
Modified Adaptive Evolutionary Algorithm for Solving JSSP Problems

VID OGRIS and TOMAŽ KRISTAN
Algit, d.o.o.
SLOVENIA

vid.ogris@algit.si,tomaz.kristan@algit.si,http://www.algit.si

DAVORIN KOFJAČ
University of Maribor

Faculty of Organizational Sciences
SLOVENIA

davorin.kofjac@fov.uni-mb.si, http://kibernetika.fov.uni-mb.si

Abstract: A job-shop scheduling problem is one of the classic scheduling problems considered to be NP-hard.
In this paper, we presenta modified adaptiveevolutionary algorithm (EA) that uses speculative mutations,
variable fitness functions and a pseudo-random number generator for solving job-shop scheduling problems.
The algorithm was tested on well-known benchmark datainstances, such as Ft10, La01, Swv01, etc., with the
goal of achieving the shortest make-span. The results show that using speculative mutations and interval
placing reduces the number of steps and computational time to achieve a (near) optimal make-span. Some
testing results on an early version of the proposed algorithm are also added,whichwere used to define the most
effective types of mutations to generate better offspring.

Key-words: evolutionary algorithm, scheduling, job shop, variable fitness function, speculative mutations

1 Introduction
In a manufacturing process, planning and
scheduling are two of the most demanding and
critical tasks. The difficulty of determining the
optimal schedule depends on the shop environment,
the process constraints and the performance
indicators. One of the most difficult problems in this
area is the job-shop scheduling problem (JSSP)[1].
JSSP has been studied by many authors, and many
algorithms have been proposed to solve it.

It is probably impossible to solve it in real time
using the “brute force” approach, since JSSP is a
NP-hard problem, which was proven by Garey et al.
[42]. Problemsofdimensionsof 15×15 are
stillconsidered to bebeyondthereachoftoday’s exact
methods[7];therefore, other meta-heuristic
approaches have beenintroduced:

• Evolutionary algorithms (EA) [8],[9];
• Genetic algorithm [7];
• Taboo search [10],[11],[12];
• Simulated annealing [14];
• Different combinations of methods

[15],[16];
• EA-related techniques, such asparticle

swarm optimization (PSO), etc.[34], [41].

All these methods are capable of finding a (near)
optimal solution in real time.Evolutionary
algorithms often perform well in approximating
solutions to all types of problems. The most popular
type of EA is the GA [7]. Vidal et al.[36] claim that
EA solves combinatorial problems effectively,
because it adapts to search solutions in a large
search space of possible solutions.

This paper describes the use of a modified EA to
effectively solve JSSP in a dynamic environment in
real time by utilizing speculative mutations, variable
fitness functions and a pseudo-random generator.

The rest of the paper is organized as follows. In
Section 2, we define the problem; in Section 3, we
present our modified EA approach. In Section 4,
testing and results performed on benchmark data are
presented and discussed. Finally, theconclusion with
future work guidelines isgivenin Section 5.

2 Problem Formulation
There are many types of production processes, e.g.
Product Layout (Flow Shop) and Process Layout,
(Job Shop). The Job Shop problem can be defined as
a set of jobs J = { j1, j2, …, jn }on a set of machines
M = { m1, m2, …, mm }. Job ji contains a set of

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 149 Volume 11, 2014

koperations Oi = {oi1, oi2, …, oik}, which are
performed on a subset of machines H⊆M. Operation
Oik is defined with continuous time tik, which is
needed for the operation to be completed and
machine hik, with whichthe operation must be
executed. The beginning time and ending time of an
operation Ojk are denoted by tb

jkand te
jk,

respectively. A sequence of operations at each job
must be strictly taken into consideration [16].The
time required to complete all the jobs is called the
“make-span”Cmax. The objective when solving or
optimizing this general problem is to determine the
schedule that minimizes Cmax. Trying to minimize
the make-span often brings algorithm to some local
minimums. The algorithm is generally not able to
determine whether its solution is the best possible or
merely another local optimum. Every EA can
reachthe global optimum eventually; however,
preventing the algorithm from becoming stuck in a
local optimum to search for other solutions inthe
defined search spaceseems to be the most difficult
task.

3 Proposed Evolutionary Algorithm
Evolutionary algorithms are inspired by natural
mechanisms of natural selection and population
genetics [19]. Some of the current evolutionary
approaches include evolutionary programming,
evolutionary strategies, genetic algorithms, and
genetic programming [2],[3],[4].

Our EA technique essentially consists of the
following steps:

1. Initialize the population,
2. Calculate the fitness of the initial

population,
3. Perform mutation(s) on population (using

speculative mutations and statistics),
4. Calculate fitness of new population,

a) If a new population is as good as the
parent or better, adopt it and delete
statistics,

b) If new population is worse, perform de-
mutation to return to the previous state
andupdate statistics,

5. Go to Step 3 until some condition is met.

A more detailed explanation of the evolutionary

process is given in Fig. 1. The algorithm holds a list
of the top 999 schedules. One of them is selected,for
which the higher ranked schedules have a better
chance of being selected. Some mutation(s) are
performed on this schedule and recorded. Next,an
evaluation is performed (with the probability of
0.25, we also change the fitness function), at which

statistics of the success rate of mutations are
recorded. If the new schedule is better or equally
good as it was before the mutations, the statistics are
deleted, the cycle counter is set to zero, and the
process is repeated. If the new schedule is worse,
the mutation statistics areupdated, de-mutations on
the schedule are performed to set the schedule to the
previous version, and the counter is increased by 1.
De-mutations reduce the amount of data that has to
be held in computer memory;therefore, more
operations can be done in less time, since there is
less data traffic. If the counter is lower than 100,000
we repeat the cycle;otherwise, the schedule is placed
back to the list of the top 999 (according to the
initial fitness function),and another one is selected.
The time needed to put the schedule to the list and
select a new one is much higher than performing
operations on one schedule; as a result, the
algorithm is working with one schedule for at least
100,000 times. The number of times mutations on a
single schedule are performed is empirically defined
through the historic data of our EA being used. For
example, if the maximum counter number was set to
500,000 or 1 million, we have discovered that the
possibility of obtaining a new better schedule was
too low against the computational time needed to
achieve such a solution.

Fig.1: Evolutionary process flowchart

It is assumed that a system evolves in a mannerto

provide an individual that is in a way better in the
next generation, i.e. a mutant with a positive

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 150 Volume 11, 2014

mutation. One of the main advantages of EA is that
it has no heuristic or similar rules; it works only on
its internal rules.Internal rules when working with
JSSP for EA are the same as for JSSP itself. These
are:

• An operation cannot be performed on more
than one machine at the time;

• The machine cannot perform more than one
operation at the time;

• Operations must follow a given order;
• The smaller the time span (or any other

criterion), the better the solution.

The algorithm follows only these fundamental
rules.

3.1 Fitness function
To evaluate the quality of the population, a
fitnessfunction is needed (cost function, criteria
function). The fitness function evaluates a solution
and is determined by the weighted sum of the
violations of the constraints [33].

The fitness function is a measure of how well an
algorithm has learned to predict the outputs from the
inputs. Anh,Caldeira, Rosa, Beligiannis et al.,
Manar, Shameem, Cardeira-Pena etal., Birbas et al.,
Gaemperle et al. [22,23,24,25,26,27,40]have all
described the meaning and the use of the fitness
function. Birbaset al. [26] are using negative
weights to minimize bad properties and to define a
better offspring. Dahaletal.[27] described the
meaning of a variable fitness function. They are
claiming that its use is reasonable in the real world,
where optimization and multiple-goal definition are
needed. With problems that have a large search
space of solutions,difficulty occurs when the search
can become stuck at a local optimum. Therefore, the
adaptive fitness function is recommended to change
the search space, enabling the solution to “escape”
from the local minimum[29],[30],[31],[32].When
the solution is stuck in a local optimum,to achieve
further improvement of the offspring, we can use
the landscape change. This is a form of tabooing or
advanced tabooing, in which the fitness function
changes multiple times during the evolution process
(of a time table or schedule).

Globally, we distinguish two principal forms of
setting parameter values in a fitness function:
parameter tuning and parameter control. Parameter
tuning sets the parameters before the algorithm is
run, while the parameter control forms an
alternative, as the algorithm starts with initial
parameter values that are changed during the run
[6]. The historic description was done by

Eibenetal.[5];they summarize parameter control in
the following way:

• Static parameters are not only hard but can
be impossible to tune: no good static value
exists for the step-size in Gaussian
mutation;

• Adaptive methods use some information
about the current state of the search, and are
as good as the information they get: the
success rate is very raw information, and
leads to the “easy-to-defeat” one-fifth rule,
while Parameter Control in Evolutionary
Algorithms 25 CMA-ES uses high-level
information to cleverly update all the
parameters of the most general Gaussian
mutation;

• Self-adaptive methods are efficient methods
when applicable, i.e. when the only
available selection (based on the fitness) can
prevent bad parameters from proceeding to
future generations. They outperform basic
static and adaptive methods but are
outperformed by clever adaptive methods.

Parameter control,which is not commonly used,
may provide a useful mechanism for increasing the
performance of the algorithm [6].

The fitness function F used in our research is
given in Eq. 1. We are trying to minimize the make-
span of the schedule and the penalties if the certain
criteria are violated, such as wrong order of
operations, length operation overlaps per job and
length of operations overlaps per machine.

(1)

Where
• ∆∈ [0,1] – weight, which is randomly

changed in every step during the evolution.
• Variables x, y, z and u change in every step

during the evolution according to:x = 6+∆x,
y = 3+∆y, z = 3+∆z, u = 0+∆u.

• Yjk = 1 if operation Ojkis scheduled before
operation(s) that should be performed prior
to Ojk in job j; 0 otherwise.

• Tjkis the time overlap for operation Ojkwith
the operation *Ojkif te

jk>*tb
jk, on machine k,

where Tjk = te
jk - *tb

jk.
• TJ

jk is the time overlap for operation Ojkwith
the operation +Ojkif te

jk>+tb
jk, within a job j,

where TJ
jk = te

jk - +tb
jk.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 151 Volume 11, 2014

• Cmax – length of the whole process.

Buecheet al.[28]optimize the fitness function or
define an alternative fitness function, but they never
bring it back to the initial state. If, after a certain
number of generations, there is no improvement, the
algorithm changes the fitness function, creates a
new branch, works with it; then, after a certain
number of generations without improvement, the
new offspring are evaluated and compared with
generations based on the original values of fitness
function. If anyschedule amongthe new ones is
placed on the list of top schedules, we continue with
the primary branch of schedules (including new
ones); otherwise, the process is repeated.
Furthermore, in most cases in the literature, the
schedule is taken into the next generation only if it
is strictly better than the best schedule of the
previous generation. However, we take the
generation’s best schedule in the next generation if
the schedule is at least as good as the best schedule
in the previous generation. Preliminary tests have
shown that random selection between equally good
solutions increases the possibility of obtaining a
new, better solutions.We believe that the new better
offspring can be found from the generation that is as
good as others but different.

Since validating the schedule is time consuming,
we provide some shortcuts. First, if the difference
between absolute minimum and maximum fitness
value has increased, the new schedule is considered
to be bad, and no further validation is performed.
Then, machines and operations where no mutations
occurred are not checked. After that, all other
validation tasks are performed.

3.2 Mutations
After the initial population is randomly set, our
algorithm works exclusively with mutations. No
cross-over is involved, since our tests have proven
to be computationally too expensive, because of
computationally expensive schedule validation.

The algorithm uses seven types of mutations.
With a random choice of RAND(RAND(7)), the
algorithm chooses how many mutations it will
perform inone generation. This number was chosen
after some initial testing, which will be explained
later in the paper. The mutations considered in our
algorithm are the following:

• Shift operation left or right on one machine;
• Shift operation left or right on an interval of

more machines;
• Swaptwooperations on one machine;
• Rotatethree operations on one machine(on

Mn operations O1, O2, O3 are rotated, so the
new order is O3, O1, O2);

• Shift left or right one operation on all
machines;

• Adjusted rotation (two operations on one
machine are rotated, and the start time of the
second one is then corrected, so it starts
right after first one. The total time of both
operations summed together remains the
same);

• Random set of one operation(place
operation Onrandomly on the machine).

3.3 Co-evolution
Mohammadi et al. [38] suggest using co-evolution
to solve the problem of scheduling (school time-
tabling problem), which provided good results in
real time. They believe that the usual EA
cannotyieldacceptable results in real time;therefore,
its use is not preferable. We believe that every
evolution is a co-evolution. If something evolves in
an unchanged environment,it is evolution without
co-evolution, but since the schedule of one machine
is an environment for another machine, we already
have co-evolution; furthermore, the results are
obtained in real time.

3.4 Speculative mutations
If mutationsprovide a schedule that is as good or
better than the previous one, we consider the
mutation to be successful. Inside each cycle and
with a certain probability, the knowledge about
successful mutations is used to choose more
successful mutations, since we can expect that the
success rate of a mutation will drop during
execution time. The success rate of a mutation
(statistics) is held in the program’s memory cache,
between two successive improvements (i.e. a
generation is better or as good as previous one);
after which it is deleted. This is used in a so-called
speculative mutation process and drastically
improves the speed of algorithm;therefore, itcan
significantly decrease the calculation time.

The algorithm decides with aprobability of 0.5
whether or not it will rely on thestatistics. If it
decides not to, then each mutation hasa probability
of p = 1/7of being chosen;however, after it is
chosen, some additional pre-calculations are made,
e.g. if the number of mutations in one generation is
one and the operation, which is the subject of
mutation, is neither the first or last, it is pointless to
move (or set) it out of the current intervalat
whichthe interval is a space between the starting

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 152 Volume 11, 2014

time of the first operation on Mn and the start time of
the last operation on machine Mn. When we have a
sequence of mutations in one generation, at least
one needs to have a potential to decrease the time
span of out process.In other words, if sixmutations
are selected and none of them improves or at least
does not worsen the make-span, that sequence is
obsolete.

In addition, we prevent some successive
mutations on one object from happening, e.g. in a
sequence of mutations, where we move O1 on M1to
the left byfive units and then another mutation wants
to move O1 on M1 to the right by two units. The
second case is disabled in advance, thus saving
computational time.

Another way to save computational time is to
prevent other unfeasible solutions by narrowing
intervals, where the set mutation can place an
operation on a certain machine. An operation cannot
be set to a location before its ideal place, e.g.
operation O3 cannot be placed before the end of total
time of O1 + O2, even in an ideal case.Further, O3
cannot be placed after total time span minus the sum
of all operations following O3,including the duration
of O3.

 (2)

 (3)

where:
 C - (current) total make-span,
 T - starting point of operation.

This rule is applied to mutations of type set, shift
left and shift right. Furthermore, if we swap two
operations between two machines (O1 on M1 starts
when O2 on M2 started, and O2 on M2starts when O1
on M1has started), this rule is verified for both
operations on their new place. If the condition is not
met for only one of them, the mutation is discarded.

For mutations that are surelynot valid, we apply
another constraint so that they never occur. For
example, an interval for an operation where it can
begin (and end)is known; therefore, they are never
set outside of this interval and, consequently, we
drastically reduce the number of trials to obtaina
valid position for an operation.

3.5Random number generator
The role of the random generation is to insert some
chaos into the system and consequently reduce the

time needed to obtain a solution. This is crucial to
exit local optimum(s).

One of the key features to improve the speed of
the algorithm is our random number generator: a
modified MersenneTwister[39] algorithm;our
version of the algorithm is optimized for speed. Our
primary goal is to obtain the random numbers as
quickly as possible, while the quality (the numbers
being regularly distributed) of the random generator
is of secondary meaning, since obtaining those
numbers is very time consuming with regards to
theCPU. With one query from theCPU,we obtain 32
random numbers that our EA can then use for its
manipulation. We believe that the solution is
obtained much more quickly this way.

Although the random number generator is
optimized for speed, it still represents a large
bottleneck in the entire process, since speculative
mutations reject the majority of the random numbers
received from the CPU, and obtaining them is very
time consuming, e.g. if the numbers received from
the CPU are 1, 1, 4, 1, 3...,and 1 turns out to be
unsuccessful, it skips to number 4;if that turns out to
be successful, it uses number 1 again since it
follows in the sequence; otherwise, it skips 1 again
and uses the next number, i.e. 3.

4 Results
First, we wanted to find the success rate of
mutations. We tested the following instances and
performed some analytics on the results:

• From la01 to la05 – size 10 × 5,proposed by
Lawrence[35],

• From la06 to la10 – size 15 × 5, also
proposed by Lawrence[35],

• From swv06 to swv10 – size 20 × 15,
proposed by Storer, Wu and Vaccari[37],

• Results of all instances together.

We recorded the time to find the solution that
matches the best known solution.We also analyzed
some of the mutations:

• Number of mutations per generation and
success;

• Number of mutations per generation and
instance and, consequently, the success;

• Shift operation left or right and,
consequently, the success;

• Mutation set and, consequently, the success;
• Mutations swap two or three operations and,

consequently, the success.
Analytics wereperformed with

SPECTORsoftware (www.algit.eu). Thisis a data-

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 153 Volume 11, 2014

mining program that searches for samples in sets of
data. It transforms data sets to logical implications,
finds all regularities in data and quantitatively
evaluates them. We let the EA run for
30seconds,regardless of the final result, since the
files with the results would become too large to be
processed for analytics. Despite the time thatwas
spent to record all of the mutations, the best known
results for some instances were achieved. The
algorithm could choose between seven mutations,
and the maximum number of mutations per
generation was between 1 and 16. The results were
as follows:

• Instances from La01 to La05
o If the number of mutations per

generation (NOMG) equals 1, the
success rate is above average;

o If NOMG was greater than 10, the
success rate was under average;

o If the NOMG equals 2, the success rate
was above average for instances la01
and la03;

o If the mutation set is used above
average, the success rate is below
average.

• Instances from La06 to La10:
o If NOMG is 1,8,9,10, the success rate

is above average;
o If mutation set is used above average,

the success rate is below average.
o If mutations swap 2 or swap 3 are used

above average, the success rate is
below average.

• Instances from Swv06 to Swv10:
o If NOMG is used above average, the

success rate is below average;
o The mutation set turns out to be

successful under average;
o Shifting operations to the right

increases the success rate.
o Analytics on all instances yield the

following results:
o Success rate on instances Swv08 and

Swv09 is above average;
o If operations are movedto the right,

success is above average;
o Using the mutation swap of two

elements is successful if it is used
below average.

This analysis helped us in the further
development of our algorithm, because we can
guide the program to use mutations that are more
successful than others in producing a better
offspring.

The aforementioned analytics yielded sevenof

the most successful mutations described earlier.
These mutations were utilized in our tests on the
following instances: Ft06 (6 × 6), Ft10 (10 × 10),
La01 (10 × 5), La02 (10 × 5), La11 (20 × 5), La12
(20 × 5),La30 (20 × 10), La31 (30 × 10), Swv01(20
× 10), Swv02 (20 × 10). We performed 100 runs per
each instance, with the following options on the
program:

• All optimizations are on (OPT);
• The program can choose from all mutations,

the interval setting is on, using statistics is
off (OPT_noSTAT);

• The program can choose from all mutations,
the interval setting is off, using statistics is
off (NoSTAT_NoINT);

• The program can choose from all mutations,
the interval setting is off, using statistics is
on (OPT_noINT);

• The program cannot use mutations shift left
and shift right, the interval setting is on,
using statistics is off (NoSTAT_NoMUT);

• The program cannot use mutations shift left
and shift right, the interval setting is on,
using statistics is on (NoMUT);

• The program cannot use mutations shift left
and shift right, the interval setting is off,
using statistics is off (NoOPT);

• The program cannot use mutations shift left
and shift right, the interval setting is off, and
using statistics is on (NoINT_NoMUT).

Computational time was limitedto
eitherthebestknownsolutionbeingfoundorto a
maximum of 100,000 generations without
improvement.

The results are shown in the following tables.
Table 1 shows the average number of steps for the
algorithm to reach its best solution, Table2
showsaveragetimesfor the analgorithmto
reachitsbestresult,andTable3shows
thebestresultthealgorithmhasachieved.

In Table 1, we can see how many steps
(improvements) a different version of algorithm
needed (in average) to achieve its best result for a
particular benchmark problem. We can see that both
versionsof the program that did not use the shift left
or shift right mutations (NoSTAT_NoMUT and
NoMUT) performed best. NoMUT achieved the
lowest number of steps 7 times, while the
NoSTAT_NoMUT achieved it 2 times. It seems like
the mutation shift left and right is usually
unsuccessful; therefore, these two algorithms benefit
from that.

Table 2 represents the average computational
time to achieve the best result. Similar to results in

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 154 Volume 11, 2014

Table 1, NoSTAT_NoMUT and NoMUT perform
best, yielding lowest average times, again benefiting
from not using the shift left and shift right
mutations.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 155 Volume 11, 2014

Table 1: Average number of steps to find a solution

Instance OPT
OPT_
noINT

NoMUT
NoINT_
NoMUT

OPT_
noSTAT

NoSTAT_
NoINT

NoSTAT_
NoMUT

NoOPT

ft06 59.88 68.61 58.85 68.83 66.61 73.62 56.09 70.09

ft10 378.97 503.12 298.37 352.25 397.31 535.63 362.61 482.75

la01 243.73 386.99 183.94 234.07 257.51 368.99 176.60 259.02

la02 251.37 323.14 164.93 195.29 234.36 347.55 190.47 229.11

la11 468.54 753.09 312.00 362.73 395.24 709.46 323.07 405.98

la12 415.32 606.18 314.88 344.26 403.68 664.84 343.58 409.97

la30 801.64 1012.77 674.88 906.96 818.74 1165.46 713.72 810.46

la31 1177.67 1409.36 930.34 849.98 1083.61 1379.83 905.97 972.37

swv01 718.83 1078.21 595.39 642.75 778.91 1084.95 631.07 644.06

swv02 744.70 1030.10 590.59 598.73 776.56 1050.12 693.30 630.80

Table 2a: Average computational time

Instance OPT
OPT_
noINT

NoMUT
NoINT_
NoMUT

OPT_
noSTAT

NoSTAT_
NoINT

NoSTAT_
NoMUT

NoOPT

ft06 0.54 0.46 0.33 0.43 0.94 0.61 0.26 0.51

ft10 4.03 3.67 3.13 4.03 5.84 6.35 5.27 5.77

la01 0.7 0.71 0.67 0.74 0.99 1.21 0.65 0.7

la02 1.14 1.3 0.72 1.21 1.8 1.97 1.67 1.57

la11 1.12 1.11 0.91 1 1.42 1.37 1.4 1.38

la12 1.26 1.28 1.2 1.24 1.74 1.67 1.79 1.75

la30 24.92 22.71 20.18 26.18 25.9 29.86 23.41 30.96

la31 29.78 27.93 19.3 19.1 33.3 33.81 30.61 31.15

swv01 19.15 24.12 16.6 20.25 26.24 29.33 31.42 30.24

swv02 22.97 19.9 18.94 21.45 29.48 28.72 25.72 25.7

Table 3a: The best make-span result

Instance OPT
OPT_
noINT

NoMUT
NoINT_
NoMUT

OPT_
noSTAT

NoSTAT_
NoINT

NoSTAT_
NoMUT

NoOPT

ft06 55 55 55 55 55 55 55 55

ft10 978 987 971 1017 971 992 992 978

la01 666 666 666 666 666 666 666 666

la02 655 655 655 655 655 655 655 655

la11 1222 1222 1222 1222 1222 1222 1222 1222

la12 1039 1039 1039 1039 1039 1039 1039 1039

la30 1355 1355 1355 1355 1355 1355 1355 1355

la31 1784 1784 1784 1784 1784 1784 1784 1784

swv01 1570 1542 1556 1540 1556 1537 1558 1569

swv02 1585 1574 1580 1614 1577 1620 1624 1573

In Table3 the best make-span results are

presented. It is worth noticing that for problem
instances ft06, la01, la02, la11, la12, la30 and la31

all algorithms yielded the same results. The
difference is in the instances ft10, sww01 and
sww02, where NoMUT, NoSTAT_NoINT and

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 156 Volume 11, 2014

NoOPT yielded the best results, respectively.Again,
in general, NoMUT algorithm achieved good
results. It seems that using statistics is not a major
benefit for these benchmarks.

We can see that, without using statistics, the
computational times are longer, and the number of
steps needs to obtain the best results ishigher. In
addition, using interval placementgenerallyresultsin
achieving a smaller number of steps to obtaina
better result, while that is not true for
shortercomputational time, since it will not yield
better results. If we want a good comparison of all
methods,the following considerations must be taken
into account. Not only the best solution matters, but
also the time needed to achieve this solution. If we
look at Table 1, where the number of steps is shown,
we have to compare them with the best results these
methods have achieved. For some problem
instances, some methods seem to be better, but
when examining the computational time and best
result, we can see that the NoMUTalgorithm
yieldsthe best results in 7 out of 10 cases. The best
result is usually achieved with two of the most
optimized methods. If also considering
NoSTAT_NoMUTalgorithm, it is obvious that
shift left and/or shift right mutations do not
contribute in achieving the best results.
Moreover, to obtainonly a slightly better result, the
number of times required is considerably higher,
meaning that an algorithm performing computations
several times faster does not necessarily provide us
with results that are several times better.

5Conclusion
Examining the results achieved with the
proposedevolutionaryalgorithm, we can see that
using speculative mutations (statistics) and interval
placing aid in achieving better results in a shorter
amount of time.Using SPECTOR, we have defined
how many mutations per generations and which
ones to use, running it on early versions of the
algorithm.It was shown that using shift left and/or
shift right mutations did not contribute in achieving
better results. Also, a very important feature of our
EA is the ability to exit local optimums in case it is
stuck in one of them. This is achieved with a
variable fitness function and pseudo-random
number generator that enables all available numbers
to be selected (from 1 to 7, since there are
seventypes of mutations).

This algorithm, with some modifications, is also
used in the program for calculating school time
tables (iTimeTable) and worker schedules (WoShi),

where the number of combinations between
teachers, students, lessons and classrooms exceeds
1054 and brute force cannot be used;our algorithm
achieves quality results in a reasonable amount of
time.

Future research will be focused on the influence
of de-mutation, co-evolution and pseudo random
generator on algorithm performance. We assume
that using a pseudo-random number generator
reduces the time to obtain the random numbers that
are essential for our evolutionary algorithm. Further,
our research will pay attention to implement this
algorithm inreal-world production scheduling. We
also see its usage in worker scheduling on all areas
from production industry to hospitals, etc., where
even more constraints are included.There is also
some room for algorithm improvement and with the
improvement of CPU speed and the number of
cores;the results will be achieved more rapidly,
since our algorithm is capable of using multiple
cores for calculation; it is also capable of running on
multiple computers; each computer sends its results
to the server and with a certain probability decides
whether or not it will use the best known solution on
the server and continue the evolution from that point
onward.

References:
[1] R. Qing-doa-er-ji and Y. Wang. A new hybrid

genetic algorithm for job shop scheduling
problem, Computers& Operations Research,
39(10), 2012, pp. 2291-2299.

[2] W.Banzhaf, P. Nordin, R.E. Kellerand
F.D.Francone,Genetic Programming: An
Introduction on the Automatic Evolution of
Computer Programs and Its Application. San
Francisco: Morgan Kaufmann, 1998.

[3] D. Dasgupta and Z. Michalewicz,Evolutionary
Algorithms in Engineering Applications, Berlin:
Springer-Verlag, 1997.

[4] C.M. Fonseca and P.J.Fleming, Multiobjective
optimization and multiple constraint handling
with evolutionary algorithms, Part I:Unified
formulation. — IEEE Trans/SMC, Part A: Syst.
Hum., Vol. 28, No. 1, 1998, pp. 26–37.

[5] A.E. Eiben, Z.Michalewicz, M. Schoenauer and
J.E. Smith, Parameter Control in Evolutionary
Algorithms, Studies in Computational
Intelligence,Vol. 54, 2007, pp. 19–46.

[6] A.E. Eiben, R. Hinterding, and Z. Michalewicz,
Parameter control in evolutionary algorithms,
IEEE Transactions on Evolutionary
Computation, Vol. 3, No. 2, 1999, pp. 124–141.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 157 Volume 11, 2014

[7] J. Magalhães-Mendes,A Comparative Study of
Crossover Operators for Genetic Algorithms to
Solve the Job Shop scheduling Problem, WSEAS
transactions on computers, Vol. 12, No. 4,2013,
pp. 164-173.

[8] Q.X.Yun, W.W. Guo, Y. Che, C.W. Lu, and
M.I. Lian, Evolutionary algorithms for the
optimization of production planning in
underground mines, Application of Computers
and Operation research in the Minerals
Industries, South Africa Institute of Mining and
Metallurgy, 2003.

[9] F. Koblasa, F. Manlig andJ. Vavruška,
Evolution Algorithm for Job Shop Scheduling
Problem Constrained by the Optimization
Timespan, Applied Mechanics and Materials,
Vol. 30, 2003, pp. 350-357.

[10] A. Abraham, R. Buyya andB. Nath,Nature’s
heuristics for scheduling jobs in computational
grids, Proceedings of the 8th IEEE International
Conference on Advanced Computing and
Communication, 2000, pp. 45–52.

[11] E. Nowicki and C. Smutnicki, A fast taboo
search algorithm for the job shop problem,
Management Science, Vol. 42, No. 6, 1996, pp.
797–813.

[12] M. Dell’Amico andM. Trubian, Applying
taboo search to the job-shop scheduling
problem, Annals of Operations Research, Vol.
41, 1993, pp. 231–252.

[13] C. Zhang, X. Shao, Y. Rao and H. Qiu,
Some New Results on Tabu Search Algorithm
Applied to the Job-Shop Scheduling Problem,
Tabu Search, WassimJaziri (Ed.), ISBN: 978-3-
902613-34-9, InTech, 2008.

[14] M. Brusco andL. Jacobs, A simulated
annealing approach to the cyclic staff-
scheduling problem, Naval Research Logistics,
Vol. 40, 1993, pp. 69–84.

[15] R. Tavakkoli-Moghaddam, F. Jolai, F.
Vaziri, P.K. Ahmed and A.Azaron, Solving
stochastic job shop scheduling problems by a
hybrid method,Applied Mathematics and
Computation, Vol. 170, No. 1,2005, pp. 185–
206.

[16] A. Tamilarasi andT. Anantha, An enhanced
genetic algorithm with simulated annealing for
job-shop scheduling, International Journal of
Engineering, Science and Technology,Vol. 2,
No. 1, 2010, pp. 144-151.

[17] D. Kofjač andM. Kljajić, Application of genetic
algorithms and visual simulation in a real-case
production optimization. WSEAS transactions
on systems and control, Vol. 3, No. 12, 2008,
pp. 992-1001.

[18] R. Thamilselvan and P.
Balasubramanie,Integrating Genetic Algorithm,
Tabu Search Approach for Job Shop
Scheduling, (IJCSIS) International Journal of
Computer Science and Information
Security,Vol. 2, No. 1, 2009, p. 6.

[19] K. Mesghouni, S.Hammadi and P. Borne,
Evolutionary algorithms for job-shop
scheduling, International Journal of Applied
Mathematics and Computer Science, Vol. 14,
No. 1, 2004, pp. 91–103.

[20] A.E. Eiben and J. Smith, Introduction to
Evolutionary Computing, Springer, Natural
Computing Series, 1st edition, 2003.

[21] D.T. Anh, V.H. Tam andN.
Hung,Generating Complete University Course
Timetables by Using Local Search Methods,
Research, Innovation and Vision for the Future,
International Conference, 2006.

[22] J.P.Caldeira and A.C. Rosa, School
Timetabling using Genetic Search, PATAT 97,
1997, pp. 115-122.

[23] A. Cerdeira-Pena, L. Carpente, A.Farina
andS. Diego, New approaches for the school
timetabling problem, Seventh Mexican
International Conference on Artificial
Intelligence, 2008.

[24] G.N. Beligiannis, C.N. Moschopoulos, G.P.
Kaperonis andS.D. Likothanassis, Applying
evolutionary computation to the school
timetabling problem: The Greek case,
Computers & Operations Research, Vol.
35,2008, pp. 1265 – 1280.

[25] H.Manar andF. Shameem,A Survey of
Genetic Algorithms for the University
Timetabling Problem, International Conference
on Future Information Technology IPCSIT
Vol.13, 2011.

[26] T. Birbas, S. Daskalaki andE. Housos,
Timetabling for Greek high schools, Journal of
the Operational Research Society, Vol. 48,
1997, pp. 1191-1200.

[27] K. Dahal, S. Remde andP. Cowling,
Improving metaheuristic performance by
evolving a variable fitness function,
Evolutionary computation in combinatorial
optimization, proceedings,Book Series: lecture
notes in computer science,Vol. 4972,2008, pp.
170-181.

[28] D. Bueche, N.N. Schraudolph andP.
Koumoutsakos, Accelerating Evolutionary
Algorithms with Gaussian Process Fitness
Function Models, IEEE transactions on systems,
man, and cybernetics, Vol. 35, 2004, pp. 183-
194.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 158 Volume 11, 2014

[29] M.A. Majig and M. Fukushima, Adaptive
Fitness Function for Evolutionary Algorithm
and Its Applications,International Conference
on Informatics Education and Research for
Knowledge-Circulating Society, Kyoto, 2008,
pp. 11-124.

[30] P. Tang andG. K. Lee, An Adaptive Fitness
Function for Evolutionary Algorithms Using
Heuristics and Prediction, World Automation
Congress, 2006. WAC ‘06, 24-26 July 2006,
Budapest,pp. 1-6.

[31] R. Farmani andJ.A Wright, Self-Adaptive
Fitness Formulation for Constrained
Optimization, IEEE transactions on
evolutionary computation, Vol. 7, No. 5, 2003,
pp. 445-455.

[32] A.E. Eiben and Z. Ruttkay, Self-Adaptivity
for Constraint Satisfaction: Learning Penalty
Functions, International Conference on
Evolutionary Computation, 1996, pp. 258-261.

[33] P. De Causmaecker, P. Demeester andG.V.
Berghe, A decomposed metaheuristic approach
for a real-world university timetabling problem,
European Journal of Operational Research,
Vol. 195,2009, pp.307–318.

[34] D.Y.Sha andC. Hsu, A hybrid particle
swarm optimization for job shop scheduling
problem,Computers & Industrial Engineering,
Vol.51,2006, pp. 791-808.

[35] S. Lawrence, Resource Constrained Project
Scheduling: An Experimental Investigation of
Heuristic Scheduling Techniques, GSIA,
Carnegie Mellon University, Pittsburgh, PA,
1984.

[36] J.C. Vidal, M. Mucientes, A. Bugar´in
andM. Lama, An Adaptive Evolutionary
Algorithm for Production Planning in Wood
Furniture Industry,International Symposium on
Evolving Fuzzy Systems, September, 2006.

[37] R.H. Storer, S.D. Wu and R. Vaccari,New
Search Spaces for Sequencing Instances with
Application to Job Shop Scheduling,
Management Science, Vol. 38, 1992, pp. 1495-
1509.

[38] M.S. Mohammadi and C. Lucas,
Cooperative Co-evolution for School
Timetabling Problem, 7thIEEE International
Conference on Cybernetic Intelligent Systems,
CIS, 2008.

[39] M. Matsumoto and T. Nishimura, Mersenne
twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator,
ACM Transactions on Modeling and Computer
Simulation (TOMACS), Vol. 8, No. 1, 1998, pp.
3 – 30.

[40] R. Gaemperle,S.D. Muller and
P.Koumoutsakos,A parameter study for
differential evolution,WSEAS International
Conference on Advances in Intelligent Systems,
Fuzzy Systems, Evolutionary Computation,
2002, pp. 293–298.

[41] S. Rahnamayan and G.G. Wang, Solving
Large Scale Optimization Problems by
Opposition-Based Differential Evolution
(ODE), WSEAS Transactions on Computers,
Vol. 7, No. 10, 2008, pp. 1792-1804.

[42] M.R. Garey, D.S. Johnson, and R. Sethi,
The complexityof flow-shop and job shop
scheduling,Mathematics and Operations
Research, Vol. 1, No.2, 1976, pp. 117–129.

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS Vid Ogris, Tomaž Kristan, Davorin Kofjač

E-ISSN: 2224-3402 159 Volume 11, 2014

