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Abstract: - Memetic algorithms (MAs) are hybrid evolutionary algorithms (EAs) that combine global and local 
search by using an EA to perform exploration while the local search method performs exploitation. Combining 
global and local search is a strategy used by many successful global optimization approaches, and MAs have in 
fact been recognized as a powerful algorithmic paradigm for evolutionary computing. This paper presents a 
hybrid heuristic model that combines particle swarm optimization (PSO) and simulated annealing (SA). This 
PSO/SA hybrid was applied on the multiprocessor scheduling problem to perform static allocation of tasks in a 
heterogeneous distributed computing system in a manner that is designed to minimize the cost. Additionally, 
this paper also focuses on the design and implementation of several enhancements to PSO based on diversity 
and efficient initialization using different distributions. The results show the effectiveness and superiority of the 
hybrid algorithms. 
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1 Introduction 
Memetic algorithms (MAs) are evolutionary 
algorithms (EAs) that apply a separate local search 
process to refine individuals. These methods are 
inspired by models of adaptation in natural systems 
that combine evolutionary adaptation of populations 
of individuals with individual learning within a 
lifetime [1]. MAs include a broad class of 
metaheuristics. This method is based on a 
population of agents and proved to be of practical 
success in a variety of problem domains. Unlike 
traditional Evolutionary Computation approaches, 
MAs are concerned with exploiting all available 
knowledge about the problem under study. This is 
not as an optional mechanism, but as a fundamental 
feature.  

From an optimization point of view, MAs 
are hybrid EAs that combine global and local search 
by using an EA to perform exploration while the 
local search method performs exploitation. 
Combining global and local search is a strategy used 
by many successful global optimization approaches, 
and MAs have in fact been recognized as a powerful 
algorithmic paradigm for evolutionary computing. 
In this paper, the proposed hybrid heuristic model 
involves a Particle Swarm Optimization (PSO) [2] 
and Simulated Annealing (SA) [3] algorithm 

resulting in a fast and easily implemented hybrid 
algorithm. This PSO/SA hybrid performs static 
allocation of tasks in a heterogeneous distributed 
computing system in a manner that is designed to 
minimize the cost. The problem of scheduling a set 
of dependent or independent tasks in a distributed 
computing system is a well-studied area. In this 
section, a static task allocation [4] in the 
heterogeneous computing system is examined which 
provides a variety of architectural capabilities, 
orchestrated to perform on application problems 
whose tasks have diverse execution requirements. 
The proposed method assigns the tasks to processors 
and avoids becoming trapped in local optimum and 
also leads to faster convergence towards the targeted 
solution. 

Several research works have been carried out in 
Task Assignment Problem (TAP). The traditional 
methods such as branch and bound, divide and 
conquer, and dynamic programming give the global 
optimum, but are often too time consuming or do 
not apply for solving typical real-world problems. 
The researchers [5-7] had derived optimal task 
assignments to minimize the sum of task execution 
and communication costs with the branch-and-
bound method and evaluated the computational 
complexity of this method using simulation. Many 
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of the heuristic algorithms use a graphical 
representation of the task-processor system such that 
a Max Flow/Min Cut Algorithm can be utilized to 
find assignments of tasks to processors which 
minimize total execution and communication costs 
[8-9] and conclude that a measure of degree to 
which an algorithm achieves load balancing [10] 
can yield fairly unbalanced assignments. Traditional 
methods used in optimization are deterministic, fast, 
and give exact answers but often tends to get stuck 
on local optima. Also the time complexity from 
exponential to polynomial for traditional search 
algorithms on NP-hard problems cannot be changed. 
Consequently, another approach is needed when the 
traditional methods cannot be applied. The modern 
heuristic approach helps in such situation. Modern 
heuristics are general purpose optimization 
algorithms. Their efficiency or applicability is not 
tied to any specific problem-domain. Available 
heuristics include SA, Genetic Algorithm (GA) [11] 
and Ant Colony algorithm [12]. Peng-Yeng et.al 
(2006) had proposed a hybrid strategy using Hill 
Climbing algorithm as a local search method along 
with PSO [13]. However, hill climbing heuristic has 
a major problem of getting trapped in local optima. 
 
 
2 Problem Formulation 
This paper considers the TAP with the following 
scenario. The system consists of a set of 
heterogeneous processors (n) having different 
memory and processing resources, which implies 
that tasks (r), executed on different processor 
encounters different execution cost. The 
communication links are assumed to be identical, 
however communication cost between two tasks 
will be encountered when executed on different 
processors. A task will make use of the resources 
from its execution processor [9]. The objective is to 
minimize the total execution and communication 
cost encountered by the task assignment subject to 
the resource constraints. To achieve minimum cost 
for the TAP, the function is formulated as shown in 
Eqs. (1)-(5): 

      (1) 

 
      (2) 

 
      (3) 

 
      (4) 

  
      (5) 

 
xik is set to 1 if task i is assigned to processor k. n 

denotes the number of processors, r denotes the 
number of tasks, eik denotes the incurred execution 
cost if tasks i is executed on processor k. cij is the 
incurred communication cost if tasks i and j are 
executed on different processors. mi and pi 
represents the memory requirements and processing 
requirements of task i respectively. Mk and Pk are 
the memory and processing capacity of processor k. 
Q(X) is the objective function which combines the 
total execution cost and total communication cost as 
specified in 1st and 2nd terms of Eq. (1). The first 
constraint mentioned in Eq. (2) says that each task 
should be assigned to exactly one processor. Eq. (3) 
and Eq. (4) are the 2nd and 3rd constraints 
respectively and they assure that the resource 
demand should never exceed the resource capacity. 
The final constraint as mentioned in Eq. (5) 
specifies that the xik is a binary decision variable. 
 
 
3 Implementation 
This section discusses the simple PSO and the 
proposed hybrid PSO/SA. In PSO, each particle 
corresponds to a candidate solution of the 
underlying problem. In the proposed method each 
particle represents a feasible solution for task 
assignment using a vector of r elements, and each 
element is an integer value between 1 to n. Fig. 1 
shows an illustrative example where each row 
represents the particles which correspond to a task 
assignment that assigns five tasks to three 
processors, and Particleparticle3,T4 = P1 means that 
in particle 3 the Task 4 is assigned to Processor 1. 
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Particle number T1 T2 T3 T4 T5 

particle 1 P3 P2 P1 P2 P2 

particle 2 P1 P2 P3 P1 P1 

particle 3 P1 P3 P2 P1 P2 

particle 4 P2 P1 P2 P3 P1 

particle 5 P2 P2 P1 P3 P1 

Fig. 1 Representation of particles 

 
In the hybrid version, hybridization is done by 

performing SA at the end of an iteration of simple 
PSO [14]. Generally the TAP is to assign the n tasks 
to m processors so that the load is shared and also 
balanced. Here the proposed system considers n=20 
and r=5 i.e. 20 tasks should be shared among 5 
processors. The system calculates the fitness value 
of each assignment and selects the optimal 
assignment from the set of solutions. The system 
compares the memory and processing capacity of 
the processor with the memory and processing 
requirements of the tasks respectively. If capacity is 
enough then the task is assigned, else a penalty is 
added to the calculated fitness value.  
 
 
3.1 Fitness Evaluation 
The initial population is generated randomly and 
checked for the consistency [15]. Then each particle 
must be assigned with the velocities obtained 
randomly and it lies in the interval [0, 1]. Each 
solution vector in the solution space is evaluated by 
calculating the fitness value for each vector. The 
objective value of Q(X) in Eq. (1) can be used to 
measure the quality of each solution vector. In 
modern heuristics the infeasible solutions are also 
considered since they may provide a valuable clue 
to targeting optimal solution [16]. A penalty 
function as shown in Eq. (6) is devised to estimate 
the infeasibility level of a solution. The penalty 
function is only related to constraints (3) and (4), 
and it is given by Eq. (6): 

      (6) 

 

This penalty is added to the objective function 
whenever the resource requirement exceeds the 
capacity. Hence the fitness function of the particle 
vector can finally be defined as in Eq. (7), 

 
      (7) 

Hence, as the fitness value increases the total cost is 
minimized which is the objective of the problem. 
 
 
3.2 Simple PSO 
In implementing the simple PSO algorithm, two 
versions for keeping the neighbors’ best vector, 
namely lbest and gbest are considered. The position 
of a particle is influenced by the best position 
visited by itself i.e. its own experience and the 
position of the best particle in its neighborhood i.e. 
the experience of neighboring particles. When the 
neighborhood of a particle is the entire swarm, the 
best position in the neighborhood is referred to as 
the global best position of the particle, and the 
resulting algorithm is referred to as the gbest PSO. 
When smaller neighborhoods are used, the 
algorithm is generally referred to as the lbest PSO. 
The performance of each particle is measured using 
a fitness function that varies depending on the 
optimization problem [12]. 

The global neighborhood ‘gbest’ is the most 
intuitive neighborhood. In the local neighborhood 
‘lbest’, a particle is just connected to a fragmentary 
number of processes [2]. The best particle is 
obtained from, the best particle in each fragment. In 
the global version, every particle has access to the 
fitness and best value so far of all other particles in 
the swarm. Each particle compares its fitness value 
with all other particles. This method implements the 
star topology. It has exploitation of solution spaces 
but exploration is weak [17]. In the local version, 
each particle keeps track of the best vector lbest 
attained by its local topological neighborhood of 
particles. Each particle compares with its neighbors 
decided based on the size of the neighborhood. The 
groups exchange information about local optima. 
Here the exploitation of solution space is weakened 
and exploration becomes stronger. 
 
 
3.3 Hybrid PSO 
Modern metaheuristics manage to combine 
exploration and exploitation search. The exploration 
search seeks for new regions, and once it finds a 
good region, the exploitation search kicks in. 
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However, since the two strategies are usually inter-
wound, the search may be conducted to other 
regions before it reaches the local optima. As a 
result, many researchers suggest employing a hybrid 
strategy, which embeds a local optimizer in between 
the iterations of the meta-heuristics [18].  

In SA, the fundamental idea is to allow 
moves resulting in solutions of worse quality than 
the current solution (uphill moves) in order to 
escape from local minima. The probability of doing 
such a move is decreased during the search. The 
high level algorithm is described in Fig. 2. The 
algorithm starts by generating an initial solution 
(either randomly or heuristically constructed) and by 
initializing the so-called temperature parameter T. 
Then, at each iteration, a solution is randomly 
sampled and it is accepted as new current solution 
with a certain probability. The temperature T is 
decreased during the search process, thus at the 
beginning of the search the probability of accepting 
uphill moves is high and it gradually decreases, 
converging to a simple iterative improvement 
algorithm. This process is analogous to the 
annealing process of metals and glass, which 
assume a low energy configuration when cooled 
with an appropriate cooling schedule. Regarding the 
search process, this means that the algorithm is the 
result of two combined strategies; random walk and 
iterative improvement. In the first phase of the 
search, the bias toward improvements is low and it 
permits the exploration of the search space; this 
erratic component is slowly decreased thus leading 
the search to converge to a local minimum. The 
probability of accepting uphill moves is controlled 
by the difference of the objective functions and the 
temperature. 

 

Fig. 2 Algorithm: Simulated Annealing (SA). 

In the application of the TAP, the embedded 
SA heuristic proceeds as follows. Given a particle 
vector, its r elements are sequentially examined for 

updating. The value of the examined element is 
replaced, in turn, by each integer value from 1 to n, 
and retains the best one that attains the highest 
fitness value among them. While an element is 
examined, the values of the remaining r -1 elements 
remain unchanged. A neighbor of the new particle is 
selected. The fitness values for the new particle and 
its neighbor are found. They are compared and the 
minimum value is selected. This minimum value is 
assigned to the personal best of this particle. The 
heuristic is terminated if all the elements of the 
particle have been examined for updating and all the 
particles are examined. The computation for the 
fitness value due to the element updating can be 
maximized. Since a value change in one element 
affects the assignment of exactly one task, we can 
save the fitness computation by only recalculating 
the system costs and constraint conditions related to 
the reassigned task.  
 
 
4 Results  
This section describes the results of simulations 
conducted to gain insight into the performance of 
the PSO-SA hybrid implementation. Various 
versions of PSO algorithm like the simple PSO, the 
global PSO and Hybrid PSO were implemented. 
The experimental results clearly demonstrate the 
effectiveness of the Hybrid PSO. The value of (r, n) 
is set to (20, 5). The values of the other parameters 
are generated randomly as specified in [13]. The 
results of this experiment are obtained by varying 
the number of particles, number of iterations and 
topology of neighbourhood particles. 

 
 
4.1 Cost Evaluation 
The task incurs the execution cost and 
communication cost when executed on different 
machines. Our objective is to minimize this total 
cost. This section discusses the evaluation of cost in 
various versions of PSO using two methods: Cost 
vs. Number of iterations and Cost vs. Population 
Size. For each version the number of iterations was 
increased up to 100 and the results were recorded. 

Cost evaluation in done for the global best 
PSO (gBest), local best PSO (lBest) and the hybrid 
PSO. Two methods were carried out. In the first 
method the cost is compared with an increase in the 
number of iterations. For the gBest PSO, the cost 
obtained initially was 1011. As illustrated in Fig. 3, 
the cost reduces as we increase the number of 
iterations and gBest PSO converges to the minimum 
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cost of 857 at the 28th iteration and remains the 
same till the last iteration. 

 
Fig. 3 Global best PSO with varying number of 
iterations 

Fig. 4 depicts the cost obtained for the lBest 
PSO. The initial cost is 1035 and then reduces as we 
increase the number of iterations and lBest PSO 
converges to the minimum cost of 857 at the 100th 
iteration only. This is because it gets the information 
only from its neighbours. 

 
Fig. 4 Local best PSO with varying number of 
iterations 

Running the same test on the hybrid PSO 
yields an initial cost of 940 as shown in Fig. 5. The 
cost reduces as we increase the number of iterations 
and Hybrid PSO converges to the minimum cost of 
857 at the 21st iteration and remains the same till 

the last iteration. The faster convergence is due to 
the hybridization with simulated annealing. 

 
Fig. 5 Hybrid PSO with varying number of 
iterations 

In the second method the cost obtained is 
compared with an increase in the population size. 
For the gBest PSO, the cost initially was 883 as 
illustrated in Fig. 6. The cost then reduces as we 
increase the population size and it finally converges 
to the minimum cost of 783 for the population size 
of 500 and remains the same albeit the increase in 
the population size. 

 
Fig. 6 Decreasing Cost in Gbest PSO with varying 
population size 

Fig. 7 depicts the cost obtained for the lBest 
PSO. Initially the cost obtained is 914 and then 
reduces as we increase the population size. It then 
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converges to the minimum cost of 818 for the 
population size of 500. The increase in cost is due to 
the fact that each particle gets the information only 
from its neighbors. 

 
Fig. 7 Decreasing Cost in Lbest PSO with varying 
population size 

The hybrid PSO managed to obtain an 
initial cost of 885 as shown in Fig. 8. The cost 
reduces as we increase the population size and 
hybrid PSO finally converges to the minimum cost 
of 783 for a population size of 500 and remains the 
same for any increase in the population size. The 
faster convergence is contributed by the 
hybridization with simulated annealing. 

 
Fig. 8 Hybrid PSO with varying population size 
 

The gBest topology compares each particle with 
every other particle, therefore the convergence is 
faster. The lBest topology compares each particle 
with its immediate neighborhood, thus resulting in a 
slower convergence as compared to gBest. On the 
other hand, in the hybrid PSO, the inclusion of 
simulated annealing at the end of iteration makes the 
search refined only towards the feasible solution 
which leads to faster convergence compared to the 
other two methods. For all three methods, increasing 
the population size results in a further minimization 
of the cost because the exploration is high.  
 
 
4.2 Time Taken for Convergence 
Next, the time taken for the convergence of the 
particles is compared. As expected, the hybrid PSO 
converged faster than all other versions. This is 
checked for varying population. As the population 
increases the gBest and lBest versions takes longer 
time for the convergence. However, the hybrid PSO 
performs better than the other two methods because 
the search in the negative direction is prevented. 
This can be inferred from Fig. 9. 

 
Fig. 9 Time Taken for convergence 
 
 
5 PSO Enhancements 
Although PSO has shown a very good performance 
in solving many test as well as real life optimization 
problems, it suffers from the problem of premature 
convergence like most of the stochastic search 
techniques, particularly in case of multimodal 
optimization problems. The curse of premature 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 75 Volume 14, 2017



convergence greatly affects the performance of PSO 
and many times lead to a sub optimal solution [19]. 
Empirical studies have shown that the basic PSO 
has a tendency of premature convergence [20] and 
the main reason for this behavior is due to the loss 
of diversity in successive iterations. It has been 
observed that the presence of a suitable operator 
may help in improving the performance of PSO 
quite significantly. This section presents two 
enhancements done on the basic PSO; the first is on 
the use of diversity to guide the swarm and second 
is the efficient generation of population using 
different initialization schemes. 
 
 
5.1 Diversity-Guided PSO 
As an extension to the PSO algorithm and to avoid 
premature convergence, maintaining a certain 
degree of diversity is crucial. Diversity may be 
defined as the dispersion of potential candidate 
solutions in the search space. Interested readers may 
please refer to [21] for different formulae used for 
calculating diversity. One of the drawbacks of most 
of the population based search techniques is that 
they work on the principle of contracting the search 
domain towards the global optima. Due to this 
reason after a certain number of iterations all the 
points get accumulated to a region which may not 
even be a region of local optima, thereby giving 
suboptimal solutions [19]. Thus without a suitable 
diversity enhancing mechanism it is very difficult 
for an optimization algorithm to reach towards the 
true solution. 

A diversity measure control, the attraction-
repulsion PSO (ARPSO) is introduced in the PSO 
algorithm to control the swarm in phases of 
attraction and repulsion. The attraction phase is 
basically the same as the basic PSO algorithm. In 
the basic PSO algorithm particles tend to attract to 
each other due to the level of communication 
between particles, this is exactly what is required in 
the attraction phase so it stays the same. Therefore, 
a positive feedback leads to contraction of the 
swarm and lower diversity. In the repulsion phase 
we want particles to move away from those 
positions that are seen as best and explore new 
sections of the search space. This is done by 
reversing the formula used to update the velocity 
and making the particle move away from its 
personal best and the swarms’ global best. Due to 
the clustering of the swarm in the attraction phase, 
diversity tends to be compromised and decrease. It 
is when the diversity has dropped below an 
acceptable level that we want the repulsion stage to 
kick in and offer more variety to where particles are 

searching. The negative feedback leads to an 
explosion of the swarm and higher diversity. We do 
not however want to constantly stay in this repulsion 
stage as instead of finding new global best and 
searching these new global bests further we may just 
keep moving away from these global bests. 
Therefore when the diversity hits a specified high 
we want to switch back to the attraction stage so as 
to explore the new found areas of interest further. 
The ARPSO uses diversity threshold values dlow and 
dhigh to guide the movement of the swarm. The 
threshold values are predefined by the user. The 
main idea is to alternate between phases of repulsion 
when diversity drops below dlow to encourage further 
exploration of the search space and attraction when 
diversity exceeds dhigh to encourage exploitation of 
the solutions. The diversity is measured based on 
Eq. 8:   

 

 

      (8) 

where: 
– S is the swarm and |S| is the 

swarmsize, 
– L is the length of the longest 

diagonal in the search space, 
– N is the dimensionality of the 

search space, 
– pij is the j’th value of the i’th 

particle, and 
– avgj is the j’th value of the swarms 

average point. 

Threshold values: dhigh = 0.25, dlow = 5.0*10-6 

In making the comparison between GA, PSO and 
ARPSO, the swarm / population size is fixed to 20 
for all algorithms, and the generation number is 
varied. The GA used here can be found in the 
previous work [11]. The convergence rate with the 
number of generations for PSO, GA and ARPSO for 
benchmarks EWF and FIR [11] and is shown in Fig. 
10 and Fig. 11 respectively. It is clear that, ARPSO 
produces a better solution quality as compared to 
that for GA and PSO. The ARPSO continues to 
search for new areas during its whole search-
process. It continues to “pump” diversity into the 
swarm during optimization. 
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Fig. 10 The convergence rate with the number of 
generations for PSO, GA and ARPSO for EWF 
benchmark. 

 
Fig. 11 The convergence rate with the number of 
generations for PSO, GA and ARPSO for FIR 
benchmark. 
 
 
 
 
5.2 Effects of Swarm Size on ARPSO 

As shown in the previous section, diversity is 
essential in PSO to continue finding better solutions. 
By introducing the idea of certain particles being 
competitive or reversing the concept of particles 
flowing towards the current best solution once 
diversity reaches a certain low, we can ensure that 
other areas of the solution space get looked at and 
clustering around these local best is reduced. This is 
where the concept of competitive PSO comes in 
[22]. The ARPSO introduced in the previous section 
is a form of competitive PSO that utilizes some sort 
of difference between groups of particles to ensure 
diversity is maintained. 

Another factor in ensuring that diversity is 
maintained is to have an adequate sized swarm. The 
swarm should be of a necessary size to ensure that 
the optimum solution can be found whilst not being 
so large that it adversely affects the performance of 
the algorithm. This section aims to test two different 
functions with varying swarm sizes to see if a 
pattern emerges of what is the best swarm size for 
competitive PSO. For the experiment, two different 
benchmarks were used, EWF and FIR. Each 
benchmark was tested with a dimension of 20 and 
was evaluated 20,000 times. The swarm size is 
varied with each test, beginning with 20, then 50, 
then 80 and finally 100. After this we took larger 
jumps in the swarm size from 200 to 500 and finally 
to 800 and 1,000 to see whether or not exceptionally 
large swarms improved the result considerably. 

The results from the EWF are compiled in 
Table 1. They show a clear improvement in the best 
result as the swarm increases in size and also a clear 
increase in the time taken for the 50 runs to 
complete as the swarm size becomes larger. If we 
break the table of results in two parts, the first part 
being from 20 to 100 and the second from 200 to 
1,000, notice how the improvement found for each 
part is greatly different. Each halves swarm size 
increases by the same factor yet in the first half it is 
found that a 15% improvement in the result given at 
the expense of just a 0.7% increase in time spent 
obtaining the solution. In the second half of the table 
there is a similar improvement in the results 
obtained yet it is still less than that of the first half at 
only 14%. Yet this improvement is at the expense of 
a 19% increase in the time spent to reach those 
results. This shows that while a larger swarm size 
does improve the results we get, it begins to start 
costing too much in time spent for the function to 
complete once the size of the swarm reaches a 
certain point. 
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Table 1: Results from the EWF benchmark carried 
out over 50 runs with dimension 20 and 20,000 
evaluations per run. 

Swarm size Best average result Time (s) 

20 141.368297 13.4 

50 129.883767 13.3 

80 123.778254 13.5 

100 122.581813 13.5 

200 119.946907 13.8 

500 110.415802 14.9 

800 105.406012 16.0 

1000 104.351577 16.5 

The results of the FIR are presented in 
Table 2. Again we see a clear trend of an 
improvement in the results shown as the swarm size 
increases. The time taken to get these results also 
increases with FIR as it did with EWF. Again if we 
break the table up into two halves as we did with the 
EWF it is noticed that the first half shows a much 
better return. From a swarm size of 20 to a swarm 
size of 100 there is a 7.7% improvement in the 
results obtained at an expense of 1.5% more time 
taken. The second half shows an 8% improvement 
at the expense of 20% more time taken. This again 
shows that eventually the size of the swarm 
becomes a negative factor on the time taken to 
produce a result. 

In conclusion we can establish that 
increased swarm size means that there are more 
particles searching for solutions and thus the 
solutions provided improve as the amount of 
particles increases. This however leads to the 
function taking longer to finish a run and has a 
negative effect on the performance of the algorithm. 
Obviously various different problems will require 
different swarm sizes. From our results we can 
determine that once the size of the swarm goes over 
100 there does appear to be a detrimental effect on 
the time taken to produce results. 

 

 

Table 2: Results from the FIR benchmark carried 
out over 50 runs with dimension 20 and 20,000 
evaluations per run. 

Swarm size Best average result Time (s) 

20 1.952897 12.8 

50 1.838701 12.7 

80 1.824146 12.9 

100 1.813096 12.7 

200 1.771412 12.8 

500 1.684667 14.0 

800 1.641820 15.4 

1000 1.520966 15.4 
 
 
5.3 Efficient Initialization in PSO 
PSO (and other search techniques, which depend on 
the generation of random numbers) works very well 
for problems having a small search area (i.e. a 
search area having low dimension), but as the 
dimension of search space is increased, the 
performance deteriorates and many times converge 
prematurely giving a suboptimal result. This 
problem becomes more persistent in case of 
multimodal functions having several local and 
global optima. One of the reasons for the poor 
performance of a PSO may be attributed to the 
dispersion of initial population points in the search 
space i.e. to say, if the swarm population does not 
cover the search area efficiently, it may not be able 
to locate the potent solution points, thereby missing 
the global optimum [23]. This difficulty may be 
minimized to a great extent by selecting a well-
organized distribution of random numbers. 

This section analyses the behaviour of some 
variations of PSO where only the initial distribution 
of random numbers is changed. Initially in the 
algorithms the initial uniform distribution is 
replaced by other probability distributions like 
exponential, lognormal and Gaussian distributions. 
It is interesting to see that even a small change in 
the initial distribution produces a visible change in 
the numerical results. After that more specialized 
algorithms are designed which use low discrepancy 
sequences for the generation of random numbers. A 
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brief description of the algorithms is given in the 
subsequent sections. 

Different Probability Distributions like 
Exponential and Gaussian have already been used 
for the fine tuning of PSO parameters [24-25]. 
However, for initializing the swarm most of the 
approaches use uniformly distributed random 
numbers. Here, the possibility of having a different 
probability distribution (Gaussian, Exponential, 
Lognormal) for the generation of random number 
other than the uniform distribution is investigated. 
Empirical results showed that distributions other 
than uniform distribution are equally competent and 
in most of the cases are better than uniform 
distribution. The algorithms GPSO, EPSO and 
LNPSO use Gaussian, exponential and lognormal 
distributions respectively. The algorithms follow the 
steps of the basic PSO given in Section   except for 
the fact that they use mentioned distributions in 
place of uniform distributions. The probability 
distributions for initializing the swarm using 
Gaussian, Exponential and Log-normal distributions 
are shown in Eqs 9-11 respectively: 

 
Gaussian distribution: 

   (9) 

with mean 0 and standard deviation 1, i.e. N (0,1). 

 
Exponential distribution: 

                (10) 

with a, b > 0.It is evident that one can control the 
variance by changing the parameters a and b. 

 
Log-normal distribution: 

              (11) 

with mean 0 and standard deviation 1. 

Fig. 12 gives the numerical results of PSO versions 
initialized with Gaussian, exponential and 
lognormal probability distributions. The tests were 
done on ten, three, two and five tasks respectively. 
From the numerical results it can be seen that the 
PSO using Gaussian mutation, GPSO, gave the best 
performance in comparison to other versions, 
followed by EPSO and LNPSO. For the first test 
case consisting of ten tasks, GPSO gave the best 
function value of approximately 10.00 which is 
much better than the values obtained by the other 
algorithms. For the second test case consisting of 
three tasks, all the algorithms gave more or less 
similar results. However GPSO and LNPSO gave a 
slightly better performance. For the third test 
consisting of two tasks, once again GMPSO 
outperformed the other algorithms. For the last test 
consisting of five tasks, both GMPSO and EPSO 
gave same result, which is better than the other two 
algorithms. In all the test cases the results were 
better than basic PSO using uniform distribution. 
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Fig. 12 Performance for BPSO, GPSO, EPSO and 
LNPSO for ten, three, two and five tasks 
respectively. 
 
 
6 Conclusion 
This paper tackles the problem of assignment of the 
tasks of an application to a set of distributed 
processors such that the incurred cost is minimized 
and the system throughput is maximized. Several 
versions of the task assignment problem have been 
formally defined but, unfortunately, most of them 
are NP-complete. Here, we have proposed a 
PSO/SA hybrid algorithm which finds a near-
optimal task assignment with reasonable time. It is 
found that the hybrid PSO performed better than the 
lBest and the gBest PSO models. 

Next, the ARPSO is introduced to the basic 
PSO algorithm for two main reasons: low diversity 
is needed for fine-tuning of a solution found in a 
given area and high diversity is needed to discover 
other areas with entirely different solutions. It is a 
good tradeoff between more frequently avoiding 
premature convergence and on the other hand 
relaxing the convergence rate a “bit”. From the 
experimental results, it is clear that the proposed 
algorithm produced better solutions compared to 
BPSO and GA. 

Finally, the three algorithms namely GPSO, 
EPSO and LNPSO presented in this paper used 

different initialization schemes for generating the 
swarm population. These schemes include Gaussian, 
exponential and lognormal probability distribution 
to initialize the swarm. As expected, PSO 
algorithms initialized with quasi random sequences 
performed much better than the PSO initiated with 
the usual computer generated random numbers 
having uniform distribution. However the 
interesting part of the study is that PSO initiated 
with Gaussian, exponential and lognormal 
distribution improved its performance quite 
significantly. 
 
 
References: 
[1] Pablo, M., NP Optimization Problems, 
Approximability and Evolutionary Computation: 
From Practice to Theory, Ph.D. Dissertation, 
Universidade Estadual de Campinas, Brazil, 2001. 
[2] Kennedy, J., and R. Eberhart, Swarm 
Intelligence, Academic Press, 1st ed., San Diego, 
CA. 2001. 
[3] Chen D.J., Lee C.Y., Park C.H., Mendes P., 
Parallelizing simulated annealing algorithms based 
on high-performance computer, J. Glob. Optim., 
Vol. 39, 2007, pp. 261–289. 
[4] Abdelmageed, E.A, and B. Earl Wells, A 
Heuristic model for task allocation in heterogeneous 
distributed computing systems, The International 
Journal of Computers and Their Applications, Vol. 
6, No. 1, 1999, pp. 746-753. 
[5] Annie, S., W. Shiyun Jin, Kuo-Chi Lin and Guy 
Schiavone, Incremental Genetic Algorithm 
Approach to Multiprocessor Scheduling, IEEE 
Transactions on Parallel and Distributed Systems, 
Vol. 2, No. 5, 2004, pp. 135-142. 
[6] Dar-Tzen Peng, G. S. Kang and F. Tarek 
Abdelzaher, Assignment and Scheduling 
Communicating Periodic Tasks in Distributed Real-
Time Systems, IEEE Transactions on Software 
Engineering. Vol. 23, No. 12, 1997. 
[7] Ruey-Maw, C., and H. Yueh-Ming, 
Multiprocessor Task Assignment with Fuzzy 
Hopfield Neural Network Clustering Techniques, 
Journal of Neural Computing and Applications, 
Vol.10, No.1, 2001. 
[8] Virginia, M.L., Heuristic algorithms for task 
assignment in distributed systems, IEEE 
Transactions on Computers, Vol. 37, No. 11, 1998, 
pp. 1384– 1397. 
[9] Ioan, C. T., The particle swarm optimization 
algorithm: convergence analysis and parameter 
selection, Information Processing Letters, Vol. 85, 
2003, pp. 317–325. 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 80 Volume 14, 2017



[10] Batainah, S., and M. AI-Ibrahim, Load 
management in loosely coupled multiprocessor 
systems, Journal of Dynamics and Control, Vol.8, 
No.1, 1998, pp. 107-116. 
 [11] Choong, F., S. Phon-Amnuaisuk, M.Y. Alias 
and W.L. Pang, Adaptive Genetic Algorithm: An 
Essential Ingredient in High-level Synthesis, 
Proceedings of the IEEE Congress on Evolutionary 
Computation (CEC), Vol. 5, No. 6, 2008, pp. 3837-
3844. 
[12] Graham, R., Static, Multi-processor scheduling 
with Ant Colony Optimization and Local search, 
Master of Science thesis , University of Edinburgh, 
2003. 
[13] Peng-Yeng, Y., Y. Shiuh-Sheng, W. Pei-Pei 
and W. Yi-Te, A hybrid particle swarm optimization 
algorithm for optimal task assignment in distributed 
systems, Computer Standards & Interfaces, Vol.28, 
2006, pp. 441-450. 
[14] Yskandar, H., and S. Khalil Hindi, Assignment 
of program modules to processors: A simulated 
annealing approach, European Journal of 
Operational Research, Vol. 1, No. 22, 2000, 
pp.509-513. 
[15] Tzu-Chiang, C., C. Po-Yin, and H. Yueh-Ming, 
Multi-Processor Tasks with Resource and Timing 
Constraints Using Particle Swarm Optimization, 
IJCSNS International Journal of Computer Science 
and Network Security. Vol.6, No.4, 2006. 
[16] Shi, Y., and R. Eberhart, Parameter Selection in 
Particle Swarm Optimization, Evolutionary 
Programming VII, Proceedings of Evolutionary 
Programming, 1998, pp. 591-600. 
[17] Maurice, C., and J. Kennedy, The Particle 
Swarm—Explosion, Stability, and Convergence in a 
Multidimensional Complex Space, IEEE 
Transactions on Evolutionary Computation, Vol. 6, 
No. 1, 2002. 
[18] Zhang, Y., R. Kamalian, A.M. Agogino and 
C.H. Séquin, Hierarchical MEMS Synthesis and 
Optimization, Smart Structures and Materials, 
Smart Electronics, MEMS, BioMEMS, and 
Nanotechnology, Proceedings of SPIE, Vol. 5763, 
2005, pp. 96-106. 
[19] Liu, H., A. Abraham and W. Zhang, A Fuzzy 
Adaptive Turbulent Particle Swarm Optimization, 
International Journal of Innovative Computing and 
Applications, Vol 1, No. 1, 2007, pp. 39–47. 
[20] Grosan, C., A. Abraham and M. Nicoara, 
Search Optimization Using Hybrid Particle Sub-
Swarms and Evolutionary Algorithms, International 
Journal of Simulation Systems, Science & 
Technology, Vol. 6, No. 10&11, 2005, pp. 60–79. 

[21] Engelbrecht, A.P., Fundamentals of 
Computational Swarm Intelligence, John Wiley & 
Sons Ltd., Chichester, 2005. 
[22] Blackwell, T., and J. Branke, Multi-swarm 
optimization in dynamic environments, Applications 
of Evolutionary Computing, Vol. 3, No. 5, 2008, pp. 
45-54.  
[23] Grosan, C., A. Abraham and M. Nicoara, 
Search Optimization Using Hybrid Particle Sub-
Swarms and Evolutionary Algorithms, International 
Journal of Simulation Systems, Science & 
Technology, Vol. 6, No. 10&11, 2005, pp. 60–79. 
 [24] Krohling, R.A., A Novel Particle Swarm 
Optimization Algorithm, In: Proc. of the 2004 IEEE 
Conference on Cybernetics and Intelligent Systems, 
2004, pp. 372–376. 
[25] Krohling, R.A., and L.S. Coelho, PSO-E: 
Particle Swarm with Exponential Distribution, In: 
IEEE Congress on Evolutionary Computation, 
2006, pp. 1428–1433. 

 
 

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS F. Choong, S. Phon-Amnuaisuk, M. Y. Alias

E-ISSN: 2224-3402 81 Volume 14, 2017




