Interscience, New York,
[12] Guseynov, Sh. E., (2003). Methods of the
Solution of Some Linear and Nonlinear
Mathematical Physics Inverse Problems,
doctoral thesis, University of Latvia, Riga.
[13] Buikis, A., (2020). Multidimensional
Mathematical Models for Intensive Steel
Quenching, Lambert Academic Publishing,
Mauritius, p.128, ISBN: 978-6200532350.
[14] Kondrat’ev, G. M., (1954). Regulyarnyi
Teplovoy Rezhim (Regular Thermal Mode),
Gostekhizdat, Moscow, p.364.
[15] Kondrat’ev, G. M., (1957). Thermal
measurements (Teplovye Izmereniya),
Mashgiz, Moscow, 1957, 250 p.
[16] Lykov, A.V. (1967). Theory of Heat
Conductivity (Teoriya Teploprovodnosti),
Vysshaya Shkola, Moscow, 1967, 596.
[17] Tolubinsky, V. I., (1980). Heat Transfer at
Boiling, Naukova Dumka, Kyiv, 1980.
[18] Bergles, A. E., (1980). Handbook of Heat
Transfer, 3rd Edition, McGraw-Hill, New
York, NY, p. 1344.
[19] Kutateladze, S.S., (1963). Fundamentals of
Heat Transfer, Academic Press, New York,
[20] Ukrainian Patent UA 114174, Filled on Sept.
23, 2913, [Online]. URL:, ACCESSED
DATE.
[21] Kobasko N.I. (2018). Optimal hardenability
steel and method for its composing, Lambert
Academic Publishing, Mauritius, 116 p/.
[22] Grossmann, M. A., 1964. Principles of Heat
Treatment. Ohio: American Society for
Metals, 302.
[23] Rath, J., Lübben, T., Hunkel, M., Hoffmann,
F., Zoch, H. W. (2009). Basic investigations
into the generation of residual compressive
stresses by high-speed quenching
(Grundlegende Untersuchungen zur
Erzeugung von Druckeigenspannungen durch
Hochgeschwindigkeits-Abschrecken. HTM
Journal of Heat Treatment and Materials, 64
(6), 338–350, doi: 10.3139/105.110037.
[24] Rath, J., Lubben, T., Hoffmann, F., Zoch, H.
W. (2010). Generation of compressive
residual stresses by high speed water
quenching. International Heat Treatment and
Surface Engineering, 4 (4), 156–159, doi:
10.1179/174951410x12851626812970 .
[25] Zoch, H. W., Schneider, R., Luebben, T.
(2014). Proc. of European Conference on
Heat Treatment and 21st IFHTSE Congress.
Munich (Germany), 566.
[26] Frenkel, Y. I., (1975). Kinetic Theory of
Liquids, Nauka, Leningrad.
[27] Frenkel, Y.I., (1959). Kinetic Theory of
Fluids, Selected works, Vol. 3,
Academy of Science of the USSR,
Moscow.
[28] Fedorov, V. I., G. V. Kovalenko, and D.
M. Kostanchuk, (1977). On the Issue of
Boiling Up a Liquid on a Metal Surface,
IFZh, Vol. 32, No. 1, pp. 18–23.
[29] Totten G.E., Bates C.E., Clinton N, A.
(1993). Quenchants and Quenching
Technology, ASM International,
Materials Park, 513.
[30] ASM Handbook; Steel Heat Treating
Fundamentals and Processes, Eds Jon
L. Dossett; George E. Totten, (2013),
Vol. 4A, pp. 91 -15,
https://doi.org/10.31399/asm.hb.v04a.97
81627081658.
[31] Natanzon, E. I., Simultaneous
Quenching of Truck Semi-Axles,
Avtomobilnaya Promyshlenist, No. 10,
1976, pp. 33–35.
[32] Morhuniuk, W.S. (1982). Steel Articles
during Quenching, Strength of
Materials, Vol. 14, pp. 807-814,
translated from Problemy Prochnosti,
No. 6, 1982, pp. 80 – 85.
[33] Ferguson, B.L., Freborg, A.M., and Li,
Z. , (2007). “Improving Gear
Performance by Intensive Quenching,”
Proceedings of 24th ASM Heat Treating
Conference (Detroit, MI).
[34] Inoue, T., and Arimoto, K., (1997).
Development and Implementation of
CAE System “Hearts” for Heat
Treatment Simulation Based on
Metallo-thermo-mechanics, Journal of
Materials Engineering and
Performance, Vol. 16, No. 1, pp. 51–
60.
[35] Tensi H.M., (1992). Wetting
Kinematics, in a Handbook Theory and
Technology of Quenching, B.Liscic,
H.M. Tensi, W. Luty (Eds), Springer –
Verlag, Berlin, pp. 93 – 116.
[36] Liscic B., (1992). Prediction of
structural constituents and hardness
values upon quenching by using the
CCT diagrams, in a Handbook Theory
and Technology of Quenching, B.Liscic,
H.M. Tensi, W. Luty (Eds), Springer –
Verlag, Berlin, pp. 466 – 476 .
[37] Methodology STAR-CD, Version 3.15,
CD Adapco Group, Computational
Dynamics Ltd., London, 2001.
WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
DOI: 10.37394/232012.2024.19.6