
will be on solutions concerning increased heat
transfer surface without affecting the overall sizes
of the DWHR system (e.g. introducing fins on the
pipes of the heat exchanger) or on improving flow
turbulence by adding special elements within the
heat exchanger.
References:
[1] M. Schaffer, J. Widén, J. Eduardo Vera-
Valdés, A. Marszal-Pomianowska, and T.S.
Larsen, “Disaggregation of total energy use
into space heating and domestic hot water: A
city-scale suited approach”, Energy, vol. 291,
130351, 2024, doi:
10.1016/j.energy.2024.130351.
[2] Z. Wehbi, R. Taher, J. Faraj, M. Ramadan, C.
Castelain, and M. Khaled, “A short review of
recent studies on wastewater heat recovery
systems: Types and applications”, Energy
Reports, vol. 8, pp. 896–907, 2022, doi:
10.1016/j.egyr.2022.07.104.
[3] F. Ahmed, Md. Minaruzzaman Sumon, M.
Fuad, R. Gugulothu, and A.S. Mollah,
“Numerical Simulation of Heat Exchanger
for Analyzing the Performance of Parallel
and Counter Flow”, WSEAS Transactions on
Heat and Mass Transfer, vol. 16, pp.145-
152, 2021,
https://doi.org/10.37394/232012.2021.16.17.
[4] K. Ip, K. She, and K. Adeyeye, “Life-cycle
impacts of shower water waste heat recovery:
case study of an installation at a university
sport facility in the UK”, Environmental
Science and Pollution Research, vol. 25, pp.
19247–19258, 2018, doi: 10.1007/s11356-
017-0409-0.
[5] E. Ovadia and M.H.Sharqawy, “Thermal and
Economic Evaluations of a Drain Water Heat
Recovery Device under Transient
Conditions”, Clean Energy and
Sustainability, vol. 1(1), 10004, 2023, doi:
10.35534/ces.2023.10004.
[6] H. Nagpal, J. Spriet, M.K. Murali, and A.
McNabola, “Heat Recovery from Wastewater
- A Review of Available Resource”, Water,
vol. 13, 1274, 2021, doi:
10.3390/w13091274.
[7] A. McNabola and K. Shields, “Efficient drain
water heat recovery in horizontal domestic
shower drains”, Energy and Buildings, vol.
59, pp. 44–49, 2013, doi:
10.1016/j.enbuild.2012.12.026.
[8] K. Pochwat, S. Kordana-Obuch, M. Starzec,
and B. Piotrowska, “Financial analysis of the
use of two horizontal drain water heat
recovery units”, Energies, vol. 13, no. 15,
2020, doi: 10.3390/en13164113.
[9] P. Jadwiszczak and E. Niemierka, “Thermal
effectiveness and NTU of horizontal plate
drain water heat recovery unit - experimental
study”, International Communications in
Heat and Mass Transfer, vol. 147, 106938,
2023, doi:
10.1016/j.icheatmasstransfer.2023.106938.
[10] L.A. Khan and A. El-Ghalban, “Heat
Exchanger Exergetic Lifecycle Cost
Optimization using Evolutionary
Algorithms”, WSEAS Transactions on Heat
and Mass Transfer, vol. 3(1), pp.125-136,
2008.
[11] F.R. Menter, “Two-equation eddy-viscosity
turbulence models for engineering
applications”, AIAA Journal, vol. 32, pp.
1598-1605, 1994, doi: 10.25143/3.12149
[12] F.R. Menter, “Turbulence Modeling for
Engineering Flows”, ANSYS Inc.,Technical
Paper 25, 2011.
[13] M. Grioni, S. Elaskar, P. Bruel, and A.
Mirasso, “Numerical Simulation of Turbulent
Flows using the SST-SAS Model”, WSEAS
Transactions on Fluid Mechanics, vol. 19,
pp. 24-39, 2024, doi:
10.37394/232013.2024.19.3.
[14] A. Fakheri, “Heat Exchanger Efficiency”,
Journal of Heat Tranfer, vol. 129(9), pp.
1268-1276, 2007, doi: 10.1115/1.2739620.
[15] R. Manouchehri and M.R. Collins, “An
experimental analysis of the impact of
unequal flow on falling film drain water heat
recovery system performance”, Energy and
Buildings, vol. 165, pp. 150-159,2018,
doi.org/10.1016/j.enbuild.2018.01.018.
[16] C. Zaloum, M. Lafrance, and J. Gusdorf,
“Drain Water Heat Recovery:
Characterisation and Modelling - Final
Report”, Sustainable Buildings &
Communities, Natural Resources, Ottawa,
Canada, 2007.
WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
DOI: 10.37394/232012.2024.19.8
Dragoș Purghel, Cătălin Teodosiu