
Formal Considerations and a Practical Approach to Intermediate-Level

Obfuscation

DMITRIY DUNAEV, LÁSZLÓ LENGYEL

Department of Automation and Applied Informatics

Budapest University of Technology and Economics

H-1117, Budapest, Magyar tudósok krt. 2.

HUNGARY

dunaev@aut.bme.hu, lengyel@aut.bme.hu

Abstract: - The essence of obfuscation is to entangle the code and eliminate the majority of logical links in it.

The offered theoretical apparatus allows describing obfuscated routines by concatenation of original and fake

operational logics. This approach considers not only instructions or routines themselves, but the actions

(results) they produce, what makes obfuscation a process of adding excessive functionality. The mathematical

apparatus presented in the paper, discusses introductory terms, definitions, operations, and formulates a

proposition about NP-completeness of a special deobfuscation problem. We formulate the problem statement

and prove that the significance of operational logic in the obfuscated routine is an NP-complete problem. We

point out the applicability limits of this proposition, and offer a practical approach that can noticeably reduce

the probability of having a deobfuscator running in polynomial time. This paper also offers recommendations

for constructing obfuscating transformations and points out a practical approach to creation of intermediate-

level obfuscating algorithm.

Key-Words: - Obfuscation, operational logic, global context, NP-completeness, intermediate representation.

1 Introduction
Modern society is characterized by intensive

development of computer software and, as a

consequence, by rapid development of software

piracy. As a resistance to computer piracy, the

technologies of software protection from analysis,

and unauthorized modification are being used.

These technologies are also used in digital

intellectual rights management [1], watermarking

[2], cryptography [3], and for hiding malicious code

[4].

Currently more and more software is distributed

over the Internet. Once distributed to a client

machine, the software owner actually loses all

control of the (client) application. Consequently,

adequate security is required in this complex

environment. First, software may contain secrets

that must be protected. To solve this issue there

exist a number of encryption and authentication

algorithms [5], but these require that secret keys

have to be protected somehow. Second, the

application logic and implemented algorithms must

be protected from analysis and reverse engineering.

Third, during execution of critical code or when

confidential data is accessed, both code and data

must be protected from malicious intents, such as

dynamic analysis and tampering. All

aforementioned problems must be faced to

guarantee data confidentiality and secure program

execution.

The obfuscating techniques relate to methods and

apparatus for increasing the structural and logical

complexity of the software by inserting, removing

or rearranging identifiable structures of information

from the software in such a way as to reinforce the

difficulty of the process of reverse engineering [6].

Such techniques can be used to protect both storage

and usage of keys, and can be applied in re-

encryption functionality [17]. Obfuscation can hide

certain properties such as a software fingerprint or a

watermark, or even the location of a bug in case of

an obfuscated patch. However, code obfuscation

itself does not protect from code lifting or software

piracy. It merely strengthens built-in protection

mechanisms, e.g. against tampering or piracy.

The introduction of a non-black-box simulation

technique by Boaz Barak [11, 15] has been a major

landmark in obfuscation. In the last years, Barak's

techniques were subsequently extended, e.g. by

solutions based on semi-honest oblivious transfer

that do not rely on collision-resistant hashing [21],

or by new applications of obfuscation for network

coding techniques, such as fountain code [22].

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 32 Volume 11, 2014

mailto:dunaev@aut.bme.hu
mailto:lengyel@aut.bme.hu

Most of obfuscation methods are based on

compiler technologies, or require the presence of a

source code of the obfuscated program. Others

operate at intermediate level or at machine code on

the target platform [23].

The rest of this paper is organized as follows.

Section 2 introduces three levels of obfuscation and

justifies the choice of intermediate-level. Section 3

presents introductory terms, definitions and

operations, furthermore, discusses the key concept

of operational logic. In Section 4, we formulate a

proposition about NP-completeness of a special

deobfuscation problem and prove it. Section 5

discusses a set of recommendations for constructing

obfuscating transformations, and we show that

effective use of these recommendations can

significantly complicate the process of automatic

deobfuscation of routines. Finally, in Section 6 we

draw the conclusions and outline the further work.

2 Levels of Obfuscation
If we consider an application, it can be represented

at three levels: (a) high-level source code; (b) some

intermediate representation; and (c) low-level

machine code.

We define a high-level code as a programming

language with high level of abstraction from the

particular computer instruction set. Similarly, a low-

level code is a programming language that provides

no (or very little) abstraction from the particular

computer's instruction set. Intermediate

representation corresponds to a target-independent

intermediate code. An example is a three-address

code (often abbreviated as TAC or 3AC), which

instruction set is sufficient for translation of

assembly code into intermediate representation. It is

important that intermediate code will not execute in

a real processor, it is only an internal representation

of a program.

Source code obfuscation means taking the

application source code and obscuring it, so prying

eyes cannot view its native format. Actually, source

code level obfuscation is less secure than

intermediate or executable level techniques. This is

primarily because code obfuscators cannot take

advantage of implementation details that are not

permitted by language compilers. Thus, such

obfuscators are restricted by the given programming

language and by the given compiler. Consequently,

most high-level obfuscation techniques such as

logical obfuscation, data obfuscation and lexical

obfuscation can be applied only at the presence of a

source code.

Intermediate code is usually a description of

high-level statements with some simpler instructions

that accurately represent the operations of source

code statements. Since intermediate code uses

simpler constructs than a high-level code, it is easier

to determine the data- and control flow. This fact is

of high importance for obfuscation algorithms.

Another advantage with intermediate-level

obfuscation is the possibility of creating a target-

independent infrastructure. It means that for each

platform that needs to be supported we only have to

write the machine code – intermediate code and

intermediate code – machine code translators, the

obfuscator is already written for the intermediate

code which does not change. If we need to port our

obfuscator to another platform, we only need to

write a new translator for the new processor.

Sometimes application source code is not

available; in these cases, post-compilation

obfuscation is the only possibility. A good example

is third-party critical assemblies that are often

shared among different software. We may want to

include to our software such third-party standalone

assembly that actively interacts with the main

program. In this case, the intermediate-level

obfuscation techniques are preferable, since:

1) Source code is not available for all

components of the software.

2) Obfuscating a source code of available

components only, one cannot secure a

source code of included assembly, which

can be proprietary and inaccessible.

3) On source code level, there is no way to

obfuscate the logic of interaction between

routine and main program that can easily be

analyzed by a reverse engineer. Software

protection models on source code level

would not withstand attacks that combine

static and dynamic analysis techniques [7].

After having analyzed the existing methods of

protecting software [8] we have pointed out a

number of drawbacks of such methods such as

unacceptable execution slowdown of the protected

code, failures due to the usage of undocumented

hardware and/or software features, relying on source

code or debug information, and relatively high

probability of creating automatic tool [9] for

deactivation of protection.

During the research, we concluded that to solve

the problems we need to define the process of

obfuscation as adding additional (redundant) entities

to the program that would complicate the

understanding of obfuscated code [10].

 Consequently, we are to develop a mathematical

apparatus and define such formal conditions by

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 33 Volume 11, 2014

which the deobfuscation problem is NP-complete.

In our research, we are aimed at creating a complete

method of intermediate-level obfuscation, which

would operate in accordance with the worked out

practical recommendations presented in this paper.

The theoretical background is NP-completeness of

deobfuscation problem, what proves the absence of

deobfuscating algorithms of polynomial complexity.

3 Routines and Operational Logic
Let us examine a closed system (Fig. 1), where

O(M) represents an obfuscated routine, and A

represents a not obfuscated routine interacting with

O(M). Let vector X of length p denote input data and

vector Y of length q denote output data respectively.

Fig.1 Example of program that contains an

obfuscated routine

By the operational logic of the routine, we mean

the logical descriptor, or in other words the logic,

implemented by the routine. Consequently, for

operational logic of routines it is true that:

 ∀p1, p2 ∈ П (fp1 = fp2 ⇒ (p1 ∈ π ⇔ p2 ∈ π)) (1)

Here π⊆П is an operational logic of routine; П

denotes a set of routines, execution of which is

terminated at some final result; p1, p2 are the

routines from set П; fp1, fp2 are functions computed

by routines p1, p2 respectively.

We use the operator “*” to denote compound

routines as a sequence of operational logics

following each other.

 Definition (Operation “*”). Operation “*” is a

left-handed operation that denotes concatenation of

operational logics.

The defined operation has the following

properties:

1) Non-commutative. π1 * π2 ≠ π2 * π1

2) There exists an identity element. The

identity element on the set of operational

logics П is a special operational logic for

which π * e = e * π = π.

3) Associative. (π1 * π2) * π3 = π1 * (π2 * π3).

Let us assume that operational logic can be

described by a function fi(X,Vi-1,Yi-1,Vi,Yi), where X

is a vector of input values, Y is a vector of output

values, and V contains intermediate (transitional)

values. The vector indices denote the iterations and

are used to separate the input and output parameters.

Here and below, the F(X,Y) function denotes such a

routine that takes X vector as input and returns Y

vector as output. The expanded F(X,Y) function:

 F(X,Y) = f1(X,V0,Y0,V1,Y1) * f2(X,V1,Y1,V2,Y2)* …*

fn(X,Vn-1,Yn-1,Vn,Yn) (2)

Consequently Vi-1, Yi-1 being input vectors of

function fi are also output vectors of function fi-1;

similarly Vi, Yi are output vectors of function fi-1 and

input vectors of function fi+1. We can state that there

are just vectors V and Y, the elements of which

change between functions.

The operation “*” in (2) denotes concatenation

of operational logics, which are represented as

functions. Let us specify the properties 1-3 with

respect to function fi.

1) Operation “*” is non-commutative.

2) Function fi(X,Vi-1,Yi-1,Vi,Yi) is identity

function (e) if the following system holds

true:

⎰Vi = Vi-1

⎱Yi = Yi-1

3) Operation “*” is associative.

If for each function fi there existed a unique

inverse function f’i such that fi * f’i = f’i * fi = e, then

a family of f functions were a group with operation

“*”. However, we suppose that not all fi-s have an

inverse f’i. Hence, we need to consider in details the

invertibility in general and inverse functions in

particular.

Definition (Invertible function). Function f is

called invertible if there exists an f’ such that f * f’ =

f’ * f = e.

Following the above definition we conclude that

an inverse function f’ must be able to restore the

input vectors of function f by having the X and the

output vectors of function f. It is evident that for

fi(X,Vi-1,Yi-1,Vi,Yi) function to be invertible it is

necessary that the values of elements in output

vectors Vi, Yi must depend on values of

corresponding elements in input vectors Vi-1,Yi-1.

Still, this requirement is not sufficient. Dependence

must be such that the inverse computations can be

performed in polynomial time.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 34 Volume 11, 2014

Having defined the apparatus, let us discuss the

process of deobfuscation. Let us consider the

following equation:

 πorig = π1 * π2 * … * πn (3)

Here πorig stands for some operational logic of

routine M before obfuscation; this operational logic

is split to πi – single (elementary) operational logics,

i = [1...n].

Definition (Elementary operational logic).

Elementary operational logic is an operational logic,

which corresponds to a single intermediate-level

instruction.

After applying (obfuscating) transformations, we

get:

 πorig = π1 * v1 * π2 * v2 * … * πn * vn (4)

 that is

 πorig = π0 * v0 * π1 * v1 * π2 * v2 *…* πn * vn (5)

where v0,v1,v2,…,vn are additional (entangling)

operational logics added during obfuscation, and

π0=e.

Note that if v0,v1,v2,…,vn in (5) are equal to e,

then the equation (5) can be reduced to the system

of equations (6).

 (6)

It is obvious that having system of equations (6)

the components of (5) can be analyzed separately,

one-by-one, and that not only simplifies the

analysis, but also increases the probability of

creating an optimization algorithm in complexity

class P.

Nevertheless, the irreducibility of (5) to (6) can

be achieved. This would require that routines with

operational logic πi and vi should deal with different

elements of the output vectors, and the routine with

operational logic vk-1 should restore the essential

elements of input vectors before the routine with

operational logic vk starts to work with these

elements. However, this approach cannot be

considered as highly durable on intuitive grounds.

Another solution to ensure the irreducibility of (5) to

(6) is the usage of homomorphic encryption

algorithms, or computations on encrypted data:

 m1 op m2 E(m1) op’ E(m2) (7)

That is, a specific operation m1 op m2 on two

initial data bijectively corresponds to a different

operation E(m1) op’ E(m2) on the encrypted data.

Based upon the above manipulations we can

formulate the following proposition.

Proposition

Restricting ourselves to automatic generation of

routines with operational logics v0,…,vn, we cannot

guarantee the absence of effectively optimized

algorithm, which can restore the original sequence

(3).

Proof

B.Barak has shown that obfuscation in general is

impossible, since there exists a class of functions for

which virtual black-box property does not occur.

According to [11], program obfuscation is an

efficient transformation O of a program P into an

equivalent program P’ such that P’ is far less

understandable than P (i.e. P’ protects any secrets

that may be built into and used by P). A virtual

black box property states that any information that

can be extracted from the text of P’ can be also

extracted from the input-output behavior of P’ [11].

Although even if obfuscated routine does not

belong to a class of non-obfuscable functions, the

automatically generated obfuscation algorithm is

very likely to be reduced to the system of equations

(6). It should be emphasized that the reducibility to

(6) does not mean that their analysis would be

trivial, since the operational logics π0,π1,…,πn can be

implemented with relatively high complexity

metrics. However, static or semi-static analysis of

obfuscated code can still be used to restore the

original operational logic of the routine.

Subsequently, one can create automatic or semi-

automatic tools to perform a full or partial

optimization (deobfuscation). The Barak’s virtual

black box property in this case does not occur and

we cannot guarantee the absence of effectively

optimized algorithm that can restore the original

operational logics.

Suppose now that

 π = π1 * v1 * π2 * v2 * … * πn * vn ≠ πorig (8)

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 35 Volume 11, 2014

That is the operational logic of the obfuscated

routine O(M) is different from operational logic of

the original routine M. We can achieve this e.g. by

introducing a global (with respect to O(M)) context.

With respect to a routine, we define two

contexts: local and global. Local context is private

to a particular routine and expires (disappears) when

the routine execution is finished. An example of

such context is local variables stored on the local

stack. Global context, from its part, may be shared

across routines and does not expire right after a

routine execution. Global context can be composed

from different global parameters, such as pointers to

memory buffers, control flow graph parameters, and

initializing values, provided as input to a routine

[19].

In such a way, if operational logics π0,…,πn

interact with false context, then without having

analyzed the calling routine A (Fig.1), the separation

of original and fake data becomes an intricate

problem and the irreducibility of (5) to (6) can be

ensured. Consequently, a reverse engineer will have

to apply deobfuscation and optimization algorithms

to both routines A and O(M), and therefore it would

require more resources. □

4 NP-completeness of Special

Deobfuscation Problem
We define obfuscation as the process of adding

additional (redundant) entities to the program and

by that modifying the original routine so that it

would complicate the understanding of program

code. Following this definition, we can formulate a

proposition about NP-completeness of

deobfuscation problem for the current case.

4.1 Proposition

The problem of determining the significance of the

operational logic πi(vi) in equation (8) is NP-

complete.

4.2 Definitions and statements

An operational logic is called significant if its

presence affects the result of routine operation.

An expression is satisfiable if there is some

assignment of truth-values to the variables that

makes the entire expression true.

A decision problem is in NP if it can be solved

by a non-deterministic algorithm in polynomial time

[12]. An instance of the Boolean satisfiability

problem is a Boolean expression that combines

Boolean variables using Boolean operators.

4.3. Proof

First let us prove that a problem of determining the

significance of operational logic can be reduced to

the Boolean satisfiability problem (SAT). In

complexity theory, the SAT is a decision problem,

which instance is a Boolean expression written

using only and, or, not, variables, and parentheses.

The question is: given the expression, is there some

assignment of “true” and “false” values to the

variables that will make the entire expression true?

A formula of propositional logic is said to be

satisfiable if logical values can be assigned to its

variables in a way that makes the formula “true”. It

has been proved by a Cook–Levin theorem the

Boolean satisfiability problem is NP-complete [13,

14].

In order to test the significance of a single

operational logic (i.e., to check its effect on the

output of the program), it is necessary to exclude

this logic from the sequence (8) and verify the

execution results at all possible input sets.

That is, in fact, checking a Boolean formula

 ⋃i(Xi⋅¬Yi) (9)

Here X is the output data obtained before the

exclusion of a verified operational logic and Y is the

output data obtained after the exclusion. If the result

of (9) is not zero, the verified operational logic is

significant. Obviously, the problem of determining

the significance of the operational logic is reduced

to the Boolean satisfiability problem and, therefore,

lies in the class NP. □

4.4 Limits of applicability and conclusions

It is essential to note that the proposition about NP-

completeness of deobfuscation is valid only in the

case if there is no essential difference between

original and fake routines. For instance, if original

instructions use floating-point types and fake

(additional) instructions work only with integer

numbers, then the separation of such instructions

can be done automatically in a polynomial time.

The above proposition is also restricted by the

fact that the calling routine A (Fig.1) is not available

and cannot be analyzed. But what if a reverse

engineer gets access to A? It turns out that in this

case the proposed approach loses only a part of its

durability. A reverse engineer would still need to

prove that there is only A routine that calls O(M),

what it is not always possible. However, in this case

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 36 Volume 11, 2014

the deobfuscation can still be carried out, but it

would require much more effort, in contrast to the

case where the Barak’s functionality condition [7] is

followed.

5 Practical Approach: Construction

of Obfuscating Transformations
We are aware of the fact that the universal

obfuscator does not exist [11, 15]. Boaz Barak has

proven that there exists a class of programs for

which the virtual black box property is not feasible.

However, even if the obfuscated program does not

belong to the Barak’s class of non-obfuscable

programs, then there is still a risk (non-zero

probability) that obfuscating algorithm results in

system (6).

It follows that for effective intermediate-level

obfuscation we must add global (with respect to an

obfuscated routine) fake context. In order to provide

high resistance to different deobfuscation methods,

transformations should be applied according to

some recommendations. These recommendations

and techniques are offered based upon the analysis

of compiler theory and code optimization

techniques.

5.1 Masking the control flow graph of the routine

The first thing to be done by any optimization

algorithm is the construction of a control flow graph

(CFG). The formal definition of CFG is the

following:

G=(V, E, start, stop) is a control flow graph ⇔

1) (V; E) – directed graph

2) start∈G.V, stop∈G.V

3) |in(start)|=|out(stop)|=empty set

4) ∀v∈G.V start→*v→*stop

In a CFG, each node represents a basic block, i.e.

a straight-line piece of code without any jumps or

jump targets; jump targets start a block, and jumps

end a block. Directed edges are used to represent

jumps in the control flow (Fig. 2).

Fig.2 CFG of a program that calculates roots of a

quadratic equation

Having constructed a CFG, a reverse engineer

can use various data-flow analysis methods. Data-

flow analysis is a technique for gathering

information about the possible set of values

calculated at various points in program being

analyzed. The CFG can be successfully used to

determine those parts of a program to which a

particular value assigned to a variable might

propagate.

Consequently, we are to apply CFG masking

techniques. The simplest include adding

unreachable, dead, and redundant code. Unreachable

code is part of the source code that can never be

executed because there exists no control flow path

to the code from the rest of the program (Fig. 3,

func1). Unreachable code is sometimes mixed up

with dead code, although dead code mainly refers to

code that is executed but has no effect on the output.

Therefore, we define dead code as such piece of

source code which is executed but whose result is

never used in any other computation (Fig. 3, func2).

While the result of a dead computation may never

be used, the dead code may raise exceptions or

affect some global (with respect to routine) state.

Redundant code is source code or compiled code in

a computer program that has any form of

redundancy, e.g. recomputing a value that has

previously been calculated and is still available (Fig.

3, func3).

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 37 Volume 11, 2014

Fig.3 Example of unreachable (func1), dead

(func2) and redundant (func3) code.

Other well-known techniques for CFG masking

include function inlining/outlining, opaque

predicates, eliminating library calls, function

cloning, loop unrolling, and direct graph

transformations. Branch instructions play a very

important role in programming since they determine

the sequence of program execution, execution of

conditional statements and loops. The above-listed

techniques can be used for general obfuscation, but

we offer two additional methods: replacement of

branch instructions with their equivalents in which

the transition address is calculated dynamically, and

replacement of branch instructions by exception

generation mechanisms (e.g. Structured Exception

Handling) [16].

5.2 Transformation of reducible CFG to

irreducible

A control flow graph (V;E) is reducible if and

only if it can be partitioned into two sets of edges

EF and EB (E = EB∪EF) such that (V;EF) is

acyclic, and for every edge in EB, its head

dominates its tail; that is, EB is a set of back edges.

Informally, we may say that a graph is reducible

if a repeated application of the following two

actions yields a graph with only one node:

1) replacing self loop by a single node;

2) replacing sequence of nodes such that all the

incoming edges are to the first node and all

the outgoing edges are to the last node.

The main property of reducible CFGs is that

there are no jumps to a loop body from outside the

loop. Consequently, the only possible entrance point

to the loop is its header. Fig.4 gives an example of

(a) reducible and (b) irreducible CFG.

 (a) (b)

Fig.4 Reducible (a) and irreducible (b) CFG.

The analysis of a reducible control flow graph is

much simpler than of irreducible one. Moreover, a

number of optimization algorithms can be applied

only with respect to a reducible graph. Node-

splitting is a technique that can be used to convert

any control flow graph to a reducible one. However,

as has been observed for various node-splitting

algorithms, there can be an exponential blowup in

the size of the graph. It has been proven in [20] that

exponential blowup is unavoidable. Therefore the

necessity of graph transformation from reducible to

irreducible can greatly complicate the optimization

and deobfuscation algorithms.

5.3 Original instructions must interact with fake

context, as well as fake instructions must interact

with original context.

Let us discuss the problem of mixing of the original

and fake (additional) contexts. This issue is

important since if original instructions interact only

with the original context, and fake instructions

interact only with the fake context, it would be

relatively easy to separate the first from the latter.

Therefore, we need to ensure that fake instructions

could interact with original context, and original

instructions – with fake one. Let us denote a set of

all memory regions used by original instructions by

MORIG, and a set of all memory regions used by fake

instructions by MFAKE. The above-stated informal

criterion can be expressed more formally:

MORIG∩MFAKE≠Θ, where Θ denotes an empty set.

Based on the aforesaid, we can formulate a

proposition.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 38 Volume 11, 2014

5.3.1 Proposition

Any fake variable must not be disposed until it has

been used at least once.

5.3.2 Proof

Let us examine the following assembly code for

x86:
...

i) mov еах, [ebp + imm8]

...

//Plenty of code, but eax register is never used

here

...

j) mov еах, ebx

...

Obviously, the assignment for eax is active

between lines i and j, and is overwritten at line j.

However, the eax register is not used between i and

j. Thus, it would be clear for a reverse engineer that

there is no need in assigning eax at position i, so that

it might be a fake assignment instruction. □

Let us denote by MW_ORIG and MW_FAKE the sets of

memory regions that original and fake instructions

write to; MR_ORIG and MR_FAKE will stand for the sets

of memory regions that original and fake

instructions read from. The more rigorous formal

description of the recommendation:

MW_ORIG ∩ MW_FAKE ≠ Θ

MR_ORIG ∩ MR_FAKE ≠ Θ

5.5. Global variable can be reassigned a new

value only if its previous value is used as a

parameter of an assignment instruction.

In practice, a compiler aims not to use global (with

respect to routine) variables as temporary ones.

Local context suits much better for that. It is evident

that obfuscated code should behave the same way.

In this aspect, recommendation 5.5 is an extension

of proposition 5.3.1 with respect to global variables.

5.6. Dead code should not differ greatly from the

actual executable code.

A family of instructions used in the actual

executable code must match with the family of

instructions used in the dead code. For example, if

actually executed code uses only a standard subset

of the general instruction set, then the usage of FPU

instructions or other instructions, which are not

specific for the environment, will lead to a

simplification of dead code detection.

6 Conclusion
In this paper, we have discussed the approach to

intermediate-level obfuscation and introduced the

concept of operational logic. We have shown that

restricting ourselves to automatic generation of

additional fake operations, we cannot guarantee the

absence of effectively optimized algorithm, which

could restore the original sequence. However, the

problem can be solved if we neglect the Barak’s

functionality principle, that is, let the operational

logic of obfuscated routine O(M) be different from

operational logic of original routine M. The solution

lies in introduction of a global fake context.

We have proven that the problem of determining

the significance of operational logic in such case is

NP-complete. We believe that this approach can

provide a considerably higher durability of

obfuscated code to existing optimization algorithms.

We have discussed a set of recommendations to

be followed for constructing obfuscating

transformations. Presenting them, we pay attention

to the fact that effective use of these

recommendations can significantly complicate the

process of automatic deobfuscation of routines,

moreover, observing these recommendations, we

can significantly reduce the probability of creating a

deobfuscator running in polynomial time. We point

out the fact that after having introduced the fake

global context, it became more difficult to restore

the original operational logic of subroutine without

a detailed analysis of other routines that interact

with it. Herewith, the static and semi-static analysis

can also be impeded.

Based on the presented theoretical considerations

and practical recommendations, we have worked out

and implemented an obfuscation algorithm at

intermediate code level that works with three-

address code. Its architecture is based on a

modularity principle allowing code obfuscation at

different hardware platforms by using the same

software module. To support such obfuscation, we

have worked out methods of entanglement of

branching instructions, methods of interaction

between plugged obfuscating instructions and

original program data, as well as methods for

injection of additional external code to a program

that would allow adding protecting code to an

already existing program [18].

At present time, we are carrying out

measurements upon the implemented algorithm. Our

task is to show the advantages of our method and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 39 Volume 11, 2014

compare the results with different existing

obfuscation techniques.

Owing to intermediate level obfuscation, such

situations as when one function can be called from

both the obfuscated, and the non-obfuscated code,

can be successfully handled [19]. We have worked

out methods of translation from native code into an

intermediate representation and back. However, we

believe that such translation mechanisms can be

significantly improved by combining intermediate-

level obfuscation with machine-level techniques,

which would further increase the security and

optimization resistance. Usage of machine-level

obfuscation mechanisms will ensure not only the

integrity control of protected code, but will also

provide higher resistance to deobfuscation. Another

aspect to be considered is implementation of a

polymorphic machine code generator that will

provide better resistance to optimization algorithms

based on signature search.

Acknowledgements
This work was partially supported by the European

Union and the European Social Fund through

project FuturICT.hu (grant no.: TAMOP-4.2.2.C-

11/1/KONV-2012-0013) organized by VIKING Zrt.

Balatonfüred.

This work was partially supported by the

Hungarian Government, managed by the National

Development Agency, and financed by the Research

and Technology Innovation Fund (grant no.:

KMR_12-1-2012-0441).

References:

[1] A. Sethi, Digital Rights Management and Code

Obfuscation. University of Waterloo, Ontario,

Canada, 2004.

[2] Y. Zeng, F. Liu, X. Luo, Ch. Yang, Robust

Software Watermarking Scheme Based on

Obfuscated Interpretation. In Proceedings of

International Conference on Multimedia

Information Networking and Security, Nanjing,

PRC, November 2010.

[3] D. Hofheinz, J. Malone-Lee, M. Stam,

Obfuscation for Cryptographic Purposes. In

Proceedings of the 4th conference on Theory of

cryptography (TCC'07), Germany, Berlin,

2007.

[4] M. Christodorescu, S. Jha, Static Analysis of

Executables to Detect Malicious Patterns. In

Proceedings of 12th USENIX Security

Symposium, August 2003, pp. 169–186.

[5] A. Menezes, P. C. van Oorschot, S. A.

Vanstone, Handbook of Applied Cryptography,

CRC Press, 1996.

[6] C. S. Collberg, C. Thomborson, Watermarking,

Tamper-proofing, and Obfuscation – Tools for

Software Protection. In IEEE Transactions on

Software Engineering, vol. 28, August 2002,

pp. 735–746.

[7] M. Madou, B. Anckaert, B. De Sutter, and K.

De Bosschere, Hybrid Static-Dynamic Attacks

against Software Protection Mechanisms. In

Proceedings of the 5th ACM workshop on

Digital rights management, 2005, pp. 75-82.

[8] D. Dunaev, Obfuscation for Protecting

Software from Analysis and Modification. In

Proceedings of the Automation and Applied

Computer Science Workshop, AACS’2011,

Budapest, Hungary, June 2011, pp. 290-296.

[9] D. V. Sklyarov The Art of Breaking and

Protecting Information. St. Petersburg, BHV-

Petersburg Press, 2004.

[10] D. Dunaev, L. Lengyel, Actual Problems of

Protecting Programs from Reverse Engineering

and Modification. In Proceedings of the 6th

International Scientific and Technical

Conference on Computer Science and

Information Technologies, CSIT’2011. Lvov,

Ukraine, November 2011, pp.124-126.

[11] B. Barak, O. Goldreich, R. Impagliazzo, S.

Rudich, A. Sahai, S. Vadhan, K. Yang, On the

(Im)possibility of Obfuscating Programs. In

Proceedings of the 21st Annual International

Cryptology Conference, Santa Barbara,

California, USA. LNCS, Vol. 2139, 2001.

[12] M. Sipser Introduction to the Theory of

Computation. Thomson Course Technology,

Boston, MA, 2006. Sections 7.3–7.5, pp.264–

293.

[13] S.Cook The Complexity of Theorem Proving

Procedures. In Proceedings of the 3rd Annual

ACM Symposium on Theory of Computing,

1971, pp. 151–158.

[14] L.Levin Universal search problems (Russian:

Универсальные задачи перебора). Problems

of Information Transmission, 1973, 9 (3): 265–

266. Russian, translated into English by

B.A.Trakhtenbrot A survey of Russian

approaches to perebor (brute-force searches)

algorithms. Annals of the History of

Computing, 1984, 6 (4): 384–400.

[15] B. Barak Non-black-box Techniques in

Cryptography. PhD thesis, Department of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 40 Volume 11, 2014

Computer Science and Applied Mathematics,

Weizmann Institute of Science, January 2004.

[16] Microsoft Corporation. Structured Exception

Handling. MSDN Library. Retrieved: October

2013.

[17] S. Hohenberger, G. N. Rothblum, A. Shelat, V.

Vaikuntanathan, Securely Obfuscating Re-

encryption. Theory of Cryptography, Lecture

Notes in Computer Science, Volume 4392,

2007, pp 233-252.

[18] D. Dunaev, L. Lengyel, Extending an

Application with Security Code Using

Intermediate Level Obfuscation Technique.

International Journal of Application or

Innovation in Engineering & Management,

Volume 2, Issue 6, 2013, pp. 433-438.

[19] D. Dunaev, L. Lengyel, Aspects of

Intermediate Level Obfuscation. In

Proceedings of IEEE 3rd Eastern European

Regional Conference on the Engineering of

Computer Based Systems: ECBS-EERC’2013,

Budapest, Hungary, August 2013, pp. 138-143.

[20] L. Carter, J. Ferrante, C. Thomborson, Folklore

Confirmed: Reducible Flow Graphs are

Exponentially Larger. In Proceedings of the

30th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages,

Louisiana, USA, 2003, pp. 106-114.

[21] A.Hessler, T.Kakumaru, H.Perrey, D.Westhoff,

Data obfuscation with network coding.

Computer Communications, 2012, vol. 35(1),

pp. 48-61.

[22] N. Bitansky, O. Paneth, From the impossibility

of obfuscation to a new non-black-box

simulation technique. In Proceedings of IEEE

53rd Annual Symposium on Foundations of

Computer Science (FOCS), 2012, pp. 223-232.

[23] H. Fang, Y. Wu, S. Wang, Y. Huang, Multi-

stage binary code obfuscation using improved

virtual machine. In ISC (X. Lai, J. Zhou, and H.

Li, eds.), Lecture Notes in Computer Science,

vol. 7001, 2011, pp. 168-181.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Dmitriy Dunaev, László Lengyel

E-ISSN: 2224-3402 41 Volume 11, 2014

