed in terms 

of Kronecker delta functions, the limit values are  
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and presented in graphical form as in Fig. 10b) with 

the related random signal in Fig. 10d). In this case, 

all random values are distributed in the infinite 

countable interval stretching from –∞ to +∞ and 

occur with the probability of zero.  

Parameter σd or S tends to zero. In the second 

case, parameters σd tends to zero and the pdf 

function can be expressed by the Dirac delta 

function at the zero point, i.e.,   
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or in a precise form as   
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Figure 10 Discrete uniform pdf function 

represented by a) Dirac and b) Kronecker delta 

functions when the variance tends to infinity, and 

realizations of the related stochastic processes, c) 

and d), respectively. 

 Therefore, the pdf function is defined as the 

Dirac delta at x = 0 having the weight one, and by a 

stream of delta functions of zero weights for all the 

other values s, as presented in Fig. 11a).  In between 

these delta impulses, the pdf function values are 

zero. Therefore, the zero-weight delta functions fill 

in the x-axis and make it to be continuous.  
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Figure 11 Discrete uniform pdf function 

represented by a) Dirac and b) Kronecker delta 

functions when the variance tends to zero, and 
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realizations of the related stochastic processes, c) 

and d), respectively. 

If the pdf function is expressed in terms of 

Kronecker delta functions and the interval S tends to 

zero, the pdf function is 
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 This pdf function can be understood as the 

Kronecker delta at x = 0 and by a stream of delta 

functions of zero weights for all other x = s discrete 

values. In between these delta functions, the pdf 

function values are not defined. This function is 

presented in Fig. 11b), and the related all-zero 

discrete-time random signal in Fig. 11d).  

 

3.2 Information function 
 Assuming that the pdf function is expressed in 

terms of Dirac delta functions, we will separately 

define and use the information function I(X) that 

contains the information content, or the information, 

of the random variable X. Having in mind the 

properties of the delta function, the information 

function can be derived in this form 
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Similarly, if the pdf function is expressed in terms 

of Kronecker delta functions, the information 

function is 
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due to the definition of the Kronecker delta 

function. For example, if S = 2 we may have 
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(24) 

 

The graphs of both information functions, for Dirac 

and Kronecker delta functions, are presented in Fig. 

12a) and 12b), respectively. 

 The pdf function and information function are 

precisely calculated and presented in Fig. 17a) and 

17b), for S = 0, 1, 2, and 4 defining the interval of 

pdf function values that are different from zero. The 

values of the defined information functions are 

presented for all values of the independent variable 

x from –∞ to +∞. This presentation is important to 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2022.19.12 Stevan Berber

E-ISSN: 2224-3402 124 Volume 19, 2022



be understood because we will investigate the 

behavior of these functions when the variance, or 

the interval S of these functions, tends to infinity 

and reaches the infinite value.  
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Figure 12 Information functions represented by a) 

Dirac and b) Kronecker delta functions for S = 2. 

 

 Parameter σd or S tends to infinity. We will 

investigate the information contents of the random 

variable X for two limit cases when σd or S tends to 

infinity or zero. For the first case, if Dirac delta 

functions are used, the information can be calculated 

using properties of the impulse function as 
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for all valuesx x  , or in a simplified 

form as 
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for all valuesx x  . We can understand 

this function in the following way. When the 

interval S of random variable values tends to 

infinity, all values of the random variable X will 

potentially exist and appear with an infinitesimally 

small probability. Thus, having these small 

probabilities of appearance, the information content 

of all of them will tend to infinity. This limit 

information function is shown in Fig. 13a). 

 If Kronecker delta functions are used, the 

information function is 
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or in simplified forms as 
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 This function is presented in Fig. 13b). We can 

understand this function in the following way. When 

the interval S of random variable values tends to 

infinity, all values of the random variable at discrete 

instants x = s will potentially exist and appear with 

the infinitesimally small probability nearly equal to 

zero. Thus, having these small probabilities of 

appearance, the information content of all of them 
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will be close to infinity. Between any two 

neighboring discrete instants, x = s, the information 

function does not exist, i.e., it is not defined, as the 

pdf function values in these intervals are not defined 

as shown in Fig. 10b).  
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Figure 13 Discrete uniform information function 

represented by a) Dirac and b) Kronecker delta 

functions when the variance tends to infinity. 

 Parameter σd or S tends to zero. The 

information function, for Dirac delta functions, can 

be expressed as  
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and calculated in this form 
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or, in its simplified form as  
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The information function is presented in Fig. 14a). 

In this case, the minimum information content is 

again 0 for x = 0, as shown in Fig. 14a). For this 

discrete case, we are certain that any realization x of 

the random variable X will be zero and there is no 

uncertainty (information) about the value of this 

realization, i.e., the information takes the minimum 

value which is 0. The other discrete events of X 

different from zero, and defined at the instants x = s, 

are occurring with the probability of 0. We are 

certain these events will not happen, thus their 

information content is infinite, as shown in Fig. 14a) 

by arrow lines pointing to the infinity. The infinite 

values for the information are symbolically 

presented by Dirac delta functions defined at 

instants x = s. The probability of random values x ≠ 

s is zero and their information content is infinite, 

which is presented by the left-right arrows at the top 

in Fig. 14a. In this case, a realization of a stochastic 

process X(n), defined by X at any discrete time-

instant n, is a discrete process having amplitudes of 

zero values, as shown in Fig. 15. Zero sample values 

(outcomes) occur for sure, they are certain events at 

all time instants n. Between the time instants n the 

random signal x2(n) preserves zero values because 

of the zero probability of events that occur between 

discrete realizations defined by any x = s, as shown 

in Fig. 11a).  

 If the σd or S tends to zero, the information 

function, for Kronecker delta functions, is 
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Figure 14 Discrete uniform information functions 

represented by a) Dirac and b) Kronecker delta 

functions when the variance tends to zero.  

 

In this case, the minimum information content is 0 

at the origin, as shown in Fig. 14b), unlike for the 

continuous random variable when the minimum 

information content is –∞ and represented by an 

inverted Dirac delta function, as shown in Fig. 6b). 

For this case, we are certain that any realization of 

the random variable X will be zero and there is no 

uncertainty (information) about the value of this 

realization, i.e., the information takes the minimum 

value which is 0. The information content remains 

of the +∞ value everywhere else on the x-axis where 

the discrete pdf function of X has zero value, i.e., for 

x = s. Let us explain the behavior of the information 

function for these two presentations. A realization of 

the related stochastic process X(n), defined by 

random variable X at any time-instant n, is a 

discrete-time process having amplitude zero at 

points in time n and is not defined between these 

points, as shown in Fig. 16 for a hypothetical 

random signal x(n). Zero random values (outcomes) 

occur for sure; they are certain events at all time 

instants n and carry no information. Because a zero 

outcome occurs with the probability of one for every 

n, the information content is zero, as shown in Fig. 

14b). The other events of X at the instants x = s ≠ 0 

are occurring with the probability of 0, therefore 

their information content is infinite, as shown in Fig. 

14b). For that reason, the random signal in Fig. 16 

does not have any amplitudes greater than zero. The 

dependence of the pdf and information function on 

the interval S is presented in Fig. 17.   
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Figure 15 Realizations of a continuous-time and 

discrete-valued stochastic process defined by 

random variable X having the uniform pdf function 

expressed by the Dirac delta function for S = 0. 
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Figure 16 A realization of discrete-time and 

discrete-valued stochastic processes defined by 

random variable X having the uniform pdf function 

expressed by a Kronecker delta function at S = 0. 
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Figure 17 a) Discrete uniform pdf function 

presented by Kronecker delta functions, b) related 

information and entropy functions, and c) an 

exemplary realization of the related stochastic 

process.  

 

 The pdf function is expressed in terms of 

Kronecker functions in Fig. 17a) for the mean value 
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equal to zero and varying values of discrete interval 

S = 0, 1, 2, and 4. The related dependence of the 

information function on the interval S is presented in 

Fig. 17b). The information function values 

(information contents) of random values x are 

increasing when the values of the pdf function are 

decreasing. For the zero-values of the pdf function, 

the information function is of the infinite value, 

which is symbolically presented by non-overlapping 

dashed and dashed-dot straight arrow lines in Fig. 

17b). When the interval S of the pdf function tends 

to infinity, the discrete information function values 

tend to infinity. When S reaches infinity, all the 

information values are equal to infinity 

corresponding to the pdf function with all zero 

values. 

 If we form a discrete-time stochastic process 

defined by the realizations of random variable X at 

each discrete-time instant n, we may represent the 

related realizations of three processes for pdf 

functions of X defined by S = 2, 0, and 1, as shown 

in Fig. 17c). These three random signals are 

presented on the same graph for the sake of 

explanation. The first realization x1(n) takes the 

whole values between 2 and -2 in the time interval 0 

to 7. The second realization x2(n) is represented by 

zero amplitudes at each discrete-time instant inside 

the interval from 8 to 23. The third realization x3(n) 

takes the integer values from -1 to 1 in the interval 

from 24 to 31. The presented processes are discrete-

time and discrete-valued processes. The presented 

analysis will be valid for the case when we use 

Dirac delta functions to represent the pdf function, 

which will produce a continuous-time discrete-

valued process. Precise exemplary calculations for 

the discrete pdf function and related information 

function are presented in Fig. 18. When the interval 

S increases from 0 to 20, the information values are 

increasing from 0 to the value above 5, as shown by 

cycles in Fig. 18. For the same S values, the pdf 

function values are increasing from 1/4 to one, as 

shown by squares in Fig. 18. 

 

 
 

Figure 18 Discrete information functions (circles), 

and uniform pdf functions (squares) for the interval 

S as a parameter.  

3.3  Entropy   
 Dirac delta function. By following Shannon’s 

theory [1], the entropy can be calculated as the mean 

value of the information function using the integral 

transform. If the pdf function is expressed in terms 

of Dirac delta functions, as in Berber’s paper [13], 

the entropy function is expressed as follows  
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The solution of the integral is 
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 Kronecker delta function. The same result can 

be obtained if we express the pdf function in terms 

of Kronecker delta functions. In this case, we will 

express the entropy as a sum 
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



  

 

. 

 

 Using the sifting property of the delta function, 

we may solve the sum for x as follows 

 

 
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 
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 

 

, 

 

and then each sum is calculated as follows 
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 
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 
     


  

 







 2log (2 1)S

  



. (34) 

 

The entropy values are numbers that are always zero 

or positive for the discrete case, and represent the 

average value of information (uncertainty) per 

random value x of X. Due to our intention to 

investigate the entropy as a function of the variance,
2 ( 1) / 3d S S    or as a function of the width of 

interval S, we denote the entropy as H(X). The 

positive values of the entropy are increasing inside 

the interval S when the interval width is increasing 

as shown in Fig. 19 for the intervals defined with S 

= 0, 1, 2, and 4 with the corresponding values of the 

entropy that are presented in italic font.  

 Parameter σd or S tends to infinity. 

Kronecker delta function. If the interval S tends to 

infinity someone can calculate mistakenly the 

entropy in infinity using expression (34) as  

 

2( ) lim log (2 1)
S

d

H X S







       (35) 

 

However, in this case, the influence of the zero 

values of the pdf function in infinity is not taken 

into account. When the interval S reaches infinity, 

the entropy should be calculated using its definition, 

which will include the zero-valued probabilities in 

the pdf function, i.e., 

 

2

2

( ) lim ( ) log ( )

lim 0log 0 0

d

d

s

d d
S

s

s

S
s

H X f x f x

















 
  

 

 
   

 





.  (36) 

 

In this case, all random variable values x are in the 

infinite interval stretching from –∞ to +∞ and occur 

with the probability of zero. To consider these 

probability values we can confirm (36) by 

calculating the entropy using a mid-term derivative 

of entropy (34) as follows. The limit is 

 

2

1 1
( ) lim ( ) log lim log(2 1)

( ) 2 1
d d

x x S

d
S S

x x Sd

H X f x S
f x S

 

 


 

  

   


 

 

Then, following the rule that the limit of the sum is 

equal to the sum of the limits, we are getting an 

indeterminate case 0  that requires us to apply 

the L’Hopital’s rule to get 
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d

n S

S
n S eS






 

 


    (37) 

 

 Therefore, considering the values of the 

information and corresponding probability values, 

the entropy, as the measure of the average 

information contents inside the random values x, is 

zero. These entropy values are presented in Fig. 19 

by cycles connected by a full curve that reaches 

infinite entropy, which then drops back to zero 

entropy as symbolically presented by a dashed curve 

alongside the full curve.  

 It is important to note the following two 

properties of entropy, its infinite value when S tends 

to infinity, and zero value when S reaches infinity. 

While the discrete interval S tends to infinity the 

calculated entropy value in the interval S tends to 

infinity and is zero beyond the S interval. In infinity, 

the intervals of random variable x with zero values 

of entropy disappear, and in the entire infinite 

interval, the entropy becomes zero because the S 

value reaches infinity. The appearance of any value 

x of the random variable X is happening with the 

probability of zero and its information content is 

infinite, as will be seen from the following analysis. 

 Dirac delta function. If the pdf function is 

expressed in terms of Dirac delta functions, then the 

pdf function in infinity will have all zero values and 

the entropy value is zero calculated as follows  

 

2

2

( ) lim ( ) log ( )

0log 0 0

d
d dH X f x f x dx

dx














 

 
   
 





.  (38) 

 

Therefore, considering the values of the information 

and corresponding probability values, the entropy, 

as the measure of the average information content 

inside the random values x, is zero when the interval 

S reaches infinity. 

 Parameter σd or S tends to zero. Kronecker 

delta function. For the Kronecker delta function 

presentation and the case when parameter σd or S 

tends to zero, the entropy value can be calculated as 

follows 

 

0
0

0

2
0

1
( ) lim log(2 1)

2 1

limlog (2 1) 0

d

n S

S
n S

S

H X S
S

S






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

  


   

    (39) 

 

The dependence of the pdf function values, 

information, and entropy on the size of interval S is 

presented in Fig. 19.  

 Dirac delta function. If the information is 

expressed in terms of Dirac delta functions, we may 

have 

 

0 2
0 0

( ) lim ( ) limlog (2 1) 0
S S

H X H X S
 

        (40) 

 

The calculated entropy values are increasing 

towards infinity when S tends to infinity. When S 

reaches infinity, the entropy drops down from the 

infinite value to zero, as shown in eq.  (36), which is 

presented by a full curve with a loop at the end (in 

infinity) and a dashed arrow curve showing 

symbolically the return of the entropy to zero.   
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Figure 19 Discrete uniform pdf function and related 

information and entropy as functions of the size of 

interval S.  

 

4 Conclusions 
The presented theory has shown that the 

entropy of the uniform stochastic process, 

having a time-dependent variance, increases in 

time, reaches infinity, and then drops to zero 

showing the singularity property in infinity.  In 

contrast to the entropy function of the process, 

all information function values tend to infinity 

when the variance tends to infinite and attains 

infinite values for the infinite variance. The 

paper presented precise definitions and related 

derivatives of the information and entropy 

functions both for the continuous and discrete 

uniform random variables assuming that the 

variance can have any value between zero and 

infinity. In particular, a uniform density 

function with the variance that linearly depends 

on time is defined and derived, and related non-
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stationary processes are formed. This function 

takes all zero values in infinity causing 

singularity behavior of the entropy function. 

Due to the possible existence of the continuous 

and discrete processes in a stochastic system, 

the time-dependent continuous and discrete 

probability density functions and related 

information and entropy functions are derived. 
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