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Abstract: - This paper investigates in detail the thermal and chemical effects of an unstable 
magnetohydrodynamic (MHD) mixed oscillatory flow. The temperature, velocity, and concentration profiles 
can be investigated in detail by transforming the governing equations into a dimensionless system. These 
equations are solved using the perturbation method, which reveals details about the significant effects and 
connections between the variables being examined. The velocity, temperature, and concentration are found to 
decrease as the magnetic field, heat radiation, and chemical reaction rise. Additionally, artificial neural network 
(ANN) approaches are applied to these ordinary differential equations (ODEs), and the outcomes are contrasted 
with numerical simulations. This work illustrates the ANN model's capacity to produce extremely precise heat 
transfer rate forecasts from an engineering standpoint. This method improves knowledge of complex fluid 
magnetohydrodynamics and porous medium flows by incorporating artificial intelligence. 
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1  Introduction  
Application of industrial processes such as nuclear 
reactors, geothermal energy extraction, and 
advanced material processing, the combined impact 
of chemical and magnetic effects are very much 
essential. The study of MHD fluid is used in energy 
storage technologies, plasma physics, and metal 
casting. MHD flows exhibit complex nonlinear 

dynamics when coupled with chemical interactions, 
making it challenging to evaluate them with usual 
mathematical methods. Consequently, data-driven 
methods – specifically, artificial neural networks, or 
ANNs have gained attention for simulating and 
predicting the behavior of these systems.  

Neural networks' capacity to discover 
complicated patterns in datasets and approximate 
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nonlinear functions has made them extremely 
effective tools for tackling fluid flow problems in 
recent years. Neural network-based models are more 
capable of handling large-scale simulations, 
adapting to dynamic boundary conditions, and 
optimizing predicted accuracy than traditional 
numerical or analytical approaches. Artificial Neural 
Networks (ANNs) are essential for both scientific 
and industrial breakthroughs since they use deep 
learning techniques to improve the accuracy of fluid 
dynamics studies and aid in real-time forecasts. 

[1] showed how ANN models can accurately 
represent complex thermal and entropy behaviors in 
cavities containing nanomaterials, which are 
frequently seen in energy storage devices, heat 
exchangers, and microelectronics. [2] used Artificial 
Neural Networks (ANNs) to estimate the 
temperature and the rate of heat transfer to analyze 
the thermal effects in MHD flows. Their research 
showed how well ANNs performed in forecasting 
the thermal behavior of intricate MHD flows, [3] 
investigated the influence of chemical processes on 
MHD flows in a more sophisticated ANN 
application. They demonstrated how well ANNs 
performed in mimicking the combined impacts of 
fluid motion, magnetic fields, and chemical 
processes. [4] included in their analysis of the 
application of ANN in fluid dynamics and MHD 
flows. They elaborated on other ANN architectures 
and training procedures necessary for flow pattern 
design. [5] in their study for unsteady oscillatory 
MHD flows in 2017 employed ANNs to predict the 
flow field's nonsteady behavior. In general, their 
studies have shown that ANNs can accurately model 
the nonsteady behavior of MHD flows. 

According to their research, artificial neural 
networks (ANNs) effectively capture the time-
dependent characteristics of unstable 
magnetohydrodynamic (MHD) flows. [6] explored 
the use of ANNs in simulating heat and mass 
transfer within chemically reacting MHD flows, 
emphasizing their ability to generate precise 
predictions for complex MHD systems. [7] further 
studied the combined effects of chemical and 
thermal factors on MHD flows using ANNs, 
showcasing their capability to handle multi-
parameter challenges and provide insights into the 
interplay of various physical processes. 

[8] looked at modeling MHD slip-flow over a 
porous stretched surface using ANNs, 
demonstrating how well neural networks capture 
intricate flow patterns. [9] concentrated on creating 
a predictive artificial neural network (ANN) model 
that can precisely estimate the heat transfer 
properties of electrically conducting fluids. [10] 

studied MHD heat and mass transfer in an 
oscillating fluid over a permeable plate, as well as 
the impact of chemical processes and magnetic 
fields.  

In this study, artificial neural networks (ANNs) 
are employed to model and analyze the impact of 
thermal and chemical factors on unsteady MHD 
mixed oscillatory flows. The primary goal is to 
convert the governing equations of MHD flow into a 
dimensionless system. Using the perturbation 
method, an analytical solution is derived from the 
dimensionless equations. Subsequently, an ANN 
model is developed to investigate the system in 
greater detail and compare its results with those 
obtained from the analytical simulation. 
 
 
2   Problem Formulation 
Consider the oscillatory flow of a 
magnetohydrodynamic (MHD) fluid characterized 
by electrical conductivity and chemical reactivity 
through a porous medium. The flow occurs in a 
channel with the X-axis aligned vertically and the 
Y-axis oriented perpendicular to the plates of the 
channel. The following assumptions are made to 
simplify the analysis: 
 Unsteady and Oscillatory Flow: The flow is 

unsteady and exhibits oscillatory behavior, 
driven by an oscillating pressure gradient 
applied at the channel's ends. 

 Negligible Induced Magnetic Field: The 
induced magnetic field is considered negligible 
and is therefore not included in the analysis. 

 Porous Media Resistance: The effects of 
viscous resistance and Darcy’s law are 
accounted for, assuming the porous medium has 
constant permeability. 

 Boussinesq Approximation: The governing 
equations for the flow are derived under the 
standard Boussinesq approximation, simplifying 
the analysis by treating density variations only 
in terms of buoyancy effects. 

 
The governing equations for this MHD oscillatory 
flow are presented as follows: 
𝜕𝑣∗

𝜕𝑦∗ = 0  
𝜕𝑈∗

𝜕𝑡∗ = −
1

𝜌

𝜕𝑃∗

𝜕𝑥∗ + 𝛾
𝜕2𝑢

𝜕𝑦2 +
𝜎𝐵0

2

𝜌
𝑈∗ + 𝑣∗ 𝜕𝑈∗

𝜕𝑦∗ +

 𝑔𝛽(𝛵 − 𝑇1) + 𝑔𝛽∗(𝐶 − 𝐶1) −
𝑣

𝑘
𝑈∗   

𝜕𝑇∗
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𝜌𝐶𝑃
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𝜌
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𝑑
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where 𝑣′ = −𝑣0(1 + 𝜀𝑒𝑖𝑛𝑥) is suction velocity. 
With boundary conditions, 
𝑈∗ = 𝐿1

𝜕𝑢∗

𝜕𝑦∗ , 𝑇∗ = 𝑇1
∗ +

𝜕𝑇∗

𝜕𝑦∗ , 𝐶∗ = 𝑇1
∗ +

𝜕𝐶′

𝜕𝑦′
 at 𝑦 = 0

  
The non-dimensionless parameters: 
𝑥 =

𝑥∗

𝑑
, 𝑦 =

𝑦

𝑑
 , 𝑃 =

𝑑𝑝∗

𝜇𝑈0
 , 𝜃 =

𝑇∗−𝑇1
∗

𝑇2
∗−𝑇1

 , 𝜙 =
𝐶∗−𝐶1

∗

𝐶2
∗−𝐶1

 

𝑡 =
𝑈0𝑡∗

𝑑
, 𝑅𝑒 =

𝑈0𝑑

𝑣
, 𝛾 =

𝑘

𝑑2
, 𝑀 =

𝜎𝐵0
2𝑑2

𝜇
, 𝐺𝑟

=
𝑔𝛽(𝑇2 − 𝑇1)𝑑2

𝑣𝑈0
 

𝐺𝑐 =
𝑔𝛽′(𝐶2−𝐶1)𝑑2

𝑣𝑈0
, 𝑅 =

𝑈0𝑑2

𝜇
, 𝑃𝑒 =

𝜌𝐶𝑝𝑈0𝑑

𝐾
, 𝑆𝑐 =

𝐷

𝑈𝑑
 

 𝐾′ =
𝐾𝑑2

𝜈
, 𝑆𝑟 =

𝐷𝑘

𝑇

(𝑇∞−𝑇∞)

(𝐶∞−𝐶∞)
 

 
The above equations can be written as:  

𝑅𝑒
𝜕𝑈

𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
+

𝜕2𝑈

𝜕𝑦2
+ 𝜆1

𝜕𝑈

𝜕𝑦
+ 𝐺𝑟𝜃 + 𝐺𝑐𝜙

+ (𝑀 +
1

𝐾
) 𝑈 

𝑃𝑒
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2 + (𝑄1)𝜃   
𝜕𝜙

𝜕𝑡
= 𝑆𝐶

𝜕2𝜙

𝜕𝑦2 + 𝐾𝑟𝜙 + 𝑆𝑟
𝜕2𝜃

𝜕𝑦2  
 
And the boundary conditions become: 
𝑈0 = 𝛾

𝜕𝑈0

𝜕𝑦
, 𝜃0 = 𝑑2

𝜕𝜃0

𝜃0𝑦
, 𝜙0 = 1 + 𝑑1

𝜕𝜙0

𝜕𝑦
 𝑎𝑡 𝑦 = 0  

 
 
3   Solution to the Problem 
The above equations are modified using the below 
equations:  
𝑈(𝑦, 𝑡) = 𝑈0(𝑦) + 𝜖𝑈1(𝑦)𝑒𝑖𝜔𝑡 
𝜃(𝑦, 𝑡) = 𝜃0(𝑦) + 𝜖𝜃1(𝑦)𝑒𝑖𝜔𝑡 
𝜙(𝑦, 𝑡) = 𝜙0(𝑦) + 𝜖𝜙1𝑒𝑖𝜔𝑡 

−
𝜕𝑃

𝜕𝑥
= 𝑒𝑖𝜔𝑡 

 
Substitute into Governing Equations: 
Zeroth order: 
𝜕2𝑈0

𝜕𝑦2
+ 𝑀𝑈0 = 0 

𝜕2𝜃0

𝜕𝑦2
+ 𝑄1𝜃0 = 0 

𝑆𝑐
𝜕2𝜑0

𝜕𝑦2
+ 𝐾𝑟𝜑0 = 0 

 
First Order: 
𝜕2𝑈1

𝜕𝑦2 + 𝑀𝑈1 = −𝑖𝜔𝑅𝑒𝑈1 + 𝐺𝑟𝜗1 + 𝐺𝑐𝜑1 + 𝜆1
𝜕𝑈1

𝜕𝑦
   

𝜕2𝜃1

𝜕𝑦2
+ 𝑄1𝜃1 = −𝑖𝜔𝑃𝑒𝜃1 

𝑆𝑐
𝜕2𝜑1

𝜕𝑦2
+ 𝐾𝑟𝜑1 = −𝑖𝜔𝜑1 + 𝑆𝑟

𝜕2𝜃1

𝜕𝑦2
 

 
General solutions are: 
𝑈0(𝑦) = 𝐶1 𝑒−√𝑀𝑦 + 𝐶2 𝑒√𝑀𝑦  
𝜃0(𝑦) = 𝐷1 𝑒−√𝑄1𝑦 + 𝐷2 𝑒√𝑄1𝑦 

𝜑0(𝑦) = 𝐸1 𝑒
−√

𝐾𝑟

𝑆𝑐
𝑦

+ 𝐸2 𝑒
√

𝐾𝑟

𝑆𝑐
𝑦

 
 
With the boundary condition: 

𝑈0 = 𝛾𝑢0
′ , 𝜃0 = 𝑑2𝜃0

′ , 𝜙0 = 𝑑1𝜙0
′ 𝑎𝑡𝑦 = 0 

 
 
4   Results and Discussion 
The effect of the magnetic field (represented by M, 
the magnetic parameter) on velocity profiles in an 
unstable magnetohydrodynamic (MHD) mixed 
oscillatory flow can vary depending on the fluid's 
composition and flow circumstances as shown in 
Figure 1. In most MHD investigations, a rise in the 
magnetic field causes a magnetic drag, sometimes 
referred to as the Lorentz force, which frequently 
causes a velocity drop. The relationship may, 
however, vary in some circumstances, such as when 
the fluid characteristics exhibit particular behavior 
or when other factors such as temperature or 
chemical impacts predominate.  
In this scenario, velocity decreases as the magnetic 
parameter, M, rises. The following are some 
possible causes of this: 
 When a conducting fluid flows in the presence 

of a magnetic field, it experiences a Lorentz 
force that opposes the motion of the fluid. This 
force acts as a resistive drag. The Lorentz force 
is proportional to the magnetic field strength 
and opposes the fluid motion. As M increases, 
the Lorentz force becomes stronger, which 
suppresses the velocity of the fluid. 

 The magnetic field introduces a damping effect 
on the fluid motion. This is beneficial in 
processes where controlling turbulence or 
stabilizing fluid flow is desired. 

 The work done against the Lorentz force 
converts the kinetic energy of the fluid into heat, 
leading to energy dissipation. 

 
Figure 2, shows the relationship between the 

temperature profile for different thermal radiation 
parameters. Temperature profile decreases when 
thermal radiation increases. The relationship 
between thermal radiation and the temperature 
profile can be understood in the context of heat 
transfer and the Stefan-Boltzmann law. Here's an 
explanation: 
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 As an object or surface temperature increases, it 
emits more radiation according to the Stefan-
Boltzmann law, which states that the power 
radiated per unit area of a body is proportional 
to the fourth power of its temperature: 
Q=σT4 
where: 

o Q is the radiative heat flux (power per unit 
area), 

o σis the Stefan-Boltzmann constant, 
o T is the temperature of the object in Kelvin. 

So, when thermal radiation increases (due to 
higher temperature), more heat is radiated away 
from the system. 

 In a system where heat is transferred, the 
temperature profile refers to how the 
temperature varies across the system or 
medium. If thermal radiation increases 
significantly, more heat is lost to the 
surroundings, leading to a cooling effect in the 
system. As a result, the temperature at different 
points in the system may decrease. 

 When thermal radiation increases, the object 
loses heat more quickly, which can cause a 
reduction in its temperature. If this heat loss is 
not compensated by another form of heat input, 
the overall temperature of the system will 
decrease, causing the temperature profile to 
lower. 

 
When the chemical reaction parameter 

increases, concentration tends to decrease which is 
shown in Figure 3. This phenomenon can be 
understood by considering the following factors: 
This can be explained through the principles of 
reaction kinetics. Here's the reasoning behind why 
an increase in the chemical reaction parameter (like 
reaction rate constant) leads to a decrease in 
concentration: 
 The rate of a chemical reaction is typically 

governed by the reaction rate constant (k) and 
the concentration of reactants. According to the 
rate law, the rate of the reaction is generally 
proportional to the concentration of the 
reactants raised to a certain power (which can be 
determined by the order of the reaction). 
For a general reaction: 
A→B 
The rate of reaction ‘r’ can be written as: 
r=k[A]n 
where: 

o r is the rate of the reaction, 
o k is the rate constant, 
o [A] is the concentration of reactant A, 

o n is the order of the reaction (which depends on 
the specific reaction). 

 When the reaction rate constant k increases (for 
example, due to higher temperature, catalyst 
presence, or other factors), the reaction proceeds 
more quickly. This means that the reactant is 
consumed faster. 

 As the reaction progresses and the rate constant 
increases, the reactant A is converted into 
product B at a faster rate. This leads to a more 
rapid decrease in the concentration of A over 
time. 

 

 
Fig. 1: Velocity profiles for distinct values of M 
 

 
Fig. 2: Temperature profiles for different values of 
R 

 
Fig. 3: Concentration profile for different values of 
Kr 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2024.19.18

R. Kavitha, S. Prathap, A. Anthony Raj, 
S. M. Chithra, M. Mahendran

E-ISSN: 2224-3461 186 Volume 19, 2024



 

5 Modeling - Artificial Neural 

Network 
The artificial neural network concept is applied to 
the context of exploring the impact of thermal and 
chemical factors on unsteady magnetohydrodynamic 
(MHD) mixed oscillatory flow. 

The basic units of an ANN are neurons, which 
process input data and pass the information through 
the network. Each neuron receives input, applies a 
weight to each input, sums them, applies an 
activation function, and produces an output. 
   ANNs are composed of multiple layers of 
neurons. These include: 

 Input Layer: Receives the initial data. 
 Hidden Layers: Intermediate layers that 

process inputs from the previous layer. 
 Output Layer: Produces the final output of 

the network. 
 
In our recent study, we used a multi-layer feed-

forward artificial neural network combined with the 
Back Propagation development algorithm. Multi-
layer perception consists of at least three layers: an 
input layer, an output layer, and one or more hidden 
layers. To close the gap between expected and 
actual results, weights are modified using the Back 
Propagation training method. ANN structures were 
developed and trained in MATLAB for this project. 
Back propagation training was carried out in feed-
forward mode with one hidden layer. 70% of the 
total data set was utilized for training, 15% for 
validation, and 15% for evaluating the model's 
results.  

 

 
Fig.: 4 Graphical representation of skin friction 
 

Figure 4 and Figure 5 depict the training state of 
the ANN for "skin friction coefficient, rate of heat 
transfer". This training stage teaches the neural 

network to map predictors to continuous responses. 
Figure 4 and Figure 5 compare the projected and 
actual experimental values of the test data for skin 
friction and HT rate, respectively. These graphs 
demonstrate that the ANN model fits the dataset 
fairly well. The model performance has increased. 
The test dataset yielded an accuracy of more than 
99%. 

 

 
Fig. 5: Graphical representation of Nusselt number 
 
 
6   Conclusion 
Artificial Neural Networks are an effective tool for 
investigating the impacts of temperature and 
chemical changes on unsteady 
magnetohydrodynamic mixed oscillatory flow. 
Because of their ability to simulate nonlinear 
interactions, forecast system behavior, and enhance 
performance, artificial neural networks are essential 
in current engineering and scientific research. As 
technology progresses and computing capabilities 
expand, ANNs will play an increasingly important 
role in enhancing our understanding and application 
of MHD systems, paving the path for novel 
solutions in the energy, manufacturing, and 
environmental sectors. 

In conclusion, including ANNs in MHD 
research not only improves forecast accuracy but 
also promotes a deeper knowledge of complicated 
fluid dynamics, resulting in more efficient and 
sustainable engineering techniques. 
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