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Abstract:We present a library of Krylov subspace iterative solvers built over the PGAS-type communication layer
GPI. The hybrid pattern is here the appropriate choice to reveal the hierarchical parallelism of clusters with multi-
and many- core nodes. Our approach includes asynchronous communication and differs in many aspects from
the classical one. We first present the GPI-based implementation of the sparse matrix-vector multiplication and
then, using as a benchmark the numerical solution of a Poisson boundary value problem in a unit cube, we com-
pare the performance on Intel/Infiniband and CRAY XE6 architectures of our GPI-based Conjugate Gradients and
Richardson methods against the ones available in PETSc. The results show good scalability and performance of
our approach, at least comparable to these of PETSc.
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1 Introduction
It is nowadays considered that the “flat-MPI” ap-
proach is (or will soon become) inappropriate to im-
plement on distributed shared memory cluster archi-
tectures with multi- and many- core nodes, see e.g.
[10], Chapter 4 of [3]. In general, the hybrid paral-
lelization is regarded as a possible alternative: in its
classical variant MPI handles the inter-nodal commu-
nication, while on the shared memory nodes a thread-
parallelization (often via OpenMP) is assumed ([3]).

The Krylov subspace iterative methods presently
have no alternative for the solution of large-scale sys-
tems of linear equations arising from the implicit dis-
cretization of PDEs. There are many performant lin-
ear solver libraries of this type, e.g. PETSc ([15]),
based on the flat-MPI parallelization. On the other
hand, the design and implementation of such Krylov
type solvers using the hybrid-parallelization is still a
challenging question.

This paper discusses the design and implemen-
tation of hybrid-parallel Krylov subspace methods,
based on on the GPI library ([7], [12]). This is a com-
munication layer of a PGAS-type, which uses RDMA.
GPI is a clear alternative to the flat-MPI and - thus -
belongs to the hybrid approaches. On the other side,
certain features of the GPI programming distinguish
it from the classical hybrid parallelization. We first
present these specific features and advantages of GPI
in a more general context, but then particularly with

regards to the basic routine of the Krylov solvers - the
sparse matrix-vector multiplication (SpMVM).
The main contribution of our work is related to the
task-based hybrid design and implementation of the
SpMVM kernel with the GPI programming layer.
The GPI library supports and combines in a nat-
ural way the two levels of hybrid parallelization:
the inter-nodal communication between the compu-
tational nodes and the local thread parallelization on
the node. The task based approach allows to per-
form inter-nodal exchange from within thread paral-
lel regions of the program. Note, that programming
hybrid parallel libraries of iterative linear solvers is
sail a challenge and such libraries are rarely avail-
able for download. A hybrid PETSc ([15]), for exam-
ple, is under development and it seems to follow the
Aler native vector-mode hybridization, which leaves
the inter-nodal exchange outside of the thread paral-
lel sections of the program (see more about the vec-
tor and task modes in the next section). In our case,
the task based approach used in SpMVM is much
more flexible with regards to a better communication-
computation overlapping which finally improves the
overall performance of the solvers. Describing below
our design and implementation of SpMVM we also
show how inherently the task mode approach is re-
lated to GPI and - therefore - naturally implementable.
At the same time, using MPI and threads to implement
task based parallelization is still a subject of certain
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constraints, see below. Our performance results con-
firm the flexibility of our approach: we have achieved
better or comparable performance versus a flat-MPI
highly optimized PETSc.

1.1 Related work

There are other flat-MPI alternatives, e.g. UPC([1])
or co-array Fortran (CAF, [11]). Most of them are
programming languages and would request a (full) re-
design and rewriting of an existing MPI-code, while
GPI, as a library with an API semantically close to
MPI, would rather require some modifications and not
a full redesign.

An overview related to the SpMVM is provided
in [2], see also the references therein. One may
also mention pOSKI ([16]) - a collection of autotuned
SpMVM-related kernels. It is designed for multicore
machines, i.e. it provides intra-node optimization but
does not consider inter-nodal communication patterns
at all, while our implementation allows it. Among the
numerical linear algebra libraries, one may also point
out LAMA ([5]) which enables hybrid parallelization
as well.

1.2 Organization of the paper

We first shortly describe the general features of the
GPI-based programming and then we sketch the im-
plementation of the SpMVM routine. Further, for our
model problem - Poisson equation in a unit cube - we
present the performance of our GPI-based numerical
solver and compare it with the performance of identi-
cal methods in PETSc. Finally some conclusions are
drawn.

2 Hybrid Parallelization and GPI

2.1 Short description of GPI

The idea of GPI (Global address space Programming
Interface [7], [12], named FVM earlier) is to stay close
to the hardware (Infiniband) limit by using only a thin
interface and thus introducing an insignificant over-
head. GPI employs the RDMA model: it allows one-
sided communication to avoid the double-buffering
usually used with MPI. Otherwise, the PGAS API of
GPI is semantically very similar to the (asynchronous)
MPI-communication commands.

The one-sided transfer mechanism is handled via
a (large) Global Address Space (shortly GAS). The
latter is constructed by the unifications of the parti-
tions belonging to the corresponding GPI-nodes, i.e.
each node contributes its partition(s) to GAS. One

may consider GAS as a distributed shared memory:
each node can read/write in the GAS partitions(s) of
the other nodes using the GPI API. On the other side,
a local GAS partition on a node is also directly acces-
sible (e.g. withmemcpy) from the local memory al-
located for the application in the usual way (malloc,
etc.). Thus the access to the local memory of the re-
mote nodes is manageable through additional trans-
fers to GAS.

Note, that all the threads on a node can directly
access the remote GAS partitions of other nodes. This
is an essential feature of the GPI architecture which
facilitates the task-basic programming model and im-
poses a threaded view on the computations as an alter-
native to the process-based computations. A schemat-
ics representation of the GPI architecture is given on
Fig. 1.

Figure 1: GPI architecture

Despite some similarities between GPI API and
MPI, a profound rethinking of the existing paralleliza-
tion patterns is often requested by the GPI approach,
aiming mainly at better overlapping between commu-
nication and computation. Particularly with regards
to the implicit numerics for PDEs this may be dif-
ferent, because solving the linear system there is the
most ”expensive” part of the overall solution process
and if a library with Krylov methods could ”hide” the
complexity of an optimal GPI communication from
the user, then the redesign of an existing application
should not request immense efforts.

2.2 Hybrid parallelization and GPI model

The hybrid-design should reveal the inherent paral-
lelism of the (clustered) SMP-nodes, with their built-
in hierarchy of multi-cores and multi-sockets. The
usual hybrid approach, combining MPI with OpenMP,
raises several key issues ([3]):

(i) Mapping problem: how to inter-relate the
threads and the MPI-process(es) to the cores on a sin-
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gle node/socket. MPI is not thread-safe, MPI-calls
can not be executed within thread-parallel regions.
Usually the main thread is associated with a MPI-
process (one per node/socket), the other threads are
then mapped to it. The mapping between (subset
of) threads and MPI-processes is a responsibility of
the programmer, the different mapping strategies are
practically not supported by MPI;

(ii) NUMA-placement or data locality problem
requires minimization of the NUMA-traffic and intro-
duces thread-affinity related problems. The goal is to
provide an optimal data locality for a thread or MPI-
process on a multi-socket node;

Neither MPI nor OpenMP provide automatically
solutions to these two issues. In both cases differ-
ent combinations are possible, but they should be ex-
plicitly programmed. Several options have been pro-
posed in [3] to resolve these issues. The data local-
ity problem is to be handled (by the programmer) by
using the ”first-touch” policy, which guarantees that
the requested memory chunk is mapped to the locality
domain of the core which first writes on it. There-
fore, an appropriate memory initialization (performed
in parallel by the threads) is needed here. For the
mapping problem [3] suggests two alternative pro-
gramming modes. In Vector mode the MPI-calls are
performed outside of the thread-parallel regions of
the code, while the Task Mode, on the contrary, al-
lows any MPI-communication within thread-parallel
regions. This second mode is more flexible and appro-
priate for overlapping communication/computation,
but is practically not supported by both OpenMP and
MPI ([3]) - it depends on the availability and the
implementation of the interface mechanism between
MPI and OpenMP (there are several interface levels,
prescribed by the standards), and MPI is not thread
safe.

GPI automatically resolves the two issues men-
tioned above. The data locality problem is handled at
initialization time by the ccNUMA-aware version of
GPI which maps a logical GPI-node (with the corre-
sponding rank in the GPI space) to a socket (i.e. not
to a physical multi-socket node), assigning the first
two threads on the node a locality domain belonging
to each of the two sockets correspondingly. Each of
these two threads becomes a master thread on ”its”
GPI-node and afterward all user allocations, thread
spawning, etc. are ”pinned” to this locality domain.
Further, GPI naturally supports the Task mode pro-
gramming, i.e. the mapping issue is solved: in the GPI
model such mapping problem simply does not exists.
The only working agent is the computing thread and
each thread can communicate on both inter-nodal and
intra-node levels. The main challenge of the GPI pro-
gramming is the proper management of GAS.

2.3 SpMVM hybrid implementation

SpMVM is a memory–bounded routine ([8], [2]).
SpMVM-kernels perform poorly, achieving∼ 10%
from the theoretical peak performance ([2]), being far
from reaching the theoretical speedup even on SMP-
architectures. The principal problems related to the
SpMVM performance are known ([2]), to list some of
them:

(i) restricted temporal locality: little data reuse,
e.g. the matrix elements used once only;

(ii) irregular access to the input vector;
(iii) large number of matrix rows of a very short

row-length to multiply;
(iv) indirect memory access imposed by the

sparse matrix storage formats, etc.
To solve large scale linear systems with Krylov

subspace methods onhybrid architectures one usu-
ally uses hierarchical decomposition: the coarse
grained parallelism is attained by domain decompo-
sition (e.g. by using graph-partitioning tools like
METIS [14]), while the fine-grained parallelism on
the node is achieved by thread parallelization.

The standard hybrid approach (MPI and
OpenMP) imposes certain limitations on the SpMVM
- the implementation of this routine usually follows
the Vector mode approach [3]. This pattern clearly
separates the data access performed on different
levels: the distributed coarse-grained inter-nodal
exchange, handled by MPI (usually one process
per node), and the shared data access on the node,
handled by SMP-aware (thread) implementation [8],
[4]. Thus during the iterations one has to continu-
ously switch between the two working agents - the
MPI-process and the thread - each of them employing
different data access pattern. For memory intensive
routines like SpMVM this approach is not optimal, at
least because it provides a single channel for remote
communication. Double buffering, often used with
MPI, introduces additional overhead. Note that even
if one-sided (asynchronous) MPI-communication is
employed, it seems not to be always properly working
([9]).

3 SpMVM with GPI

The GPI architecture imposes certain constraints on
the SpMVM-design:

(i) the SpMVM routine exchanges vector items
via GPI, therefore the transfer buffers related to the
“local” part of the distributed vectors should perma-
nently reside in the GAS partition of the node, to avoid
additional exchange between the local memory and
GAS;
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(ii) it is neither reasonable nor possible on each
GPI node to keep a local replica of the full input vector
when SpMVM is performed;

(iii) therefore, one should copy locally only those
remote items of the input vector, which are needed
“here” (i.e. requested by the matrix elements, dis-
tributed on this GPI-node). Further, this inter-nodal
transfer should be done once for the whole data-
exchange chunk between two nodes, the latter being
a set of values for a list of vector indices.

The fulfillment of (iii) at run-time depends on
the current sparsity structure of the matrix and thus
the communication scheme is irregular and problem-
dependent. The domain (or mesh) partitioning deter-
mines the interface nodes for each subdomain (SD)
and thus provides the information needed in (iii). At
the discretization stage we work out the topological
information for each discretization node at the inter-
face: for each SD (mapped uniquely to a GPI-node)
a set of send- and receive- buffers (linked lists of in-
dices, associated with the discretization nodes at the
SD-interface) is created. Then at run-time, when the
SpMVM routine is invoked but before starting the ac-
tual SpMV-multiplication, GPI uses these buffers to
perform the transfer of the remote input vector items.

To briefly describe our approach we assume a
row-wise matrix distribution and we designate the lo-
cally distributed matrix rows (i.e. on “this” GPI-node)
asA, the input vector to beX, and the local part of
the output vector -Ylcl, i.e. the SpMVM-routine on
“this” GPI-node finally has to calculate

Ylcl = A ∗ X. (1)

A standard way in SpMVM to overlap commu-
nication and computation (see e.g. [6], [4]) requires
a decomposition ofA into: (i) a local partAlcl,
which multiplies the local partXlcl of the input vec-
tor X, and (ii) its complementary matrix-chunkArmt,
containing elements which multiply the remote-part
Xrmt of the input vector. The elements ofXrmt
correspond to the discretization nodes positioned at
the DD-interface: these items belong to remote GPI-
nodes and should be transferred to the current node
before starting the SpMVM. FormallyX = Xlcl +
Xrmt holds and according to this decomposition the
equivalent SpMVM operation can be written as:

Ylcl = Alcl ∗ Xlcl + Armt ∗ Xrmt (2)

Then (1) and (2) distinguish the synchronous and
asynchronous SpMVM. We now briefly sketch three
variants of the SpMVM routine.

3.1 Synchronous SpMVM, static load distri-
bution

The idea is to first transfer the remote partXrmt of the
input vector into the local GAS-partition of the node
(actually only the items requested here, on “this” GPI-
node) and then to perform the SpMVM as in (1), i.e.
the matrix is not split into local- and remote parts. The
disadvantage is that the threads which do not take part
in the transfer ofXrmt should just wait idle during this
transfer. The work-load distribution to compute (1) is
static, because the overall nodal load (matrix rows to
multiply) is known and it can be distributed directly
(and uniformly) over the available threads.

3.2 Asynchronous SpMVM, static load dis-
tribution

The threads on the node are subdivided into two sub-
sets, performing independently the two multiplica-
tions (local and remote) in (2). Thus the threads of
the “remote” subset should first transfer locallyXrmt
and then multiply the remote part. At the same time
the threads belonging to the “local” subset perform
the local part of the multiplication. One should at
last synchronize all threads on the node before car-
rying out the addition in (2). Within each subset of
threads the work-load for the multiplication is stati-
cally distributed over the threads because the overall
number of matrix rows to multiply is known in ad-
vance. The problem in this SpMVM-variant is that an
a priori splitting of the threads into local- and remote-
subsets can not take into account the current matrix
structure in a flexible way, i.e. it may happen that
either the local- or the remote- subset stays idle and
waits to start the addition in (2).

3.3 Asynchronous SpMVM, dynamic load
distribution

SpMVM is performed according to (2). The multi-
plication itself - of a single matrix row or of a set of
rows - is entirely asynchronous operation. Thus an
asynchronous job polling mechanism is applicable to
both local- or remote- parts of the matrix (providing
the requested input vector items are already locally
available for the remote-SpMVM). The idea is that
during the transfer ofXrmt (performed by some sub-
set of threads, as many as the neighboring SDs are),
the remaining threads poll jobs to perform the local
part of the multiplication. When the transfer ofXrmt
is over, then all threads poll multiplication jobs from
both local- and remote- parts of (2). Again a synchro-
nization of all the threads on the node is needed before
the addition. Note that pre-setting some reasonable
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job size in the polling is important, because there are
a large number of very short rows to multiply. There-
fore, if the job size (i.e. the number of matrix rows
to be multiplied) is too small, this would inevitably
lead to a bottleneck: the threads will be mostly com-
peting to get a job, instead of performing the multi-
plication. The important feature here is that all of the
threads perform asynchronously and simultaneously
the SpMV-multiplication of both local- and remote-
parts. The polling mechanism provides dynamic load-
balancing, making the overall work load close to the
optimal, presumably with no idle threads.

3.4 Advantages of the GPI-based SpMVM

Task Mode ([3]) is - both in general and particularly
for SpMVM ([9]) - straightforwardly supported by
GPI, i.e.:

(i) each thread can not only locally access data,
but may perform data transfer directly on inter-nodal
level as well, i.e. the communication with different
remote nodes can be handled at the same time by dif-
ferent threads;

(ii) the asynchronous (dynamic) SpMVM-
model allows better and subtle fine-grain tuning for
the communication - computation overlapping.

The approach (i) works for both synchronous and
asynchronous SpMVM and differs from the standard
hybrid pattern. The threads are spawned in the begin-
ning of the iterative method routine and are joined at
its end, working on both fine-grain (local) and coarse-
grain (distributed) exchange levels.

4 Model Problem and Domain De-
composition

We solve a Boundary Value Problem (BVP) for the
Poisson equation in a unit cube which allows an (eas-
ily constructed) exact solution. The discretization is
on a regular rectangular mesh with second order finite
differences. Then theO(h2)-convergence of the nu-
merical solution would indicate a correct implementa-
tion. If we discretize in the internal mesh-nodes only,
the assembled matrix is symmetric and positive defi-
nite (SPD), and the linear system can be solved with
the Conjugate Gradients (CG) method.
Domain Decomposition (DD): The load distribution
over the GPI-nodes is handled through a simple “cut-
ting planes” approach with planes perpendicular to the
z-axis: the cube is partitioned into slices along the
z-axis. A schematic representation of this DD in a
two dimensional projection can be seen on Fig. 2.
After assigning each slice to a particular GPI-node,

z

x

Figure 2: Domain Decomposition: cutting planes per-
pendicular to the z-axis, two dimensional projection

the discretization nodes that belong to it are then uni-
formly distributed over the threads. The distribution
of the matrix rows over the GPI-nodes and then over
the computing threads matches exactly this nodal dis-
tribution. Note, that with this DD the attempts to
minimize the inter-nodal communication via RCM-
type reordering as in the case of FE-meshes ([8], [6])
would have little or no effect. Conversely, in this setup
raising the number of SDs (i.e. the number of z-slices)
leads to a higher communication/computation ratio on
a GPI-node, because the z-slices become thiner and
the weight of the communication (between two neigh-
boring z-slices) increases. Focusing mainly at the im-
plementation of the solvers, our DD is not optimal
(e.g. we do not use graph partitioning libraries), but
it can be identically applied to different solvers and
thus allows a fair comparison.

5 Performance Results

Our library (containing presently several methods)
follows the pattern of many numerical linear algebra
packages: over the vector- and matrix- classes a layer
of basic linear algebra routines is built, while the it-
erative linear solvers themselves stay on top of this
hierarchy. The matrix- and vector- entities are dis-
tributed in a GPI sense and a further multi-threading is
assumed locally on the node - e.g. each thread works
over “its” portion of the local part of a vector, thus
such a “static” distribution is valid for all linear alge-
bra routines (apart from SpMVM). CRS (Compressed
Row Storage) is the matrix format used. It is only
internally employed, otherwise the user accesses the
matrix elements in a standard way by specifying the
corresponding row- and column- indices.
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5.1 General Comments about the Perfor-
mance Comparison

The O(h2) convergence of our CG implementation
has been confirmed on a sequence of nested meshes.
Below we present the performance of the solver for
large scale problems obtained on the finest meshes.
In our first set of tests we do measurements using
the Not-NUMA-aware GPI variant where the physical
(multi-socket) node is mapped to a GPI-node. These
tests have been presented here with the only goal to
clearly underline the advantage of the alternative ap-
proach, i.e. the ccNUMA-aware GPI. In all other test
cases this latter variant of the library has been used:
it considers a socket (on a computational node) as a
“logical” GPI-node, avoiding the NUMA-effects on
the logical node. In fact - due to GPI - the inherent
parallelism of an SMP-node is directly exploited: one
can start GPI even on a single multisocket node, more-
over with a NUMA-placement- and thread-affinity-
requirements satisfied by default.

The domain partitioning for the PETSc solver is
the same as in the GPI case: each SD (a z-slice of
the cube) is assigned to a physical node, and the dis-
cretization nodes belonging to the SD are then uni-
formly distributed over the MPI-processes running
on this node. Note, that despite the fact that in the
GPI case the “logical” subdomains are twice (or four
times, see below) more than in the PETSc-case, the
decomposition from the point of view of the physical
node is identical.

A convincing and obvious performance compar-
ison between the two solvers was not easy to find
with the CG-method used as a basis. Therefore, to
attain an evident performance estimate, we imple-
mented over GPI the Jacobi preconditioned Richard-
son method and compared it with the one available in
PETSc. In this case a clean comparison is possible,
because the calculations performed by the two rou-
tines are identical. This can be shown by monitoring
the current residual on each iteration of both solvers.
For the resulting linear system of our model problem
we have measured the execution time to perform 4000
Jacobi-preconditioned Richardson iterations. The ini-
tial approximation of the solution is in both cases zero
and after 4000 iterations in both solvers we get iden-
tical values for theL2-norm of the residual and the
C-norm of the error (the difference between the nu-
merical and the exact solution).

5.2 Not-NUMA-aware GPI, Intel cluster, Su-
permicro X8DAH (5520 Chipset), CG

The physical node has 48 GB RAM and consists of
two sockets with 6 cores each. To take into account

the system jittering we perform 10 test-runs in each
particular case (2, 4, 8 and 16 physical nodes). Ta-
ble 1. summarizes the results for synchronous static
(SS), asynchronous static (AS), and asynchronous dy-
namic (AD) SpMVM-implementations. The first col-
umn of the table gives the type of SpMVM used and
the number of threads performing the “remote” trans-
fer in (2). The fastest (averaged) execution times have
been printedbold.

One can see, that in the case of more (≥ 4) GPI-
nodes the advantages of the asynchronous SpMVM
with dynamic distribution are clearly visible, the bet-
ter performance in this case can not be neglected.

5.3 NUMA-aware GPI, Intel cluster, Super-
micro X8DAH (Intel 5520 Chipset), CG

In this case each socket on the physical node is con-
sidered as a logical GPI-node. Again withGPI-CG
we perform 10 test-runs in each particular case: 1,
2, 4, 8 and 16 computational nodes, twice more log-
ical GPI-nodes correspondingly. Table 2. presents
the results for synchronous static (SS), asynchronous
static (AS), and asynchronous dynamic (AD) SpMV-
implementations. The first column of the table indi-
cates the type of SpMVM used and the number of
threads performing the “remote” transfer in (2) (the
total number of threads per logical node is 6). The
fastest (averaged) execution times printedbold in the
table.

Comparing the results in Table 1. with the one
from Table 2. the performance gain in the latter case
is obvious. Therefore, all of the tests that follow below
have been executed exclusively with the ccNUMA-
aware GPI.

Aiming at comparing our performance with the
one of PETSc-CG, we use PETSc-3.2. optimized for
Intel-architecture. But this CG-based test turns out
not to be perfect as a way to compare the two solvers.
The reason is that the convergence behavior of the
PETSc-CG solver (numerical error and number of it-
erations) is different and depends on the number of
computational nodes. Table 3. shows that for a com-
parable error of the numerical solution the PETSc-
number of iterations is always much smaller than in
our case, which makes the performance comparison
not “clean”. The PETSc-CG speedup results have
been obtained for several different values of the rel-
ative tolerance, attempting to get comparable numeri-
cal errors of the two solvers. The appropriate value
seems to be3e − 9: for it we have compared the
performance of PETSc-CG against the one of GPI-
CG. Table 3. presents the speedup results of our
NUMA-aware GPI-based CG-solver (best times from
Table 2, RelToll=1e− 8) versus the PETSc-CG solver
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Table 1: NO-NUMA-aware GPI, Synchronous static (SS), Asynchronous static (AS), and Asynchronous dynamic
(AD) SpMVM: CG for 3D Poisson eqn.2573; (relTol = 1e − 8, ||err||C = 1.324256e − 7, itrs = 866)

Num Thrds in 2 nds, time[s] 4 nds, time[s] 8 nds, time[s] 16 nds, time[s]

ThreadSetrmt Min Max Avrg Min Max Avrg Min Max Avrg Min Max Avrg

SS, (0 of 12) 169 172 170.5 93 95 94.1 53 55 54.3 33 37 35.9

AS, 1 (of 12) 194 197 195.2 105 107 105.4 58 59 58.9 39 40 39.6

AS, 2 (of 12) 194 196 194.7 101 103 101.9 53 53 53 33 34 33.4

AS, 3 (of 12) 197 200 197.9 103 105 103.5 54 55 54.1 32 33 32.6

AS, 4 (of 12) 198 204 200.5 106 110 107.3 54 57 55.6 32 32 32

AD, 2 (of 12) 174 173 173.5 91 92 91.3 48 49 48.5 28 30 29

Table 2: NUMA-aware GPI, Synchronous static (SS), Asynchronous static (AS), and Asynchronous dynamic (AD)
SpMVM: CG for 3D Poisson eqn.2573; (relTol = 1e − 8, ||err||C = 1.324256e − 7, itrs = 866)

#Thr 1 nd (2 logcl), t[s] 2 nds (4 logcl), t[s] 4 nds (8 logcl), t[s] 8 nds (16 logcl), t[s] 16 nds (32 logcl), t[s]

TSrmt Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg

SS,0 179 180 179.7 93 94 93.2 50 51 50.3 30 31 30.6 21 22 21.3

AS,1 205 206 205.8 104 105 104.3 53 54 53.7 29 29 29 20 21 20.4

AS,2 205 206 205.7 119 120 119.7 61 62 61.1 31 32 31.1 15 16 15.4

AS,3 285 286 285.9 145 146 145.6 74 74 74 38 38 38 19 20 19.6

AD,2 196 197 196.6 99 100 99.2 51 52 51.8 28 29 28.5 15 16 15.5

(RelToll=3e − 9). The graphical representation of the
speedup in for NUMA-GPI-CG can be seen on Fig.
3., and the speedup of PETSc-CG - on Fig. 4.

As an outcome of this test it is clear that even on
smaller number of nodes our execution time ”per iter-
ation” is shorter than that of PETSc-CG, and on more
nodes our advantage increases. This assessment “per
iteration” is not quite correct, but it gives certain in-
dication. Anyway, to get a fair comparison one needs
more convincing tests.
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Figure 3: Speedup: GPI-CG, Poisson BVP,2573
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Figure 4: Speedup: PETSc-CG, Poisson BVP,2573

5.4 Intel cluster, Jacobi Preconditioned
Richardson

With this method the comparison is reliable because
the two solvers preform identical computations. On
8 and 16 nodes we use the Asynchronous Dynamic
SpMVM with two threads for the remote transfer in
(2) as in Table 2. For lower number of nodes (≤ 4)
we use Synchronous SpMVM. As before, PETSc ex-
ecutes 12 processes per node. Table 4. presents the
execution time (in seconds) of both solvers, while the
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Table 3: Speedup CG,2573; The data for the numerical error (||e||C = ||exact − appr||C) to be multiplied by
1e−7; PETSc-CG (12 procs/nd, RelTol=3e−9) vs. NUMA-GPI-CG (best times, 6 threads/GPI-nd, RelTol=1e−8)

computnl. nds: 1 computnl. nds: 2 computnl. nds: 4 computnl. nds: 8 computnl. nds: 16

||e||C itrs t[s] ||e||C itrs t[s] ||e||C itrs t[s] ||e||C itrs t[s] ||e||C itrs t[s]

PETSc 1.152 335 88 1.171 343 44 1.428 361 25 1.321 390 16 1.203 475 12

GPI 1.324 866 179.7 1.324 866 93.2 1.324 866 50.3 1.324 866 28.5 1.324 866 15.4

Table 4: PETSc-Richardson vs. GPI-Richardson, 4000 itrs, 3D Poisson eqn.2573, Intel

1 node (2 logical) 2 nds (4 logical) 4 nds (8 logical) 8 nds (16 logical) 16 nds (32 logical)

PETSc 552 300 167 100 69

ccNUMA GPI 426 220 118 64 34

corresponding graphical comparison for the speedup
can be seen on Fig. 5. The results clearly show the ad-
vantage of our GPI-based implementation vs. PETSc
with regards to the performance.
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Figure 5: Speedup GPI vs. PETSc: Richardson,2573

5.5 Cray XE6, Jacobi Preconditioned
Richardson

The physical node has 64 GB memory and four sock-
ets (logical GPI-nodes), 8 cores per socket. PETSc,
version 3.2., is hardware optimized for this architec-
ture. On a larger number of cores (> 1000) one should
run problems of appropriate size. Therefore, we tested
the3013-case (2993 unknowns) on a single node and
then up to 16 physical nodes (Table 5. left, and Fig.
6.) and the tests for the5013-case (4993 unknowns)
we started on 4 and ended on 32 physical nodes (Ta-
ble 5., right, and Fig. 7.). The executions times are
rather comparable and we consider our performance
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Figure 6: Speedup Richardson, GPI vs. PETSc,3013

good, because PETSc uses hardware optimized low-
level mathematical libraries, while we do not use ma-
chine optimization at all.

6 Conclusion

We have presented a library of Krylov type solvers
built on the GPI communication layer. GPI naturally
leads to a hybrid parallelization appropriate for clus-
ters of multi- and many-core nodes. The features of
the GPI-based programming distinguish it from the
classical hybrid techniques (MPI and OpenMP), and
we have shown how these principles have been ap-
plied to implement the sparse matrix-vector multi-
plication. Using the solution of the Poisson equa-
tion in a unit cube as a benchmark we have com-
pared the performance of our Conjugate Gradient and
Richardson methods against those available in PETSc.
To ensure a correct comparison we use the Jacobi-
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Table 5: Richardson, GPI vs. PETSc, Poisson BVP,3013 snd5013; CRAY XE6

Problem size 299
3

= 26730899 499
3

= 124251499

Total cores 32 64 128 256 512 128 256 512 1024

Physical nodes 1 2 4 8 16 4 8 16 32

GPI-nodes 4 8 16 32 64 16 32 64 128

GPI, exec. time [s] 552 285 145 73 41 692 351 194 111

PETSc, exec. time [s] 476 251 144 80 39 624 356 215 108
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Figure 7: Speedup Richardson, GPI vs. PETSc,5013

preconditioned Richardson method, which performs
identical computations in both PETSc and our GPI-
based solver. The tests have been done on two archi-
tectures: Intel/Infiniband (Supermicro X8DAH, Intel
5520 Chipset) and Cray XE6 (up to 1024 cores). On
the Intel-cluster our implementation shows clearly a
better performance than PETSc, while on Cray both
solvers produce comparable execution times. Our
code uses no hardware optimization and there is still
a potential for improvement of our GPI-based solvers.
We plan further development and optimization of our
library and to employ it in real applications.
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