
[3] V. Sekhar Gullapalli, “Doctoral Thesis.
Estimation of Thermal and Hydraulic
Characteristics of Compact Brazed Plate
Heat Exchangers. Lund University,
Sweden.,” PhD Lund, 2013, [Online].
Available:
http://lup.lub.lu.se/record/3799250/file/3799
358.pdf (Accessed Date: January 2023).
[4] V. S. Gullapalli and B. Sundén, “Cfd
simulation of heat transfer and pressure drop
in compact brazed plate heat exchangers,”
Heat Transf. Eng., vol. 35, no. 4, pp. 358–
366, 2014, doi:
10.1080/01457632.2013.828557.
[5] J. Fernández-Seara, R. Diz, and F. J. Uhía,
“Pressure drop and heat transfer
characteristics of a titanium brazed plate-fin
heat exchanger with offset strip fins,” Appl.
Therm. Eng., vol. 51, no. 1–2, pp. 502–511,
2013, doi:
10.1016/j.applthermaleng.2012.08.066.
[6] F. C. C. Galeazzo, R. Y. Miura, J. A. W.
Gut, and C. C. Tadini, “Experimental and
numerical heat transfer in a plate heat
exchanger,” Chem. Eng. Sci., vol. 61, no. 21,
pp. 7133–7138, 2006, doi:
10.1016/j.ces.2006.07.029.
[7] S. Jain, A. Joshi, and P. K. Bansal, “A new
approach to numerical simulation of small
sized plate heat exchangers with chevron
plates,” J. Heat Transfer, vol. 129, no. 3, pp.
291–297, 2007, doi: 10.1115/1.2430722.
[8] K. Grijspeerdt, B. Hazarika, and D. Vucinic,
“Application of computational fluid
dynamics to model the hydrodynamics of
plate heat exchangers for milk processing,”
J. Food Eng., vol. 57, no. 3, pp. 237–242,
2003, doi: 10.1016/S0260-8774(02)00303-5.
[9] S. Muthuraman, “The Characteristics of
Brazed Plate Heat,” Glob. J. Res. Eng. Mech.
Mech. Eng., vol. 11, no. 7, pp. 11–26, 2011.
[10] R. Barzegarian, M. K. Moraveji, and A.
Aloueyan, “Experimental investigation on
heat transfer characteristics and pressure
drop of BPHE (brazed plate heat exchanger)
using TiO2-water nanofluid,” Exp. Therm.
Fluid Sci., vol. 74, pp. 11–18, 2016, doi:
10.1016/j.expthermflusci.2015.11.018.
[11] T. P. Teng, T. C. Hsiao, and C. C. Chung,
“Characteristics of carbon-based nanofluids
and their application in a brazed plate heat
exchanger under laminar flow,” Appl. Therm.
Eng., vol. 146, pp. 160–168, 2019, doi:
10.1016/j.applthermaleng.2018.09.125.
[12] I. Fazeli, M. R. Sarmasti Emami, and A.
Rashidi, “Investigation and optimization of
the behavior of heat transfer and flow of
MWCNT-CuO hybrid nanofluid in a brazed
plate heat exchanger using response surface
methodology,” Int. Commun. Heat Mass
Transf., vol. 122, p. 105175, 2021, doi:
10.1016/j.icheatmasstransfer.2021.105175.
[13] H. Mehrarad, M. R. Sarmasti Emami, and K.
Afsari, “Thermal performance and flow
analysis in a brazed plate heat exchanger
using MWCNT@water/EG nanofluid,”
Int.Commun. Heat Mass Transf., vol. 146,
no. December 2022, p. 106867, 2023, doi:
10.1016/j.icheatmasstransfer.2023.106867.
[14] S. Gungor, “Experimental comparison on
energy consumption and heat transfer
performance of corrugated H-type and L-
type brazed plate heat exchangers,” Int.
Commun. Heat Mass Transf., vol. 144, p.
106763, 2023, doi:
10.1016/j.icheatmasstransfer.2023.106763.
[15] ANSYS Inc, ANSYS Fluent Theory Guide
12.0, 2015, [Online].
https://www.afs.enea.it/project/neptunius/doc
s/fluent/html/th/main_pre.htm (Accessed
Date: February 26, 2024).
[16] B. C. Pak and Y. I. Cho, “Hydrodynamic and
heat transfer study of dispersed fluids with
submicron metallic oxide particles,” Exp.
Heat Transf., vol. 11, no. 2, pp. 151–170,
1998, doi: 10.1080/08916159808946559.
[17] K. Somasekhar, K. N. D. Malleswara Rao,
V. Sankararao, R. Mohammed, M.
Veerendra, and T. Venkateswararao, “A
CFD Investigation of Heat Transfer
Enhancement of Shell and Tube Heat
Exchanger Using Al2O3-Water Nanofluid,”
Mater. Today Proc., vol. 5, no. 1, pp. 1057–
1062, 2018, doi:
10.1016/j.matpr.2017.11.182.
[18] H. Kumar, Plate Heat Exchanger:
Construction and Design, no. 86. The
Institution of Chemical Engineers, 1984. doi:
10.1016/b978-0-85295-175-0.50054-0.
WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
DOI: 10.37394/232012.2023.18.22
Madhu Kalyan Reddy Pulagam,
Sachindra Kumar Rout, Sunil Kumar Sarangi