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Abstract:  Some results for the traveling salesman problem (TSP) are known for a prime number of cities.  
In this paper we extend these results to an odd number of cities.  For an odd integer n, we show that there is 

an algorithm that generates n
 

– 1 cyclic permutations, called tours for the traveling salesman problem, 
which cover the distance matrix. 

 
The algorithm allows construction of a two-dimensional array of all tours 

for the TSP on an odd number of cities. 
 
The array has the following properties: (i) A tour on a vertical line 

in the array moves the salesman uniquely compared to all other tours on the vertical line.  (ii) The sum of 
the lengths of all tours on a vertical line is equal to the sum of all non-diagonal elements in the distance 
matrix for the TSP. 
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1  Introduction 
The ideas in this paper extend the results in [1] 
where it is shown for a prime number of cities n, 
that the distance matrix for a traveling salesman 
problem (TSP) is covered by P, P2, …, Pn-1 where 
P is a cyclic permutation of the n cities.  Our main 
result extends this to odd integers.  In other 
words, in [1] each entry in the distance matrix is 
used exactly once to evaluate P, P2, …, Pn-1 when 
n is a prime number.  We generalize this to odd 
integers, which leads to geometric and analytic 
properties about the covering of the distance 
matrix.  It is open question to determine if there 
is an extension to even integers.  All integers are 
assumed to be positive. 
     This paper is more than nice, simple remarks.  
It was motivated by the hope of finding structure 
for the TSP that would yield insight to the P = NP 
question.  This insight is an open area. 
     A permutation is a one-to-one mapping of a 
finite set into itself.  A cycle is a circular 
rearrangement of the permuted elements.   A 
cyclic permutation has only one cycle which is 
called a tour for the TSP.  We arrange 

permutations so that object 1 is in position 1.  For 
example, (1324) is a cyclic permutation on four 
objects that maps 1->3, 3->2, 2->4 and 4->1.  If 
P is a permutation and k is a positive integer, then 
Pk signifies P being applied k times and is called 
the kth power of P.  The square of the previous 
example is 1->2, 2->1, 3->4 and 4->3 and is 
(12)(34) in cycle notation.  It has two cycles and 
is not a cyclic permutation. 
     Given n cities and the distance between each 
pair of cities, the TSP asks for a shortest route that 
visits each city once and returns to the starting 
city.  If dij is the distance from city i to city j, the 
TSP asks for a cyclic permutation µ of {1, 2, …, 
n} such that ∑ 𝑑𝑖µ(i)

𝑛
𝑖=1  is a minimum over all 

cyclic permutations of {1, 2, …, n}.  The distance 
matrix for a TSP on n cities is the n x n matrix 
with entries dij.  The cities are designated 1, 2, …, 
n.  A tour for a TSP on n cities is a cyclic 
permutation of {1, 2, …, n}.  A covering of an n 
x n distance matrix is a set of tours such that if i 
and j are in {1, 2, …, n} and i ≠ j, then there is a 
tour µ in the set such that µ(i) = j.  If P = (1 p1 p2 
… pn-1) and T = (1 t1 t2 … tn-1) are tours, we say 
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that P moves the salesman uniquely compared to 
T if pj ≠ tj for each j in {2, …, n }. 
     Reference books [2–7] and papers [8-10] 
testify to the importance and many applications 
of the TSP.   
     Distance matrices characterize the TSP.  
Some properties of distance matrices are in [2, 
Chapter 4].  The work in [11, Section 2] has a 
classification of distance matrices.  In [12, 
Section 4] a canonical form is given for distance 
matrices and it is shown how to transform a given 
distance matrix to its canonical form in 
polynomial time.  Reference [13] contains basic 
work about permutations, some of which applies 
to the TSP.  Reference [14] is an excellent paper 
about generating permutations that is distinct 
from our results. 
     Section 2 of this paper contains results about 
entwined sets of permutations.  In Section 3 we 
show that the set of powers of a cyclic 
permutation has five properties when the number 
of elements in the permutation is a prime.  In 
Section 4 the properties are used to find an 
algorithm that constructs n – 1 cyclic permu-
tations that cover the distance matrix when n is 
odd and n is the number of cities.  Geometric and 
analytic applications to the TSP are developed in 
Section 5 for an odd number of cities.  Section 6 
concludes with an open question about an 
algorithm for an even number of cities and 
several results for the even case. 

2  Entwined Set of Permutations 
Entwined sets of permutations, all on the same set 
of objects, will be useful to describe our work.  
We will define this concept and prove some 
features about it. 
     Let ᴪ be a set of permutations on the same 
objects.  We define ᴪ to be entwined if there is an 
object j and there is a pair of permutations A and 
B in ᴪ such that A(j) = B(j).  Otherwise, we say 
that ᴪ is non-entwined. 
     Theorem 2.1.  A set of permutations on {1, 2, 
…, n} is non-entwined if and only if each of its 
subsets of order 2 is non-entwined. 
     Proof.  The theorem is easily verified in both 
directions by the definition of entwined set. 

     Theorem 2.2.  Let T and U be permutations on 
n objects.  If {T, U} is a non-entwined set, then 
{T-1, U-1} is non-entwined. 
     Proof.  Suppose {T-1, U-1} is entwined.  Then 
for some x in {1, 2, …n}, it follows that T-1(x) = 
U-1(x).  Then T(T-1(x)) = x = U(U-1(x)), which 
means that {T, U} is entwined. 
     Corollary 2.1.  Let £ be a set of permutations 
on n objects.  If £ is a non-entwined set, then the 
set of inverses of permutations in £ is non-
entwined. 
     Theorem 2.3.  Let T be a cyclic permutation 
on {1, 2, …, n}.  The set {T, T-1} is non-entwined 
if and only if n > 2. 
     Proof.  If n > 2 and x is in {1, 2, …, n}, then 
there are unique w and y in {1, 2, …, n} such that 
T = (1…wxy…).  Thus T(x) = y ≠ w = T-1(x).  On 
the other hand, if n ≤ 2, then T = T-1. 
     Theorem 2.4.  Let T and U be cyclic 
permutations on n objects for n > 2.  If {T, T-1, U} 
is a non-entwined set, then {T, T-1, U-1} is a non-
entwined set. 
     Proof.  We will show that {T, U-1} and {T-1, 
U-1} are non-entwined.  Since {T, T-1, U} is non-
entwined, {T, U} is non-entwined.  By Theorem 
2.2 {T-1, U-1} is non-entwined.  On the other 
hand, since {T, T-1, U} is non-entwined, {T-1, U} 
is non-entwined.  By Theorem 2.2 {T, U-1} is 
non-entwined. 
     Theorem 2.5.  Let T and U be cyclic 
permutations on n objects for n > 2.  If {T, T-1, U} 
is a non-entwined set, then {T, T-1, U, U-1} is a 
non-entwined set. 
     Proof.  By Theorem 2.3 {T, T-1} and {U, U-1} 
are non-entwined.  By Theorem 2.4, {T, T-1, U-1} 
is non-entwined, which implies that {T, U-1} and 
{T-1, U-1} are non-entwined.  By assumption {T, 
T-1, U} is non-entwined, which means that {T, U} 
and {T-1, U} are non-entwined.  We have checked 
that all two-element subsets of {T, T-1, U, U-1} are 
non-entwined, therefore {T, T-1, U, U-1} is a non-
entwined set. 
     Theorem 2.6.  Let Tj for j = 1, 2, …, k and U 
be cyclic permutations on n objects for n > 2.  If 
{Tj, Tj

-1, U :  j = 1, 2, …, k} is a non-entwined set, 
then {Tj Tj

-1, U, U-1 :  j = 1, 2, …, k} is a non-
entwined set. 
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     Proof.  By induction on k.  By Theorem 2.5 the 
result is true for k = 1.  We assume that the result 
is true for k – 1.  For each j we have {Tj

-1, U-1} is 
non-entwined.  Since {Tj Tj

-1} is non-entwined 
for each j by Theorem 2.3 and likewise {U, U-1}, 
it follows that all the pieces are in place for the 
result.  The pieces are the non-entwined subsets 
{Tj Tj

-1}, {Tj U}, {Tj U-1}, {Tj
-1 U}, {Tj

-1 U-1}, {U, 
U-1}. 

3  Properties of Sets of Cyclic 

Permutations for a Prime 
A cyclic permutation is characterized by having 
exactly one cycle.  It is well-known that if P is a 
cyclic permutation on n objects, then P2, P3, …, 
Pn-1 are cyclic permutations if and only if n is a 
prime number.  By relabeling, we may assume 
that P is the shift permutation S = (123…n).   
     A cycle in a permutation is a closed loop.  We 
will use cycle notation to specify a permutation, 
e.g., the permutation (123)(45) maps 1->2, 2->3, 
3->1, 4->5 and 5->4.  It has two cycles. 
     Let n be a prime number.  Let S = (123…n) be 
the shift permutation.  We define Γ = {S, S2, S3, 
…, Sn-1}.  Next we will list five properties of Γ.  
After sketching proofs of the properties, we will 
discuss uses of these properties.  

1. Each member of Γ is a cyclic permutation. 
2. Γ is a non-entwined set of permutations. 
3. Γ is a maximal, non-entwined set of per- 

mutations, in the sense that if P is a per- 
mutation on n objects, is not in Γ and is 
not the identity, then Γ ꓴ {P} is entwined. 

4. The inverse of each permutation in Γ is in 
Γ. 

5. Let k be in {1, 2, …, n – 1}.  If we write 
Sk = (1 t1 t2 … tn-1), then tj + tn - j = n + 2 for 
each j in {1, 2, …, n – 1}. 

Proof of Property 1.  n is a prime number. 
Proof of Property 2.  Sj(k) = (k + j – 1)(mod n) + 
1. 
Proof of Property 3.  Since permutation P is not 
the identity mapping, there is k in {1, 2, …, n} 
such that P(k) ≠ k.  By Property 2 {Sj(k) : j = 1, 2, 

…, n – 1} = {1, 2, …, n}\{k}, which contains 
P(k).  Thus, Γ ꓴ {P} is entwined. 
Proof of Property 4.  S-j = Sn-j for j in {1, 2, …, n 
– 1}. 
Proof of Property 5.  tj = (jk)(mod n) + 1 and tn-j = 
(n – jk)(mod n) + 1. 
     Property 1 assures that each member of Γ is a 
tour for the TSP.  We will use Properties 2 and 3 
in Section 5 to provide a geometric decom- 
position of the family of all tours for the TSP.  
The decomposition has useful analytical qual- 
ities.  Properties 4 and 5 add structure that we will 
use to generalize Γ in Section 4.  Property 5 re- 
quires that n be an odd integer. 

4  Sets of Cyclic Permutations for 

Odd Integers 
In this section we will describe an algorithm that 
constructs a set Θ of n – 1 permutations on n 
objects that satisfies Properties 1 – 5 in Section 3 
when n is an odd integer.  In addition, we want 
the shift permutation S = (123…n) to be in Θ.  We 
require that Θ ≠ Γ because Γ is not a set of cyclic 
permutations when n is not a prime. 
     Example 4.1.  Consider {S, T, U} where S = 
(1234567), T = (1352746) and U = (1426375).  
Then {S, T, U, S-1, T-1, U-1} satisfies all the 
requirements for Θ in the first paragraph of 
Section 4. This is the only such set for n = 7.  We 
note that T = S2 with objects 2 and 7 exchanged 
and U = S3 with objects 2 and 7 exchanged and 
objects 3 and 6 exchanged. 
     Example 4.2.  Consider the following set of 
cyclic permutations on 9 objects:  {S, X, Y, Z} 
where S = (123456789), X = (136947258), Y = 
(142683597) and Z = (157392846).  We observe 
that T and U in Example 4.1 and X and Y in 4.2 
have different patterns that require different 
algorithms to generate them. However, the result 
is similar, since {S, X, Y, Z, S-1, X-1, Y-1, Z-1} 
satisfies all the requirements for Θ in the first 
paragraph of this Section. 
     Given odd integer n and shift permutation S, 
how do we generate ((n – 1)/2) – 1 cyclic 
permutations on n such that the set of these 
permutations and their inverses satisfy Θ in the 
first paragraph? 
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     We observe that if n < 7, there are no sets Θ 
that differ from Γ and satisfy Properties 1 – 5 of 
Section 3.  First we observe that Property 5 
implies that n is an odd integer.  We work with n 
= 5 and renumber the objects so that S = (12345) 
is in Θ.  Then we enumerate the six cyclic 
permutations Tj = (13abc).  Lastly we consider 
the six possible sets Θ = {S, S-1, Tj and Tj

-1}.  
None of the sets Θ is different from Γ and satisfies 
Properties 1 – 5.   In conclusion, we may assume 
that n is an odd integer and n ≥ 7. 
     Let S = (123…n) be the shift permutation on n 
objects.  We would like cyclic permutations T1, 
T2, …, T(n-3)/2 based on S2, S3, …, S(n-1)/2 so that 
{S, T1, T2, …, T(n-3)/2, S-1, T1

-1, T2
-1, …, T(n-3)/2

-1} 
satisfies all the requirements for Θ in the first 
paragraph of this Section.   
     We found a two-step algorithm that will 
generate a set Θ for an odd integer n.  Step 1 finds 
a non-entwined set composed of (n – 1)/2 cyclic 
permutations on n objects.  Step 1 is awkward and 
unwieldy involving modifications to objects of 
permutations based on odd and even subscripts.  
Therefore, we do not present Step 1 here.  Step 2 
inserts the inverse of the permutations in Step 1.  
The result is a set containing cyclic permutations 
that is non-entwined by Theorem 2.6. 
     In summary, we have shown there are sets of 
cyclic permutations on n objects for n ≥ 7 and n 
odd, such that if a and b are distinct objects then 
there is exactly one permutation in the set that 
maps a to b.  A possible limitation is the difficulty 
to generate these sets. 

5  Application to the Traveling 

Salesman Problem 
We will form an (n – 1) x (n – 2)! array in the first 
quadrant of the plane that contains all tours for a 
TSP on n cities.  The array will have the property 
that any vertical line on the array has exactly one 
tour T such that T(j) = k for distinct j and k in the 
set of cities.  We assume that n is odd and n ≥ 7. 
     We place S = (123…n) at the origin of the 
array.  On the positive y-axis we place the n – 2 
members of Θ\{S} one unit apart.  Recall that Θ 
is described in the first paragraph of Section 4.   

     On the positive x-axis we place a tour that is 
not already in the array by interchanging two 
cities in the last entry on the x-axis.  There are 
several ways to do this, some of which are 
described in [15, Chapter 7].  We fill in the tours 
above the x-axis by making the same exchange of 
two cities as was done on the x-axis. 
     Theorem 5.1.  Let n be the number of cities in 
a TSP.   We assume that n is odd and n ≥ 7.  Each 
vertical line in the array has the property that if j 
and k are distinct cities, then there is precisely one 
tour T on the line such that T(j) = k. 

     Proof.  For n = 7 we demonstrated this result 
for Θ in Example 4.1 and extended it to larger n 
in Section 4. When two cities are permutated in a 
tour, the result continues to be valid. 
     Corollary 5.1.  Let djk where j ≠ k be a distance 
entry in the distance matrix.  Then there is 
precisely one tour on each vertical line which 
uses djk. 
     Corollary 5.2.  The sum of all the distance 
entries in the distance matrix equals the sum of all 
the distances for the tours on a vertical line.   This 
is valid for each vertical line in the array. 
     Recall that the diagonal entries in the distance 
matrix have no role for the TSP. 

  U-1     C-1 

  T-1     B-1 

  S-1     A-1 

  U     C 

  T     B 

  S     A 
     0    119 
Figure 5.1 First and Last Vertical Line of 
Tours for 7 Cities 

     In Figure 5.1 S, T and U are cyclic permu-
tations from Example 4.1.  The shift permutation 
S = (123…7) is at the origin. The others from 
Example 4.1 are arranged one unit apart on the 
vertical axis.  A new cyclic permutation for the 
horizontal axis can be obtained by interchanging 
two cities in the previous entry on the horizontal 
axis.  We designate the last one of these as A.  
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Entries on the vertical line containing A are 
obtained by making the same exchange on the 
corresponding entry in the previous column. 
     More precisely, let ᴪ be a mapping of {1, 2, 3, 
…, 7} onto itself. For a cyclic permutation Z = 
(s1s2s3...s7), we define ᴪ(Z) to be the cyclic 
permutation (ᴪ(s1)ᴪ(s2)…ᴪ(s7)). Returning to 
Figure 5.1, let ᴪ be such a mapping on S.  There 
are 119 = 5! – 1 such mappings on S for n = 7.  
We designate one of these mappings as ᴪ(S) = A 
and place A on the horizontal axis as the base for 
a new vertical line.  Then ᴪ(T) = B and ᴪ(U) = C. 

6  Generalization to the Even Case 
It is an open question whether there is algorithm 
that generates a non-entwined set of n – 1 cyclic 
permutations when n is an even integer.  The 
smallest even integer for which there is a set of n 
– 1 cyclic permutations that is non-entwined is n 
= 8.  These sets also exist for n = 10.  We con- 
jecture that they exist for all even integers greater 
than 7. 

Software: No commercial software was used for 
the technical features of this paper. 
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