
The total number of languages spoken by human beings
worldwide is approximately equal to 6500 [1], where the total
number of countries in the world is 195. The total population
in the world is approximately 7.82 billion [2]. Based on a
report by Ethnologue: Languages of the World [3], English is
spoken by 1.27 billion people (16.22%), 537.9 million (6.88%)
people speak Spanish, 276.6 million people speak French,
131.6 million (1.8%) people speak German, and 67.7 million
(0.9%) people speak Italian. On the other hand, English is
the official language in 93 countries, French is the official
language in 29 countries, Spanish is the official language in
21 countries, German is the official language in 9 countries,
and Italian is the official language in 4 countries [4]. An
official language is also called a state language, i.e., a language
given an essential status in a particular country, state, or
other jurisdiction [5]. Even though many people speak the
above mentioned European languages, the count of people who
can read/write/speak two languages simultaneously is meager.
Since many countries have only one official language for
documentation of government decisions, text-based language
translation can solve this problem and benefit many people.

According to a report [6], it is tough to learn a new language
like a native speaker at an old age. In this modern deep
learning era, the text can be translated from one language
to another with a trained neural network, which will be
easier to use than learning a new language or having a
professional language translator. It can help in translating
official text released by the Central Government and various
State governments. It can help communicate between two
people from two different ethnic backgrounds or two different
places where their official language differs. A solution to this

would be to use a professional language translator. However,
a professional language translator will face three problems:
number of sentences translated per day, number of words in
memory, and translation quality.

A professional language-translator can only translate up to
2000 or 3000 words per day or a few hundred sentences per
day, whereas a trained Machine Translation Neural Network
model can translate large amounts of text in microseconds.
The vocabulary of words a professional may know might be
limited. However, if a computing device with a large enough
memory is available, then the trained Machine Translation
neural network model might hold a large enough vocabulary
for translating sentences. Also, a trained Machine Translation
neural network model will be able to translate the given text
with excellent quality when compared to the professional [7].
Hence, it is highly essential to translate text from one language
to another, and for that, the Machine Translation model is less
intrusive, less expensive, and more efficient than a professional
language translator.

Even though there are good research works published regu-
larly on Machine Translation, the solutions proposed by many
researchers can always be improved to provide better solu-
tions with different approaches and optimization techniques.
However, there are many problems faced by researchers who
are working on improving the current state-of-the-art Machine
Translation models. Some problems faced by the researchers
when trying to improve the current state-of-the-art models for
European Languages are as follows: (1) Out-Of-Vocabulary
words, (2) less number of sentences in a data, (3) Rare words
in a language, (4) long sentences, (5) ability to control the
quality of translated output [8]. The work done in this paper
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is an attempt to solve some of the problems mentioned above.
The structure of the work presented in the paper is as

follows: Section II describes the related work on Machine
Translation models. Section III explains the methodology and
process flow for the proposed solution. Section IV discusses
in detail about the derived results. Section V concludes the
paper based on the results derived.

This section describes in detail the work done by authors
in text-based language translation using Statistical and Neural
Network approaches. It also discusses how authors used differ-
ent approaches from language context to improve the Machine
Translation models’ efficiency and precision.

There two types of Machine Translation, namely (1) Statis-
tical Machine Translation and (2) Neural Machine Translation.
Statistical Machine Translation (SMT) is the process of trans-
lating text using on statistical models where the parameters
are derived from parallel text corpora [9]. Neural machine
translation (NMT) is the process of translating text using
neural network models to predict the likelihood of sequence of
words. NMT approach typically models entire sentence within
a single integrated model [10]. When a standard NMT model
is combined with different attention mechanisms and subword-
nmt methods, it produces impressive results.

One of the first NMT models was designed by the
researchers at Google, commonly called the Sequence-to-
Sequence model [11]. It has multiple uses such as response
generation, language translation, image captioning, and text
summarization [12]. The Sequence-to-Sequence (Seq2Seq)
model consists of 2 sub-modules: An Encoder model and a
Decoder model. The Encoder takes input from one language
and encodes it with the help of Recurrent Neural Networks
(RNN). The results are passed into the decoder, which then
decodes it to the output language with the help of RNN.
Bahdanau et al. in [13] introduced the concept of Attention
to the Seq2Seq architecture, as the normal Seq2Seq failed to
work for longer sentences (more than 40 words or tokens).
The authors’ idea presented in the paper was to use the input
and the previous timestep’s output to predict the output of
the current timestep. The authors proved that this produced
better results than the previous Seq2Seq model [11] for longer
sentences.

Luong et al. in [14] provided different approach to the
Attention-based Seq2Seq model for NMT. The Bahdanau At-
tention model is considered a Local Attention model, whereas
the Luong Attention model is a Global Attention model. The
Luong Attention model aims to take all the encoder’s hidden
states to derive the context vector. The difference between the
Luong Attention model and the Bahdanau Attention model
is that the Bahdanau Attention model takes the output of the
previous timestep from the decoder and the top layer’s output
from the encoder. However, the Luong Attention model takes
the output of the topmost Long Short-Term Memory (LSTM)
layer of both the Encoder and Decoder models for calculating
the context vector.

One of the problems faced by researchers working on
improving NMT models is Out-Of-Vocabulary (OOV) words.
Sennrich et al. provided a solution to that in [15] called
Byte-Pair-Encoding (BPE). The idea proposed was to use a
data compression technique that would replace a rare word
with the most frequent pair of bytes. It helps in the prefix,
suffix separation, and composite splitting of a rare word in
a language. It also reduces the memory used for training the
RNN model by converting all the words in the training data
into sub-word units. An improvement to this was provided
by Google’s researchers Kudo et al. in [16], where they
introduced another type of sub-word unit algorithm called
SentencePiece, which supports BPE and Unigram-Language-
Model. The SentencePiece model processes sentences with a
lesser memory footprint compared to the original BPE model.

Wu et al. in [17] using the SentencePiece model, where the
authors tried a stacked LSTM Encoder-Decoder model with
Beam search, which produced better results than the results
in the previous works done by researchers. Since the Bi-
directional LSTM based Encoder-Decoder model with com-
plex architecture took longer training time and inference time,
the researchers at Facebook Gehring et al. in [18] proposed
a Convolutional Encoder-Decoder model which produced the
similar results to work in the [17] with an inference method
that is twice as faster with higher accuracy. An improvement
to this was produced by the Google researchers Vaswani et al.
in [19]. The authors proposed a Self-Attention based Dense
Neural Network (DNN) NMT model, commonly called as
Transformer architecture, which computes the context vectors
just based on Multi-layer DNN where each layer DNN layer
is attached to a Self-Attention layer.

The Self-Attention layer allows the input to interact to
identify the words that need more attention. There are two ad-
vantages of Self-Attention over other Attention architectures:
(1) Capability to perform parallel computing (in comparison
with RNNs based Encoder and Decoder models); (2) Lesser
need for Deep RNN architectures, which take more time
compared to Deep DNN architectures. It helps in a more
effortless flow of gradients through all the states, which helps
solve the vanishing gradient problem to some extent. The
Multi-head attention helps the model cooperatively attend
the statistics from unique representation subspaces at unique
positions.

Another problem faced by a researcher with the NMT
models is that it translates every word it receives. That would
not work for words in the Noun category, specifically the
Proper Noun categories. Authors provided a solution to this
in [20], [21], where the authors tried to use Parts-of-Speech
(POS) Tagging-based approach to overcome the problem men-
tioned above. In [20], the authors proposed an NMT model
with a tag prediction attention mechanism. For this purpose,
NMT and POS-Tagging were jointly modeled using Multi-
Task learning, where coarse attention mechanism was used on
input annotation and target hidden states to predict the target
annotation and the target word.

In this paper, we propose a novel approach to the NMT by
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Fig. 1. Process Flow

using inter-language word similarity-based model training and
POS-Tagging based model testing. This approach is modeled
on two classical NMT architectures: Luong Attention-based
Sequence-to-Sequence architecture and Transformer based
model. The datasets used for developing NMT models were
obtained from modeling the popular datasets such as Europarl,
Paracrawl which are mentioned in Section III-A. The sentences
in the dataset were tokenized into subword units using Senten-
cePiece Tokenizer and Subword Text Encoder tokenizer, which
is mentioned in detail in Section III-D. The OOV handling of
the sentences in the dataset is explained in detail in Section
III-C. The trained models were evaluated using the metrics
mentioned in detail in Section III-F, where the analysis was
based on how well the model performed on the validation and
testing sets as the length of input sentence changes.

This section describes in detail the datasets, used for each
of the NMT models, and also explains the various concepts
used in the experimental setup. Fig. 1 shows the process flow
for the proposed architecture.

Multiple parallel corpora have been used for training the
model such as Tatoeba project [22], Europarl corpus [23], and
Paracrawl [24]. The details of the individual datasets and the
combined datasets before the pre-processing step is given in
Table I.

The NMT system was built with an AMD Ryzen 5 series 6
core CPU and an NVIDIA 2080 super GPU. All the datasets
collected from the work done by the authors in [23], [24] con-
tained a lot of errors/noise such as Extended Markup Language
(XML) tags, unwanted characters (characters other than a-z, 0-
9, and a few punctuation symbols), empty sentences, and many
more. There were also many duplicate sentences and multiple
translations for the same sentence. The problems mentioned
above might confuse the NMT models in choosing the right

TABLE I
DETAILS OF INDIVIDUAL AND COMBINED DATASETS BEFORE

PRE-PROCESSING

Translation Task Dataset No. of Sentences
Individual Combined

English-French
Europarl 2.007M

33.567MParacrawl 31.374M
Tatoeba 0.186M

English-German
Europarl 1.92M

18.411MParacrawl 16.264M
Tatoeba 0.227M

English-Spanish
Europarl 1.965M

24.081MParacrawl 21.987M
Tatoeba 0.128M

word in a sequence of words predicted by the model. The first
step of data pre-processing was to split the combined dataset
into smaller datasets where each dataset contained 1M pair
of sentences. The process done in the first step was to make
use of the multi-threading capability to speed up the data pre-
processing. The next step of data pre-processing was to lower
case sentences, remove the unwanted noise characters, and
remove duplicates. To restrict Graphics Processing Unit (GPU)
memory usage, sentences containing more than 40 tokens or
words were dropped from the dataset. It took approximately
0.001 seconds to process one pair of sentences from each
language, where the number of threads used to pre-process
the datasets concurrently is 6. The details of the datasets after
pre-processing are given in Table II.

As mentioned in Section II, any word sent into an NMT
model is translated into the target language work, but the
problem arises when a Proper Noun or a rare word is passed.
It is because the pronunciation and spelling of a proper noun
are the same in all languages. A solution to this was to convert
the proper nouns mentioned above into a unique token such
as ’<unk>.’ However, two problems arise, which are related
to the count of rare words or Proper Noun in the testing input
sentence. Problem 1 is the allocation of different unknown

3. Process Flow 
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TABLE II
DETAILS OF THE DATASET AFTER PRE-PROCESSING

Translation Task Dataset No. of sentences

English-French
Train 24.248M

Validation 4852
Test 4852

English-German
Train 16.022M

Validation 5612
Test 5612

English-Spanish
Train 19.105M

Validation 5257
Test 5257

tokens (such as ’<unk1>’, ’<unk2>’, ..) for more than one
rare word in a sentence, as there would be no limit if the
training set is large. Problem 2 is the order in which these
sequence unknown tokens would be predicted by the model
if all the rare words are just identified with a single unknown
token because the order of words may differ from one language
to another.

A solution to these two problems mentioned above would be
to convert the rare words or Proper Nouns into a single format
based unknown token. For example: the word ’preetham’ is
converted to ’<p#r#e#e#t#h#a#m>’. However, the problem
now was identifying the proper nouns in each sentence from
the training set. One of the solutions would be to use special
packages such as Natural Language ToolKit (NLTK) [25], or
Spacy [26]. The problem with these packages was that they
would atleast 0.01 seconds to process one sentence, and when
the number of sentences is in millions, it will take days or
weeks to process the dataset.

We used an inter-language word similarity-based approach
to extract the unique tokens from the training set for this
problem. First, extract the rare words in the corpus with just
one occurrence in the corpus, and then choose the words with
a length of 8 (because, when the sentences are tokenized using
custom tokenizers such as SentencePiece tokenizer or Subword
Text Encoder, where the length of such sentences might go
beyond the threshold length, i.e., 40). The tokens extracted
from the training set are used for converting these unique
tokens in the validation and testing sets. During the testing
stage, packages such as NLTK [25], or Spacy [26] are used
to extract the Proper Noun or rare words from the sentences.

Two types of sentence tokenization were used on the OOV-
handled datasets; namely, SentencePiece Tokenizer [16], and
Subword Text Encoder [19]. SentencePiece tokenizer was
used for the Luong Attention-based Seq2Seq model, and
Subword Text Encoder was used for the Transformer model.
Unigram algorithm was used for training the SentencePiece
model, where the vocabulary size was approximately 32k.
Similarly, for the Subword Text Encoder, the vocabulary size
was approximately set as 32k, i.e., 215. Since there was a
shortage of memory availability during the SentencePiece
tokenizer training, 18M sentences were sampled from the new
training set resulted from the Section III-C. However, this was

not the problem with the Subword Text Encoder tokenizer.
After these tokenizers were trained, the sentences from the
training, validation, and testing sets were encoded. Since the
tokenizer divides original words into subwords, the number
of tokens in each sentence increased when split by space (’
’). Hence, similar to Section III-B, sentences that have more
than 40 tokens were dropped. The details of the dataset after
tokenization of sentences are given in Table III.

TABLE III
DETAILS OF DATASETS AFTER SENTENCE TOKENIZATION

Translation Task Model No. of Sentences
Training Validation Test

English-French SentencePiece 20.144M 4020 4051
Subword Text 21.916M 4381 4386

English-German SentencePiece 14.236M 4980 5006
Subword Text 14.875M 5185 5216

English-Spanish SentencePiece 16.673M 4548 4607
Subword Text 17.470M 4782 4826

Fig. 2. Luong Attention-based Seq2Seq model

There are two main types of neural network architectures
used for developing the NMT models for each language;
namely, Seq2Seq architecture [11], and Transformer architec-
ture [19]. The architecture diagram for the Seq2Seq model
is given in Fig. 2. The Seq2Seq architecture consists of 2
models, the encoder model, and the decoder model. The
encoder model consists of 5 layers, 1 Embedding layer, 1 Bi-
directional LSTM layer (one forward LSTM layer and one
backward LSTM layer), and 2 layers of unidirectional LSTM
layers. In the bi-directional LSTM, the first layer traverses
from left-to-right (one forward LSTM layer), while the next
layer traverses from right-to-left (one backward LSTM layer).
A bi-directional layer is chosen as the first layer in the
encoder model because it helps obtain the context and other
essential features [13]. The equations used for calculating the
bi-directional layer’s output and states are given in (1).

3.4. Sentence Tokenization 

3.5. Neural Network Architectures 
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In (1), LSTMf & LSTMb are the forward and backward
LSTM layers, where its parameters are Wf, and Wb. xt

0, mt
0,

and ct
0 are the inputs to the forward and backward LSTM

layers, where xt
0 is input sequence, and mt

0, and ct
0 are the

initial hidden states i.e. initial memory state and initial carry
state at time step t. xt

1, mt
1, and ct

1 are the concatenated
outputs, which would be input to the next unidirectional LSTM
layer.

It can be noticed from Fig. 2 that both the encoder model
and the decoder model contain residual connections between
the 2nd and 3rd LSTM layers. These connections are used
because when more LSTM layers are stacked together, the
model will suffer from vanishing gradient problems [27], [28].
In other words, the deeper the model, the more it forgets about
the information it has seen. The equation used for calculating
the residual output is given in (2). In the decoder model from
Fig. 2, we use Luong Attention after the stacked LSTM layer,
followed by two dense layers, one with a Tanh activation
function and the other with a Softmax activation function.

xt
i,mt

i, ct
i = LSTM i(xt

i-1,mt
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xt
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i-1

mt
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i-1

xt
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i+1, ct
i+1 = LSTM i+1(xt

i,mt
i, ct

i;W i+1)

(2)

The architecture used for training the Transformer model is
given in Fig. 3. Like the Seq2Seq architecture, the Transformer
architecture consists of two models: an encoder model and
a decoder model. These models have three sub-modules:
positional encoding, multi-head attention, and a feed-forward
network. The transformer model does not contain any recurrent
network, because of which the model might not know the
positioning of words in a sentence. The authors in [19], used
positional encoding to encode the relative position between
words in a sentence. Self-attention was used in the Trans-
former model, which mainly consists of 3 inputs, namely,
Q (query), K (key), and V (value). The equation used for
calculating attention output (per head) is given in (3).

Attention(Q,K, V ) = softmaxk(
QKT

dk
1/2 )V (3)

The transformer model uses multi-head attention, where
each head consists of the self-attention architecture. The
encoder model consists of one multi-head attention module
followed by a feed-forward network. The decoder model
consists of two multi-head attention modules, followed by
a feed-forward network. A dense layer follows the decoder

Fig. 3. Transformer model architecture from [19]

model with linear activation followed by a dense layer with a
softmax activation.

1) Precision: Precision is the fraction of accurately es-
timated positive observations to the total estimated positive
observations as given in (4).

Precision =
TP

TP + FP
(4)

In (4), TP represents the number of true positives, and FP
represents the number of false positives.

2) Brevity: It is a score used for evaluating the concise and
exact use of words by the model in translating sentences.

3) Bilingual Evaluation Understudy (BLEU): It is a method
used to measure the difference between machine translation
and human translation [29]. It works on matching n-grams
in the predicted translation to n-gram in the actual transla-
tion/reference text. The score ranges from 0.0 to 1.0 or 0% to
100% as given in (5).

BLEU = Precision ∗Brevity (5)

4) Metric for Evaluation of Translation with Explicit Or-
dering (METEOR): It is a metric used for translating the
machine translation output, where the calculation is based on
the harmonic mean of unigram precision and recall [30]. The
weight of recall is higher than precision.

3.6. Evaluationmetrics 
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This section discusses in detail the results obtained on
performing the language translation task mentioned in Sec-
tion III. The models trained and tested in this section were
implemented with the help of TensorFlow [31].

The neural network’s hyperparameter values should be
tuned based on the dataset in order for the neural network
to train and predict efficiently and precisely. As mentioned in
Section III-E, the Seq2Seq architecture consists of 2 models:
an encoder and a decoder. The encoder consists of five layers:
one embedding layer, one bi-directional LSTM layer, and two
unidirectional LSTM layers. The decoder consists of eight
layers: one embedding layer, four unidirectional LSTM layers,
one Luong attention layer, and two dense layers. The number
of units in all the layers except the topmost layer with softmax
activation is 512, and the number of units in the topmost layer
with softmax activation is the vocabulary size of the target
language ≈ 32k. Adam optimizer [32] was used for training
the model where the learning rate used was 0.001.

Similar to the Seq2Seq model, the transformer model con-
sists of an encoder and a decoder. The encoder and decoder
have three sub-modules: positional encoding, multi-head at-
tention, and a feed-forward network. The encoder consists of
6 layers, where the number of units in each layer is 512, the
number of units in the feed-forward layer is 2048, and the
number of attention-heads is 8. Similar to the encoder, the
decoder consists of 6 layers, where the number of units in
each layer is 512, the number of units in the feed-forward
layer is 2048, and the number of attention-heads is 8. The
transformer model was trained using Adam optimizer [32],
where the equation for learning rate is given (6) [19], beta 1
= 0.9, beta 2 = 0.98, and epsilon = 1e-9.

rate = dmodel
-0.5∗min(step num-0.5, warmup step-1.5) (6)

Sparse Categorical CrossEntropy was the metric used during
the training stage of both the Seq2Seq model and Transformer
model. Both the models were trained for 200k training steps.
Since the dataset size was large, i.e., 150k training steps per
epoch, once in every 10k steps, the model is validated on
the validation data. If the validation loss has decreased, the
model’s checkpoint would be saved, and the model would
continue training. If the validation loss has not decreased,
then the patience count would be incremented by one, and the
model would continue training. If the patience count is greater
or equal to 4, the model will stop training. The Seq2Seq model
took 0.57 seconds to train on the NVIDIA GeForce 2080 Super
graphics card, while the Transformer model took 0.46 seconds
to train on the graphics card. Both the models had a batch size
= 128.

The models’ performance on the validation and testing sets
are given in Table IV and Table V. The models’ performance

on the testing set based on length of input sentence using
Precision Score and Brevity Score are given in Table VI.
Similarly, the models’ performance on the testing set based
on length of input sentence using BLEU score and METEOR
Score are given in Table VII.

It can be observed from Table IV and Table V that the
performance of the Seq2Seq model and Transformer model
are similar for provided language combinations. It can also
be observed that for the provided language combinations,
the Transformer model provides better performance than the
Seq2Seq model. For the French-English language combina-
tion, it can be observed that the Precision Score is almost the
same for both models. However, BLEU Score’s change comes
from the improved value of the Brevity Score for the Trans-
former model. The increase in Precision and Brevity Scores
improved BLEU Score for the Transformer model compared
to the Seq2Seq model for the other language combinations. It
can be seen from Table VI and Table VII, that as the length
of the input sentence increases, all metrics used to evaluate
the model start dropping. Another observation is that as the
length of input increases, the difference in the performance of
the Seq2Seq model and Transformer model decreases.

In this paper, we have developed a Parts-of-Speech-based
Neural Machine Translation system for European languages
such as French, German, and Spanish. Two famous architec-
tures were used for developing the system for each language,
namely, Sequence-to-Sequence architecture and Transformer
architecture. The Sequence-to-Sequence architecture consisted
of Luong attention (for capturing essential features), Stacked
Bidirectional Long Short-Term Memory Encoder, and Stacked
Unidirectional Long Short-Term Memory Decoder. The Trans-
former model consisted of 6 Multi-head Self-attention (for
capturing essential features), six layers of Dense Encoder lay-
ers, and six layers of Dense Decoder layers. The models were
trained with Paracrawl, Europarl, and Tatoeba Project datasets.
The models were evaluated using Precision Score, Brevity
Score, Bilingual Evaluation Understudy (BLEU) Score, and
Metric for Evaluation of Translation with Explicit Ordering
(METEOR) Score. It was observed that for all the language
combinations used in the paper, the Transformer model per-
formed significantly better than the Luong Attention-based
Sequence-to-Sequence model. The Transformer model per-
formed significantly better because it had a higher Precision
Score and Brevity Score than good Precision Score but a
lower Brevity Score for Luong Attention-based Sequence-to-
Sequence model.

[1] Ethnologue. How many languages are there in the world?, Feb 2020.
[2] Worldometer. World population (live), Oct 2020.
[3] Wikipedia contributors. List of languages by total number of speakers

— Wikipedia, the free encyclopedia. [Online; accessed 21-September-
2020].

4. Results and Discussions 

4.1. Hyperparameter Selection  
for the Neural Networks 

4.2. Training and Testing of 
 the Neural Network Models 

4.3. Performance of the Models  
on the Validation and Testing Sets 

5. Conclusion 

References 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2021.18.5

Preetham Ganesh, Bharat S. Rawal, 
Alexander Peter, Andi Giri

E-ISSN: 2224-3402 31 Volume 18, 2021



[4] Wikipedia contributors. List of languages by the number of countries
in which they are recognized as an official language — Wikipedia, the
free encyclopedia, 2020.

[5] Wikipedia contributors. Official language — Wikipedia, the free
encyclopedia, 2020.

[6] Dana Smith. At what age does our ability to learn a new language like
a native speaker disappear?, May 2018.

[7] Steffy Zameo. Neural machine translation: Tips & advantages for digital
translations — textmaster, May 2019.

[8] Delip Rao. The real problems with neural machine translation, Jul 2018.
[9] Wikipedia contributors. Statistical machine translation — Wikipedia,

the free encyclopedia. [Online; accessed 21-September-2020].
[10] Wikipedia contributors. Neural machine translation — Wikipedia, the

free encyclopedia. [Online; accessed 21-September-2020].
[11] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence

learning with neural networks. In Advances in neural information
processing systems, pages 3104–3112, 2014.

[12] Wikipedia contributors. Seq2seq — Wikipedia, the free encyclopedia,
2020. [Online; accessed 21-September-2020].

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[14] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective
approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

[15] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural ma-
chine translation of rare words with subword units. arXiv preprint
arXiv:1508.07909, 2015.

[16] Taku Kudo and John Richardson. SentencePiece: A simple and language
independent subword tokenizer and detokenizer for neural text process-
ing. In Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pages 66–71.
Association for Computational Linguistics, November 2018.

[17] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[18] Jonas Gehring, Michael Auli, David Grangier, and Yann N Dauphin.
A convolutional encoder model for neural machine translation. arXiv
preprint arXiv:1611.02344, 2016.

[19] A Vaswani, N Shazeer, N Parmar, J Uszkoreit, L Jones, AN Gomez,
L Kaiser, and I Polosukhin. Attention is all you need. arxiv 2017. arXiv
preprint arXiv:1706.03762, 2017.

[20] Yongjing Yin, Jinsong Su, Huating Wen, Jiali Zeng, Yang Liu, and
Yidong Chen. Pos tag-enhanced coarse-to-fine attention for neural
machine translation. ACM Trans. Asian Low-Resour. Lang. Inf. Process.,
18(4), April 2019.

[21] Jan Niehues and Eunah Cho. Exploiting linguistic resources for neural
machine translation using multi-task learning, 2017.

[22] Kelly, Charles. English-spanish sentences from the tatoeba project, 2020.
[Online; Accessed 20 September 2020.].

[23] Philipp Koehn. Europarl: A parallel corpus for statistical machine
translation. Citeseer, 2005.

[24] Paracrawl, 2018.
[25] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In

Proceedings of the ACL-02 Workshop on Effective Tools and Method-
ologies for Teaching Natural Language Processing and Computational
Linguistics - Volume 1, ETMTNLP ’02, page 63–70, USA, 2002.
Association for Computational Linguistics.

[26] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane
Boyd. spaCy: Industrial-strength Natural Language Processing in
Python, 2020.

[27] J. F. Kolen and S. C. Kremer. Gradient Flow in Recurrent Nets: The
Difficulty of Learning LongTerm Dependencies, pages 237–243. 2001.

[28] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Understanding
the exploding gradient problem. ArXiv, abs/1211.5063, 2012.

[29] Kishore Papineni, Salim Roukos, Todd Ward, and Wei jing Zhu. Bleu: a
method for automatic evaluation of machine translation. pages 311–318,
2002.

[30] Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric
for MT evaluation with improved correlation with human judgments. In
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation

Measures for Machine Translation and/or Summarization, pages 65–
72, Ann Arbor, Michigan, June 2005. Association for Computational
Linguistics.

[31] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. Tensorflow: Large-scale machine learning on heterogeneous
distributed systems, 2016.

[32] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

Creative Commons Attribution License 4.0  
(Attribution 4.0 International, CC BY 4.0)  

This article is published under the terms of the Creative  
Commons Attribution License 4.0  
https://creativecommons.org/licenses/by/4.0/deed.en_US 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS 
DOI: 10.37394/23209.2021.18.5

Preetham Ganesh, Bharat S. Rawal, 
Alexander Peter, Andi Giri

E-ISSN: 2224-3402 32 Volume 18, 2021



TABLE IV
PERFORMANCE OF THE MODELS ON THE VALIDATION SET

Translation Task Model BLEU Score Precision Score Brevity Score METEOR Score

English-French Seq2Seq 32.148 35.428 90.74 57.155
Transformer 40.929 41.591 98.408 66.047

French-English Seq2Seq 37.478 41.065 91.265 59.996
Transformer 40.713 41.898 97.712 69.469

English-German Seq2Seq 29.824 32.203 92.612 54.263
Transformer 36.925 37.45 98.6 62.66

German-English Seq2Seq 39.585 42.463 93.222 67.906
Transformer 42.951 44.34 96.867 71.483

English-Spanish Seq2Seq 37.478 41.065 91.265 59.996
Transformer 44.673 45.637 97.886 68.43

Spanish-English Seq2Seq 37.478 41.065 91.265 59.996
Transformer 45.551 46.503 97.953 72.913

TABLE V
PERFORMANCE OF THE MODELS ON THE TESTING SET

Translation Task Model BLEU Score Precision Score Brevity Score METEOR Score

English-French Seq2Seq 31.654 34.67 91.301 57.056
Transformer 39.84 40.318 98.816 65.969

French-English Seq2Seq 37.568 41.078 91.456 59.968
Transformer 39.916 41.069 97.194 69.561

English-German Seq2Seq 28.742 31.012 92.681 53.466
Transformer 36.022 36.505 98.679 62.175

German-English Seq2Seq 38.72 41.218 93.94 67.37
Transformer 42.172 43.365 97.249 70.895

English-Spanish Seq2Seq 37.568 41.078 91.456 59.968
Transformer 44.786 45.648 98.111 68.176

Spanish-English Seq2Seq 37.568 41.078 91.456 59.968
Transformer 45.601 46.274 98.545 72.83

TABLE VI
PERFORMANCE OF THE MODELS ON THE TESTING SET BASED ON LENGTH OF INPUT SENTENCE USING PRECISION SCORE AND BREVITY SCORE

Translation Task Model Precision Score Brevity Score
< 10 10 - 19 20 - 29 30 - 39 40 < < 10 10 - 19 20 - 29 30 - 39 40 <

English-French Seq2Seq 38.175 37.533 34.231 30.21 21.925 93.551 93.377 92.045 85.777 87.877
Transformer 48.41 43.363 38.256 37.527 31.152 98.232 99.575 99.617 96.257 99.624

French-English Seq2Seq 42.902 41.319 40.494 41.484 35.269 86.293 92.034 92.838 90.378 85.498
Transformer 51.808 45.625 40.194 37.601 38.708 95.374 97.588 97.305 97.187 95.571

English-German Seq2Seq 41.618 33.662 30.292 26.98 25.319 88.071 93.94 94.27 90.383 81.093
Transformer 47.325 39.326 35.373 32.669 31.311 99.251 99.273 99.538 96.802 89.649

German-English Seq2Seq 53.005 45.057 39.594 34.654 24.703 91.397 94.591 95.378 91.231 83.51
Transformer 53.719 45.583 42.117 38.983 33.317 96.687 97.628 97.507 96.534 89.965

English-Spanish Seq2Seq 42.902 41.319 40.494 41.484 35.269 86.293 92.034 92.838 90.378 85.498
Transformer 51.618 45.694 44.889 45.45 43.438 98.498 99.062 98.39 96.734 91.922

Spanish-English Seq2Seq 42.902 41.319 40.494 41.484 35.269 86.293 92.034 92.838 90.378 85.498
Transformer 51.851 47.281 44.438 47.191 36.561 97.832 98.641 98.942 98.499 93.614

TABLE VII
PERFORMANCE OF THE MODELS ON THE TESTING SET BASED ON LENGTH OF INPUT SENTENCE USING BLEU SCORE AND METEOR SCORE

Translation Task Model BLEU Score METEOR Score
< 10 10 - 19 20 - 29 30 - 39 40 < < 10 10 - 19 20 - 29 30 - 39 40 <

English-French Seq2Seq 35.713 35.047 31.508 25.913 19.267 58.242 59.531 56.287 49.576 40.289
Transformer 47.555 43.178 38.109 36.123 31.035 70.647 67.768 63.325 60.07 52.671

French-English Seq2Seq 37.022 38.027 37.594 37.493 30.154 58.572 60.763 60.534 58.833 52.854
Transformer 49.411 44.524 39.111 36.544 36.994 74.864 71.656 67.625 65.431 65.291

English-German Seq2Seq 36.654 31.622 28.556 24.385 20.532 57.134 55.164 51.987 47.603 43.072
Transformer 46.971 39.04 35.209 31.624 28.07 69.052 63.28 59.566 56.255 51.57

German-English Seq2Seq 48.445 42.62 37.764 31.615 20.63 72.479 69.167 64.916 58.428 46.663
Transformer 51.939 44.502 41.068 37.632 29.973 76.09 71.663 68.555 65.062 55.38

English-Spanish Seq2Seq 37.022 38.027 37.594 37.493 30.154 58.572 60.763 60.534 58.833 52.854
Transformer 50.843 45.266 44.167 43.965 39.929 71.616 68.473 67.131 65.459 61.597

Spanish-English Seq2Seq 37.022 38.027 37.594 37.493 30.154 58.572 60.763 60.534 58.833 52.854
Transformer 50.727 46.638 43.968 46.483 34.226 74.82 73.541 71.668 71.924 61.994
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