
Improved Particle Swarm Optimization for Solving Multiprocessor
Scheduling Problem: Enhancements and Hybrid Methods

F. CHOONG, S. PHON-AMNUAISUK, M.Y. ALIAS

School of Engineering
Taylor’s University

No. 1, Jalan Taylor’s, 47500 Subang Jaya, Selangor
MALAYSIA

florence.choong@gmail.com http://www.taylors.edu.my

Abstract: - Memetic algorithms (MAs) are hybrid evolutionary algorithms (EAs) that combine global and local
search by using an EA to perform exploration while the local search method performs exploitation. Combining
global and local search is a strategy used by many successful global optimization approaches, and MAs have in
fact been recognized as a powerful algorithmic paradigm for evolutionary computing. This paper presents a
hybrid heuristic model that combines particle swarm optimization (PSO) and simulated annealing (SA). This
PSO/SA hybrid was applied on the multiprocessor scheduling problem to perform static allocation of tasks in a
heterogeneous distributed computing system in a manner that is designed to minimize the cost. Additionally,
this paper also focuses on the design and implementation of several enhancements to PSO based on diversity
and efficient initialization using different distributions. The results show the effectiveness and superiority of the
hybrid algorithms.

Key-Words: - Memetic Algorithms, Particle Swarm Optimization, Simulated Annealing, Hybrid,
Multiprocessor Scheduling, Optimization

1 Introduction
Memetic algorithms (MAs) are evolutionary
algorithms (EAs) that apply a separate local search
process to refine individuals. These methods are
inspired by models of adaptation in natural systems
that combine evolutionary adaptation of populations
of individuals with individual learning within a
lifetime [1]. MAs include a broad class of
metaheuristics. This method is based on a
population of agents and proved to be of practical
success in a variety of problem domains. Unlike
traditional Evolutionary Computation approaches,
MAs are concerned with exploiting all available
knowledge about the problem under study. This is
not as an optional mechanism, but as a fundamental
feature.

From an optimization point of view, MAs
are hybrid EAs that combine global and local search
by using an EA to perform exploration while the
local search method performs exploitation.
Combining global and local search is a strategy used
by many successful global optimization approaches,
and MAs have in fact been recognized as a powerful
algorithmic paradigm for evolutionary computing.
In this paper, the proposed hybrid heuristic model
involves a Particle Swarm Optimization (PSO) [2]
and Simulated Annealing (SA) [3] algorithm

resulting in a fast and easily implemented hybrid
algorithm. This PSO/SA hybrid performs static
allocation of tasks in a heterogeneous distributed
computing system in a manner that is designed to
minimize the cost. The problem of scheduling a set
of dependent or independent tasks in a distributed
computing system is a well-studied area. In this
section, a static task allocation [4] in the
heterogeneous computing system is examined which
provides a variety of architectural capabilities,
orchestrated to perform on application problems
whose tasks have diverse execution requirements.
The proposed method assigns the tasks to processors
and avoids becoming trapped in local optimum and
also leads to faster convergence towards the targeted
solution.

Several research works have been carried out in
Task Assignment Problem (TAP). The traditional
methods such as branch and bound, divide and
conquer, and dynamic programming give the global
optimum, but are often too time consuming or do
not apply for solving typical real-world problems.
The researchers [5-7] had derived optimal task
assignments to minimize the sum of task execution
and communication costs with the branch-and-
bound method and evaluated the computational
complexity of this method using simulation. Many

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 70 Volume 14, 2017

of the heuristic algorithms use a graphical
representation of the task-processor system such that
a Max Flow/Min Cut Algorithm can be utilized to
find assignments of tasks to processors which
minimize total execution and communication costs
[8-9] and conclude that a measure of degree to
which an algorithm achieves load balancing [10]
can yield fairly unbalanced assignments. Traditional
methods used in optimization are deterministic, fast,
and give exact answers but often tends to get stuck
on local optima. Also the time complexity from
exponential to polynomial for traditional search
algorithms on NP-hard problems cannot be changed.
Consequently, another approach is needed when the
traditional methods cannot be applied. The modern
heuristic approach helps in such situation. Modern
heuristics are general purpose optimization
algorithms. Their efficiency or applicability is not
tied to any specific problem-domain. Available
heuristics include SA, Genetic Algorithm (GA) [11]
and Ant Colony algorithm [12]. Peng-Yeng et.al
(2006) had proposed a hybrid strategy using Hill
Climbing algorithm as a local search method along
with PSO [13]. However, hill climbing heuristic has
a major problem of getting trapped in local optima.

2 Problem Formulation
This paper considers the TAP with the following
scenario. The system consists of a set of
heterogeneous processors (n) having different
memory and processing resources, which implies
that tasks (r), executed on different processor
encounters different execution cost. The
communication links are assumed to be identical,
however communication cost between two tasks
will be encountered when executed on different
processors. A task will make use of the resources
from its execution processor [9]. The objective is to
minimize the total execution and communication
cost encountered by the task assignment subject to
the resource constraints. To achieve minimum cost
for the TAP, the function is formulated as shown in
Eqs. (1)-(5):

 (1)

 (2)

 (3)

 (4)

 (5)

xik is set to 1 if task i is assigned to processor k. n

denotes the number of processors, r denotes the
number of tasks, eik denotes the incurred execution
cost if tasks i is executed on processor k. cij is the
incurred communication cost if tasks i and j are
executed on different processors. mi and pi
represents the memory requirements and processing
requirements of task i respectively. Mk and Pk are
the memory and processing capacity of processor k.
Q(X) is the objective function which combines the
total execution cost and total communication cost as
specified in 1st and 2nd terms of Eq. (1). The first
constraint mentioned in Eq. (2) says that each task
should be assigned to exactly one processor. Eq. (3)
and Eq. (4) are the 2nd and 3rd constraints
respectively and they assure that the resource
demand should never exceed the resource capacity.
The final constraint as mentioned in Eq. (5)
specifies that the xik is a binary decision variable.

3 Implementation
This section discusses the simple PSO and the
proposed hybrid PSO/SA. In PSO, each particle
corresponds to a candidate solution of the
underlying problem. In the proposed method each
particle represents a feasible solution for task
assignment using a vector of r elements, and each
element is an integer value between 1 to n. Fig. 1
shows an illustrative example where each row
represents the particles which correspond to a task
assignment that assigns five tasks to three
processors, and Particleparticle3,T4 = P1 means that
in particle 3 the Task 4 is assigned to Processor 1.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 71 Volume 14, 2017

Particle number T1 T2 T3 T4 T5

particle 1 P3 P2 P1 P2 P2

particle 2 P1 P2 P3 P1 P1

particle 3 P1 P3 P2 P1 P2

particle 4 P2 P1 P2 P3 P1

particle 5 P2 P2 P1 P3 P1

Fig. 1 Representation of particles

In the hybrid version, hybridization is done by

performing SA at the end of an iteration of simple
PSO [14]. Generally the TAP is to assign the n tasks
to m processors so that the load is shared and also
balanced. Here the proposed system considers n=20
and r=5 i.e. 20 tasks should be shared among 5
processors. The system calculates the fitness value
of each assignment and selects the optimal
assignment from the set of solutions. The system
compares the memory and processing capacity of
the processor with the memory and processing
requirements of the tasks respectively. If capacity is
enough then the task is assigned, else a penalty is
added to the calculated fitness value.

3.1 Fitness Evaluation
The initial population is generated randomly and
checked for the consistency [15]. Then each particle
must be assigned with the velocities obtained
randomly and it lies in the interval [0, 1]. Each
solution vector in the solution space is evaluated by
calculating the fitness value for each vector. The
objective value of Q(X) in Eq. (1) can be used to
measure the quality of each solution vector. In
modern heuristics the infeasible solutions are also
considered since they may provide a valuable clue
to targeting optimal solution [16]. A penalty
function as shown in Eq. (6) is devised to estimate
the infeasibility level of a solution. The penalty
function is only related to constraints (3) and (4),
and it is given by Eq. (6):

 (6)

This penalty is added to the objective function
whenever the resource requirement exceeds the
capacity. Hence the fitness function of the particle
vector can finally be defined as in Eq. (7),

 (7)

Hence, as the fitness value increases the total cost is
minimized which is the objective of the problem.

3.2 Simple PSO
In implementing the simple PSO algorithm, two
versions for keeping the neighbors’ best vector,
namely lbest and gbest are considered. The position
of a particle is influenced by the best position
visited by itself i.e. its own experience and the
position of the best particle in its neighborhood i.e.
the experience of neighboring particles. When the
neighborhood of a particle is the entire swarm, the
best position in the neighborhood is referred to as
the global best position of the particle, and the
resulting algorithm is referred to as the gbest PSO.
When smaller neighborhoods are used, the
algorithm is generally referred to as the lbest PSO.
The performance of each particle is measured using
a fitness function that varies depending on the
optimization problem [12].

The global neighborhood ‘gbest’ is the most
intuitive neighborhood. In the local neighborhood
‘lbest’, a particle is just connected to a fragmentary
number of processes [2]. The best particle is
obtained from, the best particle in each fragment. In
the global version, every particle has access to the
fitness and best value so far of all other particles in
the swarm. Each particle compares its fitness value
with all other particles. This method implements the
star topology. It has exploitation of solution spaces
but exploration is weak [17]. In the local version,
each particle keeps track of the best vector lbest
attained by its local topological neighborhood of
particles. Each particle compares with its neighbors
decided based on the size of the neighborhood. The
groups exchange information about local optima.
Here the exploitation of solution space is weakened
and exploration becomes stronger.

3.3 Hybrid PSO
Modern metaheuristics manage to combine
exploration and exploitation search. The exploration
search seeks for new regions, and once it finds a
good region, the exploitation search kicks in.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 72 Volume 14, 2017

However, since the two strategies are usually inter-
wound, the search may be conducted to other
regions before it reaches the local optima. As a
result, many researchers suggest employing a hybrid
strategy, which embeds a local optimizer in between
the iterations of the meta-heuristics [18].

In SA, the fundamental idea is to allow
moves resulting in solutions of worse quality than
the current solution (uphill moves) in order to
escape from local minima. The probability of doing
such a move is decreased during the search. The
high level algorithm is described in Fig. 2. The
algorithm starts by generating an initial solution
(either randomly or heuristically constructed) and by
initializing the so-called temperature parameter T.
Then, at each iteration, a solution is randomly
sampled and it is accepted as new current solution
with a certain probability. The temperature T is
decreased during the search process, thus at the
beginning of the search the probability of accepting
uphill moves is high and it gradually decreases,
converging to a simple iterative improvement
algorithm. This process is analogous to the
annealing process of metals and glass, which
assume a low energy configuration when cooled
with an appropriate cooling schedule. Regarding the
search process, this means that the algorithm is the
result of two combined strategies; random walk and
iterative improvement. In the first phase of the
search, the bias toward improvements is low and it
permits the exploration of the search space; this
erratic component is slowly decreased thus leading
the search to converge to a local minimum. The
probability of accepting uphill moves is controlled
by the difference of the objective functions and the
temperature.

Fig. 2 Algorithm: Simulated Annealing (SA).

In the application of the TAP, the embedded
SA heuristic proceeds as follows. Given a particle
vector, its r elements are sequentially examined for

updating. The value of the examined element is
replaced, in turn, by each integer value from 1 to n,
and retains the best one that attains the highest
fitness value among them. While an element is
examined, the values of the remaining r -1 elements
remain unchanged. A neighbor of the new particle is
selected. The fitness values for the new particle and
its neighbor are found. They are compared and the
minimum value is selected. This minimum value is
assigned to the personal best of this particle. The
heuristic is terminated if all the elements of the
particle have been examined for updating and all the
particles are examined. The computation for the
fitness value due to the element updating can be
maximized. Since a value change in one element
affects the assignment of exactly one task, we can
save the fitness computation by only recalculating
the system costs and constraint conditions related to
the reassigned task.

4 Results
This section describes the results of simulations
conducted to gain insight into the performance of
the PSO-SA hybrid implementation. Various
versions of PSO algorithm like the simple PSO, the
global PSO and Hybrid PSO were implemented.
The experimental results clearly demonstrate the
effectiveness of the Hybrid PSO. The value of (r, n)
is set to (20, 5). The values of the other parameters
are generated randomly as specified in [13]. The
results of this experiment are obtained by varying
the number of particles, number of iterations and
topology of neighbourhood particles.

4.1 Cost Evaluation
The task incurs the execution cost and
communication cost when executed on different
machines. Our objective is to minimize this total
cost. This section discusses the evaluation of cost in
various versions of PSO using two methods: Cost
vs. Number of iterations and Cost vs. Population
Size. For each version the number of iterations was
increased up to 100 and the results were recorded.

Cost evaluation in done for the global best
PSO (gBest), local best PSO (lBest) and the hybrid
PSO. Two methods were carried out. In the first
method the cost is compared with an increase in the
number of iterations. For the gBest PSO, the cost
obtained initially was 1011. As illustrated in Fig. 3,
the cost reduces as we increase the number of
iterations and gBest PSO converges to the minimum

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 73 Volume 14, 2017

cost of 857 at the 28th iteration and remains the
same till the last iteration.

Fig. 3 Global best PSO with varying number of
iterations

Fig. 4 depicts the cost obtained for the lBest
PSO. The initial cost is 1035 and then reduces as we
increase the number of iterations and lBest PSO
converges to the minimum cost of 857 at the 100th
iteration only. This is because it gets the information
only from its neighbours.

Fig. 4 Local best PSO with varying number of
iterations

Running the same test on the hybrid PSO
yields an initial cost of 940 as shown in Fig. 5. The
cost reduces as we increase the number of iterations
and Hybrid PSO converges to the minimum cost of
857 at the 21st iteration and remains the same till

the last iteration. The faster convergence is due to
the hybridization with simulated annealing.

Fig. 5 Hybrid PSO with varying number of
iterations

In the second method the cost obtained is
compared with an increase in the population size.
For the gBest PSO, the cost initially was 883 as
illustrated in Fig. 6. The cost then reduces as we
increase the population size and it finally converges
to the minimum cost of 783 for the population size
of 500 and remains the same albeit the increase in
the population size.

Fig. 6 Decreasing Cost in Gbest PSO with varying
population size

Fig. 7 depicts the cost obtained for the lBest
PSO. Initially the cost obtained is 914 and then
reduces as we increase the population size. It then

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 74 Volume 14, 2017

converges to the minimum cost of 818 for the
population size of 500. The increase in cost is due to
the fact that each particle gets the information only
from its neighbors.

Fig. 7 Decreasing Cost in Lbest PSO with varying
population size

The hybrid PSO managed to obtain an
initial cost of 885 as shown in Fig. 8. The cost
reduces as we increase the population size and
hybrid PSO finally converges to the minimum cost
of 783 for a population size of 500 and remains the
same for any increase in the population size. The
faster convergence is contributed by the
hybridization with simulated annealing.

Fig. 8 Hybrid PSO with varying population size

The gBest topology compares each particle with
every other particle, therefore the convergence is
faster. The lBest topology compares each particle
with its immediate neighborhood, thus resulting in a
slower convergence as compared to gBest. On the
other hand, in the hybrid PSO, the inclusion of
simulated annealing at the end of iteration makes the
search refined only towards the feasible solution
which leads to faster convergence compared to the
other two methods. For all three methods, increasing
the population size results in a further minimization
of the cost because the exploration is high.

4.2 Time Taken for Convergence
Next, the time taken for the convergence of the
particles is compared. As expected, the hybrid PSO
converged faster than all other versions. This is
checked for varying population. As the population
increases the gBest and lBest versions takes longer
time for the convergence. However, the hybrid PSO
performs better than the other two methods because
the search in the negative direction is prevented.
This can be inferred from Fig. 9.

Fig. 9 Time Taken for convergence

5 PSO Enhancements
Although PSO has shown a very good performance
in solving many test as well as real life optimization
problems, it suffers from the problem of premature
convergence like most of the stochastic search
techniques, particularly in case of multimodal
optimization problems. The curse of premature

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 75 Volume 14, 2017

convergence greatly affects the performance of PSO
and many times lead to a sub optimal solution [19].
Empirical studies have shown that the basic PSO
has a tendency of premature convergence [20] and
the main reason for this behavior is due to the loss
of diversity in successive iterations. It has been
observed that the presence of a suitable operator
may help in improving the performance of PSO
quite significantly. This section presents two
enhancements done on the basic PSO; the first is on
the use of diversity to guide the swarm and second
is the efficient generation of population using
different initialization schemes.

5.1 Diversity-Guided PSO
As an extension to the PSO algorithm and to avoid
premature convergence, maintaining a certain
degree of diversity is crucial. Diversity may be
defined as the dispersion of potential candidate
solutions in the search space. Interested readers may
please refer to [21] for different formulae used for
calculating diversity. One of the drawbacks of most
of the population based search techniques is that
they work on the principle of contracting the search
domain towards the global optima. Due to this
reason after a certain number of iterations all the
points get accumulated to a region which may not
even be a region of local optima, thereby giving
suboptimal solutions [19]. Thus without a suitable
diversity enhancing mechanism it is very difficult
for an optimization algorithm to reach towards the
true solution.

A diversity measure control, the attraction-
repulsion PSO (ARPSO) is introduced in the PSO
algorithm to control the swarm in phases of
attraction and repulsion. The attraction phase is
basically the same as the basic PSO algorithm. In
the basic PSO algorithm particles tend to attract to
each other due to the level of communication
between particles, this is exactly what is required in
the attraction phase so it stays the same. Therefore,
a positive feedback leads to contraction of the
swarm and lower diversity. In the repulsion phase
we want particles to move away from those
positions that are seen as best and explore new
sections of the search space. This is done by
reversing the formula used to update the velocity
and making the particle move away from its
personal best and the swarms’ global best. Due to
the clustering of the swarm in the attraction phase,
diversity tends to be compromised and decrease. It
is when the diversity has dropped below an
acceptable level that we want the repulsion stage to
kick in and offer more variety to where particles are

searching. The negative feedback leads to an
explosion of the swarm and higher diversity. We do
not however want to constantly stay in this repulsion
stage as instead of finding new global best and
searching these new global bests further we may just
keep moving away from these global bests.
Therefore when the diversity hits a specified high
we want to switch back to the attraction stage so as
to explore the new found areas of interest further.
The ARPSO uses diversity threshold values dlow and
dhigh to guide the movement of the swarm. The
threshold values are predefined by the user. The
main idea is to alternate between phases of repulsion
when diversity drops below dlow to encourage further
exploration of the search space and attraction when
diversity exceeds dhigh to encourage exploitation of
the solutions. The diversity is measured based on
Eq. 8:

 (8)

where:
– S is the swarm and |S| is the

swarmsize,
– L is the length of the longest

diagonal in the search space,
– N is the dimensionality of the

search space,
– pij is the j’th value of the i’th

particle, and
– avgj is the j’th value of the swarms

average point.

Threshold values: dhigh = 0.25, dlow = 5.0*10-6

In making the comparison between GA, PSO and
ARPSO, the swarm / population size is fixed to 20
for all algorithms, and the generation number is
varied. The GA used here can be found in the
previous work [11]. The convergence rate with the
number of generations for PSO, GA and ARPSO for
benchmarks EWF and FIR [11] and is shown in Fig.
10 and Fig. 11 respectively. It is clear that, ARPSO
produces a better solution quality as compared to
that for GA and PSO. The ARPSO continues to
search for new areas during its whole search-
process. It continues to “pump” diversity into the
swarm during optimization.

()∑ ∑
= =

−
⋅

=
S

i

N

j
jij avgp

LS
Sdiversity

1 1

21)(

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 76 Volume 14, 2017

Fig. 10 The convergence rate with the number of
generations for PSO, GA and ARPSO for EWF
benchmark.

Fig. 11 The convergence rate with the number of
generations for PSO, GA and ARPSO for FIR
benchmark.

5.2 Effects of Swarm Size on ARPSO

As shown in the previous section, diversity is
essential in PSO to continue finding better solutions.
By introducing the idea of certain particles being
competitive or reversing the concept of particles
flowing towards the current best solution once
diversity reaches a certain low, we can ensure that
other areas of the solution space get looked at and
clustering around these local best is reduced. This is
where the concept of competitive PSO comes in
[22]. The ARPSO introduced in the previous section
is a form of competitive PSO that utilizes some sort
of difference between groups of particles to ensure
diversity is maintained.

Another factor in ensuring that diversity is
maintained is to have an adequate sized swarm. The
swarm should be of a necessary size to ensure that
the optimum solution can be found whilst not being
so large that it adversely affects the performance of
the algorithm. This section aims to test two different
functions with varying swarm sizes to see if a
pattern emerges of what is the best swarm size for
competitive PSO. For the experiment, two different
benchmarks were used, EWF and FIR. Each
benchmark was tested with a dimension of 20 and
was evaluated 20,000 times. The swarm size is
varied with each test, beginning with 20, then 50,
then 80 and finally 100. After this we took larger
jumps in the swarm size from 200 to 500 and finally
to 800 and 1,000 to see whether or not exceptionally
large swarms improved the result considerably.

The results from the EWF are compiled in
Table 1. They show a clear improvement in the best
result as the swarm increases in size and also a clear
increase in the time taken for the 50 runs to
complete as the swarm size becomes larger. If we
break the table of results in two parts, the first part
being from 20 to 100 and the second from 200 to
1,000, notice how the improvement found for each
part is greatly different. Each halves swarm size
increases by the same factor yet in the first half it is
found that a 15% improvement in the result given at
the expense of just a 0.7% increase in time spent
obtaining the solution. In the second half of the table
there is a similar improvement in the results
obtained yet it is still less than that of the first half at
only 14%. Yet this improvement is at the expense of
a 19% increase in the time spent to reach those
results. This shows that while a larger swarm size
does improve the results we get, it begins to start
costing too much in time spent for the function to
complete once the size of the swarm reaches a
certain point.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 77 Volume 14, 2017

Table 1: Results from the EWF benchmark carried
out over 50 runs with dimension 20 and 20,000
evaluations per run.

Swarm size Best average result Time (s)

20 141.368297 13.4

50 129.883767 13.3

80 123.778254 13.5

100 122.581813 13.5

200 119.946907 13.8

500 110.415802 14.9

800 105.406012 16.0

1000 104.351577 16.5

The results of the FIR are presented in
Table 2. Again we see a clear trend of an
improvement in the results shown as the swarm size
increases. The time taken to get these results also
increases with FIR as it did with EWF. Again if we
break the table up into two halves as we did with the
EWF it is noticed that the first half shows a much
better return. From a swarm size of 20 to a swarm
size of 100 there is a 7.7% improvement in the
results obtained at an expense of 1.5% more time
taken. The second half shows an 8% improvement
at the expense of 20% more time taken. This again
shows that eventually the size of the swarm
becomes a negative factor on the time taken to
produce a result.

In conclusion we can establish that
increased swarm size means that there are more
particles searching for solutions and thus the
solutions provided improve as the amount of
particles increases. This however leads to the
function taking longer to finish a run and has a
negative effect on the performance of the algorithm.
Obviously various different problems will require
different swarm sizes. From our results we can
determine that once the size of the swarm goes over
100 there does appear to be a detrimental effect on
the time taken to produce results.

Table 2: Results from the FIR benchmark carried
out over 50 runs with dimension 20 and 20,000
evaluations per run.

Swarm size Best average result Time (s)

20 1.952897 12.8

50 1.838701 12.7

80 1.824146 12.9

100 1.813096 12.7

200 1.771412 12.8

500 1.684667 14.0

800 1.641820 15.4

1000 1.520966 15.4

5.3 Efficient Initialization in PSO
PSO (and other search techniques, which depend on
the generation of random numbers) works very well
for problems having a small search area (i.e. a
search area having low dimension), but as the
dimension of search space is increased, the
performance deteriorates and many times converge
prematurely giving a suboptimal result. This
problem becomes more persistent in case of
multimodal functions having several local and
global optima. One of the reasons for the poor
performance of a PSO may be attributed to the
dispersion of initial population points in the search
space i.e. to say, if the swarm population does not
cover the search area efficiently, it may not be able
to locate the potent solution points, thereby missing
the global optimum [23]. This difficulty may be
minimized to a great extent by selecting a well-
organized distribution of random numbers.

This section analyses the behaviour of some
variations of PSO where only the initial distribution
of random numbers is changed. Initially in the
algorithms the initial uniform distribution is
replaced by other probability distributions like
exponential, lognormal and Gaussian distributions.
It is interesting to see that even a small change in
the initial distribution produces a visible change in
the numerical results. After that more specialized
algorithms are designed which use low discrepancy
sequences for the generation of random numbers. A

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 78 Volume 14, 2017

brief description of the algorithms is given in the
subsequent sections.

Different Probability Distributions like
Exponential and Gaussian have already been used
for the fine tuning of PSO parameters [24-25].
However, for initializing the swarm most of the
approaches use uniformly distributed random
numbers. Here, the possibility of having a different
probability distribution (Gaussian, Exponential,
Lognormal) for the generation of random number
other than the uniform distribution is investigated.
Empirical results showed that distributions other
than uniform distribution are equally competent and
in most of the cases are better than uniform
distribution. The algorithms GPSO, EPSO and
LNPSO use Gaussian, exponential and lognormal
distributions respectively. The algorithms follow the
steps of the basic PSO given in Section except for
the fact that they use mentioned distributions in
place of uniform distributions. The probability
distributions for initializing the swarm using
Gaussian, Exponential and Log-normal distributions
are shown in Eqs 9-11 respectively:

Gaussian distribution:

 (9)

with mean 0 and standard deviation 1, i.e. N (0,1).

Exponential distribution:

 (10)

with a, b > 0.It is evident that one can control the
variance by changing the parameters a and b.

Log-normal distribution:

 (11)

with mean 0 and standard deviation 1.

Fig. 12 gives the numerical results of PSO versions
initialized with Gaussian, exponential and
lognormal probability distributions. The tests were
done on ten, three, two and five tasks respectively.
From the numerical results it can be seen that the
PSO using Gaussian mutation, GPSO, gave the best
performance in comparison to other versions,
followed by EPSO and LNPSO. For the first test
case consisting of ten tasks, GPSO gave the best
function value of approximately 10.00 which is
much better than the values obtained by the other
algorithms. For the second test case consisting of
three tasks, all the algorithms gave more or less
similar results. However GPSO and LNPSO gave a
slightly better performance. For the third test
consisting of two tasks, once again GMPSO
outperformed the other algorithms. For the last test
consisting of five tasks, both GMPSO and EPSO
gave same result, which is better than the other two
algorithms. In all the test cases the results were
better than basic PSO using uniform distribution.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 79 Volume 14, 2017

Fig. 12 Performance for BPSO, GPSO, EPSO and
LNPSO for ten, three, two and five tasks
respectively.

6 Conclusion
This paper tackles the problem of assignment of the
tasks of an application to a set of distributed
processors such that the incurred cost is minimized
and the system throughput is maximized. Several
versions of the task assignment problem have been
formally defined but, unfortunately, most of them
are NP-complete. Here, we have proposed a
PSO/SA hybrid algorithm which finds a near-
optimal task assignment with reasonable time. It is
found that the hybrid PSO performed better than the
lBest and the gBest PSO models.

Next, the ARPSO is introduced to the basic
PSO algorithm for two main reasons: low diversity
is needed for fine-tuning of a solution found in a
given area and high diversity is needed to discover
other areas with entirely different solutions. It is a
good tradeoff between more frequently avoiding
premature convergence and on the other hand
relaxing the convergence rate a “bit”. From the
experimental results, it is clear that the proposed
algorithm produced better solutions compared to
BPSO and GA.

Finally, the three algorithms namely GPSO,
EPSO and LNPSO presented in this paper used

different initialization schemes for generating the
swarm population. These schemes include Gaussian,
exponential and lognormal probability distribution
to initialize the swarm. As expected, PSO
algorithms initialized with quasi random sequences
performed much better than the PSO initiated with
the usual computer generated random numbers
having uniform distribution. However the
interesting part of the study is that PSO initiated
with Gaussian, exponential and lognormal
distribution improved its performance quite
significantly.

References:
[1] Pablo, M., NP Optimization Problems,
Approximability and Evolutionary Computation:
From Practice to Theory, Ph.D. Dissertation,
Universidade Estadual de Campinas, Brazil, 2001.
[2] Kennedy, J., and R. Eberhart, Swarm
Intelligence, Academic Press, 1st ed., San Diego,
CA. 2001.
[3] Chen D.J., Lee C.Y., Park C.H., Mendes P.,
Parallelizing simulated annealing algorithms based
on high-performance computer, J. Glob. Optim.,
Vol. 39, 2007, pp. 261–289.
[4] Abdelmageed, E.A, and B. Earl Wells, A
Heuristic model for task allocation in heterogeneous
distributed computing systems, The International
Journal of Computers and Their Applications, Vol.
6, No. 1, 1999, pp. 746-753.
[5] Annie, S., W. Shiyun Jin, Kuo-Chi Lin and Guy
Schiavone, Incremental Genetic Algorithm
Approach to Multiprocessor Scheduling, IEEE
Transactions on Parallel and Distributed Systems,
Vol. 2, No. 5, 2004, pp. 135-142.
[6] Dar-Tzen Peng, G. S. Kang and F. Tarek
Abdelzaher, Assignment and Scheduling
Communicating Periodic Tasks in Distributed Real-
Time Systems, IEEE Transactions on Software
Engineering. Vol. 23, No. 12, 1997.
[7] Ruey-Maw, C., and H. Yueh-Ming,
Multiprocessor Task Assignment with Fuzzy
Hopfield Neural Network Clustering Techniques,
Journal of Neural Computing and Applications,
Vol.10, No.1, 2001.
[8] Virginia, M.L., Heuristic algorithms for task
assignment in distributed systems, IEEE
Transactions on Computers, Vol. 37, No. 11, 1998,
pp. 1384– 1397.
[9] Ioan, C. T., The particle swarm optimization
algorithm: convergence analysis and parameter
selection, Information Processing Letters, Vol. 85,
2003, pp. 317–325.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 80 Volume 14, 2017

[10] Batainah, S., and M. AI-Ibrahim, Load
management in loosely coupled multiprocessor
systems, Journal of Dynamics and Control, Vol.8,
No.1, 1998, pp. 107-116.
 [11] Choong, F., S. Phon-Amnuaisuk, M.Y. Alias
and W.L. Pang, Adaptive Genetic Algorithm: An
Essential Ingredient in High-level Synthesis,
Proceedings of the IEEE Congress on Evolutionary
Computation (CEC), Vol. 5, No. 6, 2008, pp. 3837-
3844.
[12] Graham, R., Static, Multi-processor scheduling
with Ant Colony Optimization and Local search,
Master of Science thesis , University of Edinburgh,
2003.
[13] Peng-Yeng, Y., Y. Shiuh-Sheng, W. Pei-Pei
and W. Yi-Te, A hybrid particle swarm optimization
algorithm for optimal task assignment in distributed
systems, Computer Standards & Interfaces, Vol.28,
2006, pp. 441-450.
[14] Yskandar, H., and S. Khalil Hindi, Assignment
of program modules to processors: A simulated
annealing approach, European Journal of
Operational Research, Vol. 1, No. 22, 2000,
pp.509-513.
[15] Tzu-Chiang, C., C. Po-Yin, and H. Yueh-Ming,
Multi-Processor Tasks with Resource and Timing
Constraints Using Particle Swarm Optimization,
IJCSNS International Journal of Computer Science
and Network Security. Vol.6, No.4, 2006.
[16] Shi, Y., and R. Eberhart, Parameter Selection in
Particle Swarm Optimization, Evolutionary
Programming VII, Proceedings of Evolutionary
Programming, 1998, pp. 591-600.
[17] Maurice, C., and J. Kennedy, The Particle
Swarm—Explosion, Stability, and Convergence in a
Multidimensional Complex Space, IEEE
Transactions on Evolutionary Computation, Vol. 6,
No. 1, 2002.
[18] Zhang, Y., R. Kamalian, A.M. Agogino and
C.H. Séquin, Hierarchical MEMS Synthesis and
Optimization, Smart Structures and Materials,
Smart Electronics, MEMS, BioMEMS, and
Nanotechnology, Proceedings of SPIE, Vol. 5763,
2005, pp. 96-106.
[19] Liu, H., A. Abraham and W. Zhang, A Fuzzy
Adaptive Turbulent Particle Swarm Optimization,
International Journal of Innovative Computing and
Applications, Vol 1, No. 1, 2007, pp. 39–47.
[20] Grosan, C., A. Abraham and M. Nicoara,
Search Optimization Using Hybrid Particle Sub-
Swarms and Evolutionary Algorithms, International
Journal of Simulation Systems, Science &
Technology, Vol. 6, No. 10&11, 2005, pp. 60–79.

[21] Engelbrecht, A.P., Fundamentals of
Computational Swarm Intelligence, John Wiley &
Sons Ltd., Chichester, 2005.
[22] Blackwell, T., and J. Branke, Multi-swarm
optimization in dynamic environments, Applications
of Evolutionary Computing, Vol. 3, No. 5, 2008, pp.
45-54.
[23] Grosan, C., A. Abraham and M. Nicoara,
Search Optimization Using Hybrid Particle Sub-
Swarms and Evolutionary Algorithms, International
Journal of Simulation Systems, Science &
Technology, Vol. 6, No. 10&11, 2005, pp. 60–79.
 [24] Krohling, R.A., A Novel Particle Swarm
Optimization Algorithm, In: Proc. of the 2004 IEEE
Conference on Cybernetics and Intelligent Systems,
2004, pp. 372–376.
[25] Krohling, R.A., and L.S. Coelho, PSO-E:
Particle Swarm with Exponential Distribution, In:
IEEE Congress on Evolutionary Computation,
2006, pp. 1428–1433.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 81 Volume 14, 2017

