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Abstract: - The behavior of two types of finite automata in a non-stationary fuzzy environment is considered, 
which, depending on the states of the automata, encourages or punishes them with some fixed membership 
functions. It is assumed that the behavior of automata in a fuzzy environment is described by generalized 
ergodic Markov chains and, using the property of such chains, it is shown that the considered automata, under 
certain conditions on fuzzy punishment functions, are learners and predominantly perform the action for which 
the sum of fuzzy functions of belonging to punishment is minimal. 
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1 Introduction 
In Markov models of a complex system, finite 
automata  are widely used,  both deterministic and 
probabilistic structures. The idea that finite automata 
are a very convenient object for constructing 
mathematical models of complex systems was first 
expressed by J. von Neumann [1]. However, the 
direction of work related to the construction of 
automaton models of behavior was formulated and 
developed by M. L. Tsetlin. As an elementary 
behavioral task, he chose the problem of choosing one 
of several actions with random reinforcement - the 
task about behavior of an automaton in a random 
environment. He owns the well-known construction of 
a finite automaton with linear tactics, which forms an 
asymptotically optimal sequence in a stationary 
random environment [2]. Then V.I. Krinsky, 
according to the rule [3],  in which first  has been 
reviewed  the problem of sequential selection of one 
of two ways of action, each of which can lead to 
success or failure,  built a finite-automaton 
construction and studied its behavior in a stationary 
random environment [4]. 

It was believed that the behavior of a finite 
automaton V. I. Krinsky  is asymptotically optimal in 
any stationary random environment. However, in [5] 
it is shown that it is not at all this: the behavior of the 
finite automaton V. I. Krinsky in a stationary random 
environment can be either optimal or anti-optimal, 
depending on the initial state of the automaton. 

Recently, the theory of fuzzy sets proposed by L. 
Zadeh [6], has attracted great interest from 
researchers in various fields. However, if the study of 
the behavior of the probability systems is based on 
the classical apparatus of probabilistic Markov chains 
and has a huge statistical base, then for systems with 
fuzzy information there is no such statistical base and 
mathematical apparatus yet. Such an analysis became 
possible after some generalization of the apparatus of 
Markov chains to the non-probability case [7]. Using 
this apparatus, in [8] the behavior of an finite 
automaton with linear tactics of M. L. Tsetlin's  in a 
stationary fuzzy environment was investigated, and in 
[9] - the behavior of the finite automaton V.I. 
Krinsky's, where the formulas are obtained connect 
fuzzy statements about the internal states of the 
automaton with its actions.              

In this work, based on the finite automata of M. L. 
Tsetlin's  and V.I. Krinsky's, more general algorithm 
for the behavior of  these finite automata and their 
functioning in a non-stationary fuzzy environment is 
considered. The fuzzy environment, depending on the 
states of the automata, encourages or punishes these 
automata with some fuzzy membership functions. 
Assuming that the behavior of automata in such an 
environment is described by generalized ergodic 
Markov chains and it is shown on the basis of the 
properties of such chains that the finite automata 
under consideration, subject to certain conditions on 
fuzzy punishment functions, are learnable and they 
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basically perform an action, for which the sum of 
fuzzy functions of belonging to the punishment is 
minimal. 

 
 

2 Behavior of a finite automaton      
   

 

in a non-stationary fuzzy environment 

Consider a finite automaton      
   , which has    

internal states       
   

   
   , and   

   
   

   
  . 

In the states of depth      ̅̅ ̅̅ ̅ of the subset   
   , 

      the automaton performs the action   , 
       So the state number corresponds to the state 
depth and the automaton has a finite depth  . When 
encouraged, the automaton from the state of depth   
of the subset   

   ,       goes into the state of 
depth     , at a punishment in the state of depth 
            ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in the same subset. The change 
of actions of the automaton occurs from the state of 
depth    : the automaton, being in the state of 
depth     of the subset   

   ,      , at a punish, 
goes in the state of depth      in another subset.           
The graphs of transitions between the states of the 
finite automaton      

    are shown in Fig. 1.  
In this figure, the upper graph corresponds to the 

transitions between the states of the automaton at 
encouragements, and the lower graph - at  
punishments.  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig: 1. Graphs of transition between states for a finite 

automaton       
    with two actions in the subset 
      

   
   

    
 

Note that the automaton      
    for       is a finite 

linear automaton by M.L. Tsetlin's [3], and for   
     it is a finite automaton with hysteresis tactics 
[10]. 

Let the automaton      
      be placed in a non-

stationary fuzzy environment and assume that 
  
   

    means the function of belonging to the states 
of automaton of depth   (     ̅̅ ̅̅ ̅  and 
corresponding to the action   ,        at times 
         . The interaction of an automaton with the 
environment is determined according to a fuzzy 
scheme as follows: the automaton being in the state 
of depth   of the subset   

   ,        is punished 
with the membership function   

    or rewarded with 
the membership function (    

   
 ,       ̅̅ ̅̅ ̅   

     .   
We will assume that the system “automaton - 

fuzzy environment” is described by a generalized 
Markov chain [7], which is ergodic and in it over 
time "fuzzy flows" are formed   

   
  
   

      ̅̅ ̅̅ ̅   
     . 

Then taking into account the properties of the 
ergodic Markov chain, “fuzzy flows” from   

    to  
  
    and back are balance, i.e. 

  
   

  
   

    
   

  
   ,                         (1) 

and “fuzzy flows” from the state of the automaton in 
the subset   

    of depth     in the state of depth 
      and back differ in “fuzzy flow”   

   
  
     

for      ̅̅ ̅̅ , and for        ̅̅ ̅̅ ̅̅ ̅̅ ̅ this difference is 
compensated by the “fuzzy flow”   

   
  
     from the 

subset    
   . 

Thus, 
  
     

    (      
   )     

      
     

         ̅̅ ̅̅       

   
   

  
   

   
   

  
   

 (      
   )     

   
   

   
  
   

   
        ̅̅ ̅̅ ̅̅ ̅̅ ̅   

and given (1)    
  
   

  
    (      

   )     
                ̅̅ ̅̅ ̅̅ ̅̅ ̅ ,      

Similarly, for the subset   
   we have: 

  
   

  
    (    

   )    
      

   
  
   ,      ̅̅ ̅̅    

  
   

  
    (      

   )     
                ̅̅ ̅̅ ̅̅ ̅̅ ̅      

Then, from (2) and (3):  

   
    

  
   

  
   

{  ∑ ∏
    

   

  
   

   

   

   

   

}    
        

     ̅̅ ̅̅     

   
    

  
   

  
   

∏
    

   

  
   

   

   

   
               ̅̅ ̅̅ ̅̅ ̅̅ ̅         

From (4) 
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{  ∑∏
    

   

  
   

   

   

   

   

}    
   

  

Then, from (5) we will have:   

   
   

 
  
   

  
   

{  ∑∏
    

   

  
   

   

   

   

   

}   

 ∏
    

   

  
   

   

   

   
   

           ̅̅ ̅̅ ̅̅ ̅̅ ̅   

Similarly, for the subset   
       we have:  

   
   

 
  
   

  
   

{  ∑ ∏
    

   

  
   

   

   

   

   

}    
   

     

      ̅̅ ̅̅  , 

  
   

 
  
   

  
   

∏
    

   

  
   

   

   

   
   

             ̅̅ ̅̅ ̅̅ ̅̅ ̅       

From     we have: 

   
    

  
   

  
   

{  ∑∏
    

   

  
   

   

   

   

   

}    
     

   
    

  
   

  
   

{  ∑∏
    

   

  
   

   

   

   

   

}   

 ∏
    

   

  
   

   

   

   
   

            ̅̅ ̅̅ ̅̅ ̅̅ ̅               

Taking into account    , we express from     and 
    all    

   ,      ̅̅ ̅̅ ̅  in terms of    
    : 

   
    

  
   

  
   

{  ∑∏
    

   

  
   

 

   

   

   

}    
          

     ̅̅ ̅̅    

   
    

  
   

  
   

{  ∑∏
    

   

  
   

   

   

   

   

}   

 ∏
    

   

  
   

   

   

   
           ̅̅ ̅̅ ̅̅ ̅̅ ̅  

Let us now define the fuzzy membership functions 
     of the state of the automaton to the subset    

   , 
in which the automaton performs the action    , 
     . It is shown in [8, 11] that the final 
membership function   coming from   sources 
           is determined by the expression  

               
 ∑  

 

 ∑    

   

 ∑       

     

           

 

which can be rewritten in the following form 
               

                               

   ∏      

 

   

  

Then the final fuzzy membership function      of 
the state of the automaton of the subset   

   , in which 
the automaton      

    performs the first action, 

       ∏(     
   )

 

   

∏ (     
   )  
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   )                      

 ∏(  
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 ∏
    

   

  
   

   

   

   
                               

and for the final fuzzy membership function       the 
state of the automaton of the subset    

    in which the 
automaton      

    performs the second action, 

       ∏(     
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 ∏
    

   

  
   

   

   

   
                          

where    
    is a positive constant such that    

      
and its value can be calculated from the obvious 
equality 

           . 
Let us now analyze the results by comparing the 

membership function     , which is responsible for 
performing the action   , with the membership 
function     , which is responsible for performing 
the action   . We will assume that of the two actions 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2021.18.21 Tariel Khvedelidze

E-ISSN: 2224-3402 174 Volume 18, 2021



   and   , the best is the action for which the sum of 
fuzzy functions of membership in the punishment is 
minimal, i.e. if 

∑   
 

 

   

 ∑   
 

 

   

               

 
then the best action we will consider the action 
         . To fulfill this inequality, we can 
consider various possible cases of comparing the 
parameters   

    and    
   ,      ̅̅ ̅̅ ̅             

      However, it is easy to verify that it is 
necessary satisfied if  

   
 

  
   

    
 

  
   

                          
     ̅̅ ̅̅ ̅              

For definiteness, we will assume that 
   

 
  
   

    
 

  
   

            ̅̅ ̅̅ ̅  
Then it follows from     and     that      

       that is, the membership function responsible 
for the action     will be greater than the membership 
function responsible for the  action   . If at the same 
time the is also carried inequality  

   
 

  
     

 ⁄     
 

  
             ̅̅ ̅̅ ̅  

then          и          when    .   
 

 

3 Behavior of a finite automaton      
   

 

in a non-stationary fuzzy environment 
Let us now consider the behavior of a finite 
automaton      

    in a fuzzy environment. In case of 
punishment , the transitions between the states of the 
finite automaton      

    are the same as those of the 
finite line automaton      

   , and with encouraged, the 
automaton      

    from any state of depth   of the 
subset   

   ,       goes over to the "deepest" state 
    of the same subset. The graphs of transitions 
between states of the finite automaton      

    are 
shown in Fig. 2.  

In this figure, the upper graph corresponds to the 
transitions between the states of the automaton at 
encouragements, and the lower graph - at  
punishments. 

Note that the automaton      
     for     is a finite 

automaton of V. I. Krinsky, and for      it is a 
finite automaton of H. Robbins [12].   

We assume that the behavior of the automaton 
     

    in a fuzzy environment is described by a 
generalized ergodic Markov chain.  
 
  
 
 
 
 
 

 
 
 
 
 
 

Fig: 2. Graphs of transition between states for a finite 
automaton      

    with two actions in the subset 
      

   
   

    
 

Then for this automaton, “fuzzy flows” from   
    

in   
    and back is are also balance, i.e. equality is 

fulfilled 
  
   

  
   

    
   

  
   

                     (11) 
For the balance of   “fuzzy flows” between states 

in the subset   
    we have: 

  
     

    ∑ (    
   )

   

   

  
      

     
                

       ̅̅ ̅̅      

  
     

    ∑ (    
   )

   

   

  
                      

         ̅̅ ̅̅ ̅̅ ̅̅ ̅     
Similarly, for the subset    

   , we have:  

  
     

    ∑ (    
   )

   

   

  
      

     
               

       ̅̅ ̅̅     

  
     

    ∑ (    
   )

   

   

  
                    

         ̅̅ ̅̅ ̅̅ ̅̅ ̅    
 

Expressing all    
    and    

    (     ̅̅ ̅̅ ̅   from 
           in terms of    

    and    
    respectively, 

we obtain that 

   
      

   (∏  
   

 

   

)

  

   
              ̅̅ ̅̅    
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Taking into account (11),   we now express all 

   
     (     ̅̅ ̅̅ ̅   in terms of    

   .  Finally, we will 
have: 
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Then the fuzzy membership function      of the 
state of the automaton of the subset    

   , in which 
the automaton      

    performs the first action, 

       ∏(     
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Similarly, for the second action of the automaton, 

we obtain: 
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 It follows from             that  
         ,  

 if     

∏  
   

 

   

 ∏  
   

 

 

   

 

To fulfill this inequality, one can also consider 
various possible cases of comparing the values   

    
and    

   ,      ̅̅ ̅̅ ̅                    However, 
it is certainly  fulfilled  if condition (10)  is satisfied. 
 
 
4 Conclusion 
Let us formulate the results of the study of the 
behavior of automata in a more general form. 

Thus, in a non-stationary fuzzy environment, 
which encourages or punishes the finite automata 
     
    and      

    with some fixed membership  
functions, which in turn depend on the states of the 
automata,  is observed the fact of  learning  these 
automata  and they often perform the action    or   , 
for  which  

   
 

  
   

    
 

  
   

  
      ̅̅ ̅̅ ̅                                

Moreover, if the memory depth of the automaton 
     
         ,   then the automaton      

     in a non-
stationary fuzzy environment is asymptotically 
optimal if 

   
 

  
   

  
 ⁄     

 
  
   

    
     ̅̅ ̅̅ ̅                    

If    
  
   

  
 ⁄    or     

   
  

 ⁄            , 

then the asymptotically optimal behavior of the 
automaton      

    is impossible.  
The finite automaton      

     as       is 
asymptotically optimal or anti-optimal depending on 
the initial state of the automaton. Indeed, being in any 
of the possible states of the subset   

    or   
   

  
                , then at the first punishment the 
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can go into the deepest state of the same subset and 
will forever remain there. 

Note that, if        and     
   

   
   

        

   ̅̅ ̅̅ ̅         , then the non-stationary fuzzy  
environment becomes is a stationary fuzzy 
environment and the results obtained coincide with 
the results  for  automata M.L. Tsetlin's       

     and 
V.I. Krinsky's       

     of  [8] and [9].   
The results obtained can be easily extended to the 

case of any number actions of automata      
     and   

     
   . 

We noted above that the theory of probability has 
serious experimental support in statistics, in contrast 
to the theory of fuzzy sets. Therefore, the results 
obtained in the present article can be considered as 
another example for statistics of fuzzy systems.   
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