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Abstract: Various switching networks have been investigated because of their practical importance and 
theoretical interests. Among these networks, this study focuses on the Clos network. A Clos network is 
constructed by placing switches in three stages. In the first and third stages, r (r > 1) switches are aligned, whereas 
m (m > 1) switches are aligned in the second stage. There are n inputs and m outputs in the first stage. Symmetrically, 
the third stage switch has m inputs and n outputs. For this configuration, if 2 2,n m n the network is 
rearrangeable. Though existing connections in a rearrangeable network may block a newly requested connection, 
the blocking is always removed by rerouting existing connections. An interesting problem arose during this 
process is how many existing connections must be rearranged: the number of rearrangements. Although the 
problem has been studied for a long time, the number of rearrangements is not completely clarified for arbitrary 
combinations of parameters m, n, and r. This study presents a new upper bound on the number of rearrangements 
for 2 2 2n m n . This bound is derived from the extended connection chain concept proposed in a previous 
study. Using this concept, the paper first derives from the case where a parameter, s, represents the load on a 
second-stage switch. Then, the paper presents another new upper bound, which is independent of parameter s. 
The study shows that the presented upper bound is smaller than the previously known bounds for a certain range 
of m. 
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1 Introduction 
A switch is an electric device with multiple 
inputs/outputs and can establish a connection 
between an input and an output. A switching network 
is a technique that constructs a large-scale switch 
with a smaller amount of hardware by 
interconnecting multiple small-sized switches. 
Various studies have been conducted on switching 
networks because of mathematical interests [1, 2], 
and important computer and communication system 
applications. 

Switching networks are categorized into blocking 
and non-blocking networks. Non-blocking networks 
can establish arbitrary connections between inputs 
and outputs, whereas blocking networks cannot 
establish connections between some pairs of input 
and output. Non-blocking networks are further 
categorized into several classes [1, 2]. Among them, 
this study focuses on a rearrangeable network. For a 
rearrangeable switching network, all connections can 
be established between inputs and outputs. In spite of 

this fact, when some connections are already set up 
on the network, a new connection request may be 
blocked by existing connections. However, the 
blocked request can always be unblocked by 
rearranging some existing connections to alternate 
routes.  

This study investigates the Clos network among 
switching networks, which was first presented by 
Clos [3] in 1953. A Clos network is constructed by 
placing switches in three stages. In the first stage, r 
(r > 1) switches are aligned, whereas the same 
number of switches are aligned in the third stage. 
First- and third-stage switches are linked to m (m > 1) 
second-stage switches. Each first-stage switch has n 
(n > 1) inputs, while each third-stage switch has n 
outputs. For this configuration, if 2 2,n m n  
then the Clos network is rearrangeable [1, 4]. A 
rearrangeable Clos network is significant because it 
can establish connections between inputs and outputs 
with less hardware than other non-blocking Clos 
networks. 
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Rearrangements of existing connections disturb 
data streams brought by the rerouted connections 
[5, 6]. To assess the degree of this disturbance, it is 
meaningful to evaluate how many times existing 
connections must be rearranged for unblocking. The 
analysis of the number of rearrangements is also a 
theoretically interesting challenge.  

For a rearrangeable Clos network, several bounds 
have been reported on the number of rearrangements. 
The maximum number of rearrangements required 
for unblocking is often denoted as (n, m, r). In 1962, 
Paull [7] studied n = m = r and showed that 

( , , ) 1n n n n . In a book published in 1965, 
Beneš [1] showed that ( , , ) 1n m r r . The case of 
m = 2n – 2 was also investigated in [8, 9]. Some 
studies analyzed (n, m, r) for the case where the 
load on a second-stage switch is limited to s (s > 0) 
[10, 11]. Here, the notation (n, m, r; s) is used to 
emphasize that s influences the number of 
rearrangements. Ohta [12] recently revealed a 
previously unknown upper bound on (n, m, r) for 
3 / 2 2 2.n m n  In spite of these efforts, 
(n, m, r) have not been completely known for an 

arbitrary combination of m, n, and r. 
To unblock the blocked connection request in a 

rearrangeable Clos network, it is necessary to identify 
the existing connections that should be rearranged. 
The connection chain concept [13] is a powerful tool 
for this purpose. The concept is also efficient in 
analyzing the properties of rearrangements [12]. In 
[14], an extended connection chain, a modified 
version of the connection chain, was proposed. It was 
shown that the number of rearrangements was 
decreased by employing the extended connection 
chain compared to employing the original connection 
chain. The effectiveness of an extended connection 
chain was confirmed through computer simulation 
for the average number of rearrangements [14]. 
However, no theoretical analysis of how the extended 
connection chain affects (n, m, r) has been 
conducted. 

This paper first presents an upper bound on 
(n, m, r; s) by analyzing the property of the 

extended connection chain. Although a similar bound 
has been reported in literature [10, 11], the presented 
bound is obtained by assuming a different 
rearrangement algorithm from previous studies. The 
paper then derived a new upper bound on (n, m, r) 
for 2 2 2n m n . This bound is independent of 
s and is not found in any past studies. The bound is 
also significant as theoretical evidence for the 
efficacy of the extended connection chain, which has 
only been empirically evaluated using computer 
simulation [14]. Finally, the new bound is compared 
with the previously known bounds. The result shows 

that the new bound is smaller than the known bounds 
for a certain range of m, n, and r. 

The remainder of the paper is organized as follows. 
Section 2 presents definitions and fundamentals to 
understand the contents of the paper. Section 3 
reviews related past studies. In Section 4, the 
extended connection chain concept is explored. The 
new upper bound on (n, m, r) is derived in Section 
5. Section 6 compares the bounds of this paper with 
the previously known bounds. Finally, Section 7 
concludes the paper. 

2 Preliminaries 
Fig. 1 shows an example of a Clos network. A Clos 
network is a three-stage switching network 
configured by placing r (r > 1) switches in the first 
stage, m (m > 1) switches in the second stage, and r 
switches in the third stage. A switch in the first or 
second stage is connected to each switch’s next stage 
through a single link. Therefore, each first-stage 
switch has m outputs for this link configuration, 
whereas each third stage has m inputs. Also, a 
second-stage switch has r inputs and r outputs. Each 
first-stage switch has n (n > 1) inputs. Symmetrically, 
each third-stage switch has n outputs. Parameters n, 
m, and r determine the scale of a Clos network. Using 
these parameters, the network is often denoted as 
C(n, m, r). 

 
Fig. 1 Clos network C(n, m, r). 

This paper assumes a classical switching 
environment, where every link is used at most one 
connection, and every connection is unicast. 
Additionally, it is also assumed that connection 
requests come one by one. This way of connection 
request arrivals is called dynamic traffic [1]. The 
paper does not treat scheduled traffic, where all 
requests are simultaneously provided. For the 
classical switching environment if 2 2n m n , 
the Clos network is rearrangeable. This means that 
existing connections may block a newly requested 
connection, but the blocking is always removed by 
adequately rearranging some existing connections. 
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Consequently, arbitrary permutations are achievable 
between inputs and outputs. 

In the following, second-stage switches are 
denoted as M1, M2, …, Mm. Additionally, the first-
stage switches are denoted as V1, V2, …, Vr, whereas 
the third-stage switches are denoted as W1, W2, …, Wr. 
Fig. 2 shows an example of blocking and unblocking 
through rearrangements. In Fig. 2 (a), suppose that a 
new connection is requested between Input 1 and 
Output 1. Then, this request was blocked. However, 
the request was unblocked by two rearrangements. 
To do this, the connection set up from Input 2 to 
Output 4 via M1 is rearranged to go through M2. Next, 
the connection set up from Input 5 to Output 5 via M2 
is rearranged to M1. The result is shown in Fig. 2 (b). 
As shown in the figure, it has become possible to 
connect Input 1 to Output 1 through M1 through 
rearrangements. 

 
Fig. 2 Rearrangements to unblock a blocked 
connection request: (a) blocking for a new request 
between Input 1 and Output 1; (b) request 
unblocked via rearrangements. 

This study investigates how many times existing 
connections must be rearranged to unblock the 
blocked request: the number of rearrangements. The 
number of rearrangements is a function of n, m, and 
r. Thus, it is denoted as (n, m, r).  

It is known that the state of connections set up in 
a Clos network is modeled as a bipartite multigraph. 
Let  denote the set of first-stage switches V1, V2, …, 
Vr. Let  denote the set of third-stage switches W1, 
W2, …, Wr. In the multigraph model,  and  are sets 

of vertices. Then, a connection established between a 
pair of first- and third-stage switches are represented 
by an edge set up between elements of  and . Let 

 denote the set of these edges. Since two or more 
connections may exist between a pair of first- and 
third stage switches, , , and  constitutes a 
multigraph G( , , ). Obviously, from the 
definition of an edge, G( , , ) is bipartite. In 
G( , , ), the second-stage switch, through which 
a connection passes, is represented by coloring its 
associated edge. For example, if the connection goes 
through the second-stage switch Mc (1 c m ), the 
edge is colored c. Since a single connection can 
exclusively link between first- and second-stage 
switches, every edge that stems from the element  
has a distinct color. 

Similarly, every edge that stems from the element 
 is distinctly colored. Thus, the problem of 

simultaneously determining the routes of all 
requested connections is equivalent to the edge-
coloring problem of a bipartite multigraph. For 
example, Fig. 3 shows the relation between the 
connections in a Clos network (a) and the bipartite 
multigraph (b). 

 
Fig. 3 Example of (a) a connection state and (b) its 
edge-colored bipartite multigraph model. 

Throughout this paper,  means the largest 
integer that is smaller than or equal to . Similarly, 

 means the smallest integer that is larger than or 
equal to . Additionally, for a certain discrete set S, 
| S | means the number of elements in S. 
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3 Related Work 
In [3], Clos investigated switching networks, later 
termed Clos networks, and analyzed their non-
blocking condition as well as hardware amount. A 
Clos network is configured in three stages, as shown 
in Fig. 1. Based on the three-stage configuration, the 
number of stages can be enlarged to any odd number 
greater than three. The nonblocking condition shown 
in [3] is 2 1m n . This condition assures that an 
arbitrary connection request is always connectable, 
not depending on existing connections without using 
a particular routing algorithm. The condition is called 
strictly non-blocking (SNB). For a Clos network, if 
the SNB condition does not hold, blocking will occur. 
However, blocking can be removed by appropriately 
rerouting existing connections in the network if 

2 2n m n . This class of switching networks is 
called rearrangeable. Since the number of second-
stage switches is smaller, the hardware amount is 
smaller for a rearrangeable Clos network than for an 
SNB Clos network with the same capacity. 

Beneš also comprehensively studied switching 
networks [1]. In [1], another class of non-blocking 
Clos networks was also revealed. For this class, a 
connection request is not blocked if a certain 
algorithm adequately determines the connection 
route. This class is called wide sense non-blocking 
(WSNB). The characteristics of WSNB Clos 
networks were comprehensively analyzed in [15-17]. 
These studies suggest that WSNB Clos networks’ 
advantage is slight compared to SNB Clos networks. 
Another class of non-blocking Clos networks is 
reported in [18]. For this class, the route for a newly 
requested connection is determined by a certain 
algorithm. Additionally, some existing connections 
may be rerouted when a connection is completed. 
This class of Clos networks is called repackable 
networks. 

Among the classes of non-blocking Clos networks, 
a rearrangeable network is important because it can 
satisfy any connection request without blocking and 
requires a smaller hardware number. However, 
rearranging existing connections disrupts data 
transmission. From the viewpoint of assessing the 
disturbance degree, it is worthwhile to estimate how 
many times connections must be rearranged for 
unblocking. It is also theoretically interesting to 
estimate the number of rearrangements. 

References [1, 2, 7] reported that studies on the 
number of rearrangements started as early as in the 
1950s. An early study on a rearrangeable Clos 
network is conducted by Paull [7]. Paull investigated 
the case of m = n = r and showed a rearrangement 

algorithm as well as (n, n, n) is n − 1. A few years 
later, Beneš [1] showed that  
 ( , , ) 1n m r r . (1) 

Gotoh [13] investigated the time-division T-S-T 
(T: Time, S: Space) switching network, which is 
equivalent to the Clos network. In [13], the 
“connection chain” concept is presented. The concept 
is helpful in concretely representing the existing 
connections that should be rearranged. It is also 
effective in analyzing the characteristics of 
rearrangements. Gotoh derived the same bounds as 
Beneš’s work through the connection chain concept 
for the number of rearrangements. Although Gotoh’s 
work does not improve the bound over Beneš' result, 
the bound derivation becomes easier to be understood 
by employing the connection chain concept.  

Nakamura [8] and Bassalygo et al. [9] tackled the 
number of rearrangements of the special case of m = 
2n – 2. The latter derived a stronger result, 

 1
( 2) 1( ,2 2, ) log 1

2 3
n

r nn n r
n

. (2) 

The number of rearrangements was studied from 
a slightly different viewpoint in Bassalygo [10] and 
Hwang and Lin [11]. These works consider the case 
where s connections are set up through the lightly 
loaded second stage switch. For this situation, 

(n, m, r) depends on load s; thus, is denoted by 
(n, m, r; s) to clarify the influence of s. References 

[10] and [11] showed the upper and lower bounds on 
(n, n, r; s). 

Recently, Ohta [12] derived a bound on (m, n, r) 
for 3 / 2 2 2n m n  as follows. 

 
2

2

( 1)( , , )
4( 1)

n rn m r
m n

 (3) 

The bound of (3) is derived by assuming a 
rearrangement algorithm based on Gotoh's 
connection chain concept. Thus, if a different 
rearrangement algorithm is assumed, a further 
smaller bound may be obtained. 

Gotoh’s connection chain concept was extended 
by Ohta and Ueda [14]. For the case of employing an 
extended connection chain to identify which 
connections should be rerouted, the system may be 
unblocked through a fewer rearrangements than for 
employing Gotoh’s original connection chain. In [14], 
computer simulation was performed to estimate the 
number of rearrangements for employing extended 
and original connection chains. The simulation result 
shows that the number of rearrangements reduces by 
approximately 40% for certain conditions of m, n, 
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and the number of existing connections for using an 
extended connection chain. However, it was not 
shown in [14] how the theoretical bound on (n, m, r) 
is influenced by the extended connection chain. To 
further clarify the effectiveness of employing an 
extended connection chain, a theoretical analysis 
should be provided along with the estimation by 
computer simulation. 

4 Connection Chain 
As described in the previous section, the connection 
chain concept is an efficient tool to tackle the 
problems involved in rearrangements. The bipartite 
multigraph model is useful to describe the concept.  

Assume that the state of existing connections is 
represented by bipartite multigraph G( , , ). An 
edge is colored c (1 )c m  if the connection goes 
through the second stage switch Mc. For this situation, 
if a newly requested connection is blocked between 
v1 (v1 ) and v1

* (v1
* ), let us define two sets of 

colors as follows. 
 1{ | an edge of color  stems from  c c v  
 *

1and no edges of color  stem from }c v , (4) 

 *
1{ | an edge of color  stems from  c c v  

 1and no edges of color  stem from }c v . (5) 

Trivially from the above definition, . 
The third stage switch represented by v*

1 has n outputs, 
and at least one output, which a newly requested 
connection occupies, is idle. Therefore, the degree of 
v*

1 is at most n − 1. Meanwhile, there exist m colors 
and m n . Consequently, no edges stem from *

1v  for 
at least one color, c. Meanwhile, v1 is the endpoint of 
an edge with this color because the connection is 
blocked. Otherwise, it is possible to establish the 
connection through the second stage switch Mc. 
Therefore,  is not empty. Similarly,  is not empty, 
either. 

Clearly from the above observation,  

 1m n , (6) 
 1m n . (7) 

For the simplicity of notation, the following 
terminologies are defined. 

 
Definition 1: A c-edge is the edge colored c. 
Definition 2: The “length” of a path is defined as the 
number of included edges.  
 

A connection chain is defined as a path in 
G( , , ). Let a and b be colors such that a  and 
b  . Then, the path starts from v1 or v1

* and is 
constructed by tracing a-edges and b-edges 
alternately. Let P and P* denote paths that start from 
v1 and v1

*, respectively. Let v1, v2, v3,… denote the 
vertices contained in P. Although multiple edges may 
exist between vi and vi + 1 (i: positive integer), the edge 
included in P is uniquely identified by its color, 
denoted by ci. Thus, path P is represented as 

 P: v1, c1, v2, c2, v3, c3, v4,…, cK, vK + 1 

where K ≥ 1. Path P is a connection chain if  

 
, 2 1
, 2i

a i t
c

b i t
, (8) 

where t is a positive integer. Also, path P* is, 

 P*: * * * * * * * * *
1 1 2 2 3 3 4 1, , , , , , , , ,L Lv c v c v c v c v  

where L ≥ 1. Path P* is a connection chain if  

 * , 2 1
, 2i

b i t
c

a i t
. (9) 

Connection chain P terminates at vK + 1 if no a-
edge or b-edge stems from vK + 1. Similarly, 
connection chain P* terminates at v*

L + 1 if no a-edge 
or b-edge stems from v*

L + 1.  
In the connection chain, unblocking is performed 

by rearranging the connections modeled by a-edges 
in P (or P*) to Mb and connections modeled by b-
edges in P (or P*) to Ma [13]. When rearrangements 
are executed in P (or P*), the number of the 
rearrangements is the length of P (or P*). It is known 
that the shorter of P and P* is no longer than r − 1 
[12, 13]. This immediately proves that

( , , ) 1n m r r . 
An extended connection chain [14] is also defined 

as a path, which starts from v1 or v*
1, and is 

constructed by tracing a-edges and b-edges 
alternately. The difference is the endpoint of the path. 
For extended connection chain P (P*), the endpoint 
vK + 1 (v*

L + 1) satisfies either Condition 1 or 2. 
 
Condition 1: no a- or b-edge stems from vK + 1 (v*

L + 1). 
Condition 2: no edges with a certain color c stem 
from vK and vK + 1 (v*

L and v*
L + 1). 

 
Of these, Condition 1 is the same as that for the 

original connection chain concept. Thus, an extended 
connection chain is constructed by adding a 
termination condition, Condition 2, to the original 
connection chain. If the extended connection chain 
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terminates by Condition 2, unblocking is performed 
as follows. First, the connection modeled by the last 
a- or b-edge, set between vK and vK + 1 (v*

L and v*
L + 1), 

is rearranged to Mc. Then, for other K − 1 (L − 1) 
edges, the connections modeled by a-edges are 
moved to Mb, whereas those modeled by b-edges are 
moved to Ma. Thus, it is necessary to know which 
color c is used to rearrange the last edge between vK 
and vK + 1 (v*

L and v*
L + 1). When the chain terminates by 

Condition 1, the rearrangements are executed in the 
same way as in the original connection chain. Since 
Condition 2 is added for terminating the path, the 
length of an extended connection chain is not greater 
than that of the original connection chain for a certain 
blocking state. Namely, the number of 
rearrangements may decrease by employing an 
extended connection chain. 
Property 1: For extended connection chains P and P*, 
created by colors a and b,  
 ,i jv v 1 1i j K , (10) 
 * * ,i jv v 1 1i j L , (11) 
 * ,i jv v 1 1,i K 1 1j L . (12) 

Proof: It is known that (10), (11), and (12) hold for 
Gotoh's original connection chains [12, 13]. The 
same relations trivially hold for extended connection 
chains because every vertex of P and P* is also 
included in the original connection chains.   

An extended connection chain is found by 
computational procedure find_ex_chain() shown in 
Fig. 4. The procedure returns the sequence of vertices 
and edge colors that specify P or P* and color z (z  
c1, c2) or c (c = c1 or c2). The last element, z or c, is 
essential to see which edge color should be used to 
rearrange the connection modeled by the edge 
between vK and vK + 1. 

 
Fig. 4 Procedure to compute extended connection 
chain. 

Property 2: Procedure find_ex_chain() returns an 
extended connection chain in a finite time. 
Proof: Steps 2, 3, and 7 of the procedure select edges 
e1, e2, e2,… to satisfy (8) if v1  . Also, the selected 
edges satisfy (9) if v1  . Thus, the sequence of 
vertices and edges satisfies the requirement for the 
original connection chain. It is known that vi  vj 
(1 1)i j K  for the original connection chain 
[9]. Since the number of vertices is 2r, Step 5 can be 
executed no more than 2r − 1 times. This means that 
the while loop (Steps 4–7) is not executed more than 
2r − 1 times, and thus the procedure is completed in 
a finite time. If the while loop stops because of the 
condition in Step 3, Condition 1 holds. If the 
procedure returns the output because of Step 6, 
Condition 2 holds. Thus, the returned value is a pair 
of an extended connection chain and the color used 
for repainting the last edge.   

5 Bound on (n, m, r) 
First, let us focus on a characteristic of extended 
connection chain P, built using colors a   and b  

. Assume that the length of P (P*) is not shorter than 
K ( 1K ).  
 
Definition 3: Let Kz denote the number of vertices, 
each of which is one of the first K vertices v1, v2, …., 
vK in P and an endpoint of a z-edge (z  a, z  b, 
1 z m ). Similarly, let Kz

 * denote the number of 
vertices, each of which is one of the first K vertices 
in P* and an endpoint of a z-edge. 
 

Namely, these Kz vertices are used for z-edges. 
For 1 ,i K  at least one of vi and vi + 1 must be an 
endpoint of a z-edge. Otherwise, since Condition 2 
holds, the length of P becomes K – 1 or shorter. This 
contradicts the assumption. Since one of two adjacent 
vertices is an endpoint of a z-edge, Kz will be at least 
nearly half of K. This intuition is concretely 
confirmed by observing that the state of v1 and vK falls 
into one of the following four cases. 
 
Case 1: Both v1 and vK are the endpoints of z-edges. 
Case 2: v1 is the endpoint of a z-edge, but vK is not 
the endpoint of a z-edge. 
Case 3: Neither v1 nor vK is the endpoint of a z-edge. 
Case 4: v1 is not the endpoint of a z-edge, but vK is 
the endpoint of a z-edge. 
 

Then, the following property is obtained for each 
case.  
Property 3: Kz is bounded as follows. 

Procedure find_ex_chain(G, v1, c1, c2) 
// Arguments 
//   G: bipartite multigraph that models the connections 
//   v1: start point of the chain 
//   c1: a if v1  , b otherwise 
//   c2: b if v1  , a otherwise 
1. K:= 0; 
2. c:= c1;  
3. while eK + 1 with color c stemming from vK + 1 exists do 
4.  K:= K + 1; 
5.  vK + 1:= eK’s endpoint, which is not vK; 
6.  if neither of vK nor vK + 1 is the end point of an edge  
  with a certain color z  

then return (v1, c1, v2, c2, v3, c1, v4,…, vK + 1), z; 
7.  if K is odd then c:= c1 else c:= c2; 
8. end while 
9. return (v1, c1, v2, c2, v3, c1, v4,…,vK + 1), c; 
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( 1) / 2, Case 1

/ 2, Cases 2 and 4
( 1) / 2, Case 3

z

K
K K

K
. (13) 

Proof: The property is proved by mathematical 
induction. If K = 1, either Case 1 or 3 occurs. 
Trivially, Kz is 1 and 0 for Cases 1 and 3, respectively. 
Thus, (13) is correct for Cases 1 and 3. Cases 2 and 4 
occur when K > 1. If K = 2, Kz is 1 for these cases. 
Therefore, (13) is also valid for Cases 2 and 4 when 
K = 2.  

Next, assume that (1) is correct for K = k. Then, 
let us consider the case of K = k + 1.  

If P is in Case 1, v1 is an endpoint of a z-edge. 
Thus, the portion of v1, v2, …, vk is in Case 1 or Case 
2. Thus, at least k / 2 endpoints of z-edges are 
contained in this portion. By Property 1, vk + 1 is 
different from v1, v2, …, vk, and a z-edge stems from 
vk + 1. Thus, 

 / 2 1 ( 1) / 2zK k K . (14) 

If P is in Case 2, a z-edge stem from vk. Otherwise, 
Condition 2 is satisfied between vk and vk + 1, and the 
length of P becomes K – 1. This contradicts the 
assumption. Thus, the portion of v1, v2, …, vk is in 
Case 1. Thus, the number of endpoints of z-edges is 
not smaller than (k + 1)/2 for this portion. Since vk + 1 
is not an endpoint of a z-edge, 

 ( 1) / 2 / 2zK k K . (15) 

Similarly, a z-edge necessarily stems from vk if P 
is in Case 3. For this case, the portion of v1, v2, …, vk 
is in Case 4 because no z-edge stems from v1. Thus, 
this portion contains k / 2 endpoints of z-edges. Since 
no z-edge stems from vk + 1, 

 / 2 ( 1) / 2zK k K . (16) 

if P is in Case 4, the portion of v1, v2, …, vk is in 
Case 3 or 4. Thus, at least (k − 1) / 2 endpoints of z-
edges are contained in this portion. By Property 1, 
vk + 1 is different from v1, v2, …, vk, and a z-edge stems 
from vk + 1. Thus, 

 ( 1) / 2 1 / 2zK k K . (17) 

Therefore, (13) is valid for all cases, and any value 
of K.    

It is easy to show that (13) also holds for Kz
 *. 

Suppose that s connections pass a second-stage 
switch Mz. There exist 2s endpoints for z-edges that 
model these connections. From Property 1, each Kz 
vertices in P is different from any of K*

z vertices in P*. 
Therefore, Kz + Kz

 * endpoints of z-edges appear in P 

and P*. Thus, Kz + Kz
 * is upper bounded by 2s. 

Meanwhile, Property 3 asserts that Kz (Kz
 *) must be 

larger if the length of P (P*) is longer. An upper 
bound on (n, m, r; s) is derived from this 
observation. 
Theorem 1: If rearrangements are executed via the 
shorter of extended connection chains P and P*, 

(n, m, r; s) is upper bounded as follows.  

 ( , , ; ) 2n m r s s . (18) 

Proof: First, consider the case where the load on Ma 
is s. This means that there are s a-edges. In P, a single 
b-edge always appears after every a-edge. Therefore, 
the length of P does not excess 2s. Thus, (18) is 
correct for this case. Similarly, (18) is also valid when 
the load on Mb is s. 

Next, let us focus on a middle switch Mz, for 
which z  a and z  b. Suppose that the load on Mz is 
s. Let K (K > 0) denote the shorter extended 
connection chains P and P*. By Property 1, there are 
no duplications among Kz and K*

z endpoints of z-
edges. Additionally, because the blocking occurs 
between v1 and v*

1, at least one of v1 and v*
1 is the 

endpoint of a z-edge. Thus, at least one of P or P* is 
in Case 1 or 2, whereas the other may be in Case 3. 
Then, from Property 3,  
 * 1 / 2z zK K K . (19) 

Since K, Kz, and Kz
 * are integers,  

 *
z zK K K . (20) 

As the sum of Kz and Kz
 * does not excess the total 

number of endpoints of z-edges, 
 *2 z zs K K K . (21) 

Therefore, the length of P and P* is not larger than 
2s. This means the number of rearrangements is not 
larger than 2s.   

If m = n, Theorem 1 eventually coincides with a 
result shown in [10] and [11]: ( , , ; ) 2n n r s s . 
However, [10] and [11] derive the result by assuming 
the rearrangements of different connections. The 
connection sequence considered in [10] and [11] is 
also represented as a path in the multigraph. However, 
the path includes edges colored a, b, and a third color 
c in the algorithm of [10] and [11]. For the algorithm 
of these studies, the path starts with a- and b-edges 
but turns into an alternate sequence of a-and c-edges 
(or b- and c-edges) in its halfway. By contrast, the 
extended connection chain considered in this paper 
consists of the edges strictly with two colors, a and b. 
Thus, the condition for deriving Theorem 1 is 
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different from that assumed in the study of [10] or 
[11].  

Next, another bound on the number of 
rearrangements is derived in the form that is 
independent of s. The new bound on (n, m, r) is 
obtained by utilizing the fact that an extended 
connection chain consists of only a- and b-edges. The 
following intuition leads to the bound. The number 
of rearrangements is the length K of P or P*. However, 
if K is large for any combinations of the elements in 

 and , the number of a- and b-edges included in P 
and P* must also be large. Meanwhile, the number of 
edges with colors other than a and b is determined by 
subtracting the number of a- and b-edges from the 
total number of edges. Here the total number of edges 
is upper bound by the number of inputs (or outputs). 
Thus, the number of edges with other colors will 
decrease if K increases. 

Moreover, a decreased number of edges with 
other colors leads to a smaller value of s for a certain 
color, not a or b. Here, Theorem 1 asserts that K is 
upper bounded by 2s. Consequently, K will not be 
able to exceed a certain value because of this 
constraint by s. 

The new bound is obtained by considering 
algorithm Ex_Unblock, shown in Fig. 5.  

 
Fig. 5 Algorithm Ex_Unblock that is used to derive 
a new bound on the number of rearrangements. 

Property 4: Algorithm Ex_Unblock unblock the 
blocked request within a finite time n m . The 
number of rearrangements is at most r – 1. 
Proof: As each sub and sub has just m – n + 1 
elements, the for-loops of Steps 3–16 complete in a 
finite time. From (6), (7), and n m , sub and sub 
are not empty. Thus, Steps 5–14 are executed for at 
least a pair of a and b (a  sub, b  sub). For this 
pair, Step 5 finds P because find_ex_chain() is 
executed with feeding v1 as the start point of the path, 
and it correctly returns an extended connection chain 
as assured by Property 2. Similarly, Step 10 finds P*. 
Then, the shortest chain is selected by Steps 8 and 13. 
The system is unblocked by Step 17. When the 
original connection chain concept is used for a pair 
of a and b, the number of rearrangements is at most 
r – 1. For the extended connection chain, the length 
is not greater than that for the original connection 
chain. Thus, the property is proved.   
Property 5: Let K denote the length of the shorter of 
P and P*. Then, at least K a-edges and K b-edges are 
contained in P and P*. 
Proof: from the definition of extended connection 
chain, P starts with an a-edge, and then b- and an a-
edges appear alternately. Thus, P contains at least 
K/2  a-edges and K/2  b-edges. Similarly, P* 

contains at least K/2  b-edges and K/2  a-edges. As 
the sum of K/2  and K/2  is K, the property is 
proved.   

By using the algorithm Ex_Unblock, the 
following theorem is obtained. 
Theorem 2: For 2 2 3n m n , if algorithm 
Ex_Unblock is used, 

 2( 1)( , , ) min , 1
3 2 2

nrn m r r
m n

. (22) 

Proof: Let K denote the length of the connection 
chain that is the shortest among the chains examined 
by algorithm Ex_Unblock. Subset sub obtained in 
Step 2 has m – n + 1 elements. Similarly, sub 
contains m − n + 1 elements. Let us define  it as a 
set of colors not included in sub or sub. Namely, 

 sub sub{1,2,..., }m . (23) 

From  and the definitions of sub or 
sub, 

 sub sub 2 2m n m . (24) 

Since 2 3m n  and 2 < n, | | > 0. By Property 
5, the number of a-edges for a single element of sub 
is not smaller than K. Thus, the total number of a-
edges for all elements of sub is at least (m − n + 1)K. 
Similarly, the total number of b-edges included in all 

Algorithm Ex_Unblock 
// Given: v1, v*

1, , , the existing connections 
// Variables: Pmin: the shortest extended connection chain 
//     kmin: the length of Pmin 
//     amin, bmin: elements of ,  used for Pmin 
1. G:= bipartite multigraph that models the connections; 
2. kmin:= ; 
3. sub:= {m – n + 1 elements selected from }; 
4. sub:= {m – n + 1 elements selected from }; 
3. for each a in sub do 
4.  for each b in sub do 
5.   (P, z) := find_ex_chain(G, v1, a, b); 
6.   if the length of P < kmin then 
7.    kmin:= the length of P; 
8.    Pmin:= P, amin:= a, bmin:= b, zmin = z; 
9.   end if 
10   (P*, z):= find_ex_chain(G, v*

1, b, a); 
11.   if the number of edges in P* < kmin then 
12.    kmin:= the length of P*; 
13.    Pmin:= P, amin:= a, bmin:= b, zmin = z; 
14.   end if 
15.  end for 
16. end for 
17. In Pmin, rearrange the connections by amin, bmin, and zmin; 
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elements of sub is at least (m − n + 1)K. Meanwhile, 
the total number of edges in G is at most nr − 1 
because the number of the input (or output) ports is 
nr, and at least one port is idle. Let N  denote the total 
number of the edges colored by elements of . From 
the above observation, 
 1 2( 1)N nr m n K . (25) 

Let us focus on z-edge, whose color z is included 
in . The average number of z-edges is N  / | | for a 
certain z. Let s denote the minimum of the number of 
z-edges among all z’s in Z. Then, since s is not greater 
than the average, 

 1 2( 1)
| |

nr m n Ks
Z

. (26) 

From (24) and (26), 

 1 2( 1)
2 2

nr m n Ks
n m

. (27) 

By Theorem 1, K is not greater than 2s. Therefore, 

 1 2( 1)2
2 2

nr m n KK
n m

. (28) 

By solving (28) for K, 

 2( 1)
3 2 2

nrK
m n

. (29) 

Algorithm Ex_Unblock unblocks the system by 
the shortest connection chain. The number of 
rearrangements is the length of the connection chain 
and thus an integer. Consequently,  

 2( 1)( , , )
3 2 2

nrn m r
m n

. (30) 

From Property 4 and (30), (22) is obtained.   

6 Comparison with Previous Results 
The bound proposed in this paper is smaller than the 
previously known bounds for a certain range of m, n, 
and r. This section compares the bound with two 
previously known bounds. The first one is a classical 
bound (1) reported in 1965 [1]. As the second one, 
the recently found bound [12] shown in (3) is also 
considered. It is not difficult to see that the right side 
of (22) is smaller than (1) for a certain range of m, n, 
and r. If r n  and 4 / 3m n , it is possible to show 
that the right side of (22) is smaller than the bound of 
(1). The right side of (22) is also smaller than (3) for 
some n, m, and r. For example, assume that m = 3n/2 
and n is extremely large. For m = 3n / 2, the right side 
of (3) is lower bounded by n2(r – 1) / (n + 2)2, thus it 
is approximately r – 1 for a large value of n. 

Meanwhile, the right side of (22) is upper bounded 
by 4r/5 and is smaller than that of (3) if r > 5.  

Figs. 6 and 7 compare the result of this paper with 
the previous bounds. In these figures, the x-axis is m, 
the number of second-stage switches, while the y-axis 
is the upper bound on (n, m, r), the number of 
rearrangements. Fig. 6 shows the case of n = 100 and 
r = 100 while Fig. 7 shows the case of n = 10 and r = 
100. Fig. 6 shows that the upper bound derived by 
this paper is smaller than the previously known 
bounds 134 157m . For 134 149m , the 
proposed bound is lower than the classical upper 
bound r − 1. The proposed bound is also lower than 
that reported in [12] if 150 157m . The bound of 
[12] is derived from the original connection chain 
concept. It is also possible to obtain the bound r − 1 
via the original connection chain [12, 13]. Any 
smaller bounds have not been found via the original 
connection chain. Thus, Fig. 6 provides theoretical 
evidence for the advantage of the extended 
connection chain over the original connection chain 
in the number of rearrangements. 

 

 
Fig. 6 Comparison between the bound derived in 
this study and previously known bounds for n = 100 
and r = 100. 

Fig. 7, which plots a smaller n value case, shows 
that the advantage of the proposed is obtained for m 
= 13 and 14. For this case, the proposed bound is not 
advantageous over the bound of [12]. This result 
suggests that the advantage of the proposed bound 
over the bound of [12] is obtainable if the value of n 
is large. In comparison with the classical bound r − 1, 
the proposed bound is more advantageous if 13m . 
From these results, it is concluded that the number of 
rearrangements is upper bounded by a smaller 
number than the previously known bound r − 1 for a 
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certain range of m if the extended connection chain is 
employed. Furthermore, for a certain range of m and 
a larger value of n, it is also observed that the system 
is unblocked via a smaller number of rearrangements 
than the bound derived in [12]. 

 

 
Fig. 7 Comparison between the bound derived in 
this study and previously known bounds for n = 10 
and r = 100. 

7 Conclusions 
This paper investigated a three-stage rearrangeable 
Clos network. An unsolved problem of rearrangeable 
Clos network is to clarify how many existing 
connections must be rearranged to connect a blocked 
new connection request. For this problem, the paper 
presented a new upper bound on the number of 
rearrangements. The presented bound derived by 
assuming a rearrangement algorithm that uses the 
extended connection chain concept proposed in [14]. 
The paper compares the new bound with previously 
known bounds. The result shows that the upper 
bound is tighter than the previous bounds for a certain 
range of parameters. 

As stated above, the result of this paper is obtained 
by assuming a particular rearrangement algorithm. 
Thus, by assuming a different algorithm, another 
improved upper bound may be found on the number 
of rearrangements. However, it is still an open 
problem to find the tightest bound for this problem. 
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