thermoacoustic prime mover, Appl. Thermal
Eng., 100, 2016, pp. 1169-1172.
[11] Jin, T., Yang, R., Wang, Y., Liu, Y., and Feng,
Y., Phase adjustment analysis and
performance of a looped thermoacoustic
prime mover with compliance/resistance tube,
Appl. Energy 183, 2016, pp. 290-298.
[12] Chen, G., Tang, T., and Mace, B. R.,
Theoretical and experimental investigation of
the dynamic behavior of a standing-wave
thermoacoustic engine with various boundary
conditions, Int. J. Heat Mass Trans. 123, 2018,
pp. 367-381.
[13] Chen, G., Tang, L., and Mace, B. R.,
Modelling and analysis of a thermalacoustic-
piezoelectric energy harvester, Appl. Thermal
Eng. 150, 2019, pp. 532-544.
[14] Ward, W. C., and Swift, G. W., Design
environment for low-amplitude
thermoacoustic engines, J. Acoust. Soc. Am.
95, 1994, 3671.
[15] Piccolo, A., Numerical computation for
parallel plate thermoacoustic heat exchangers
in standing wave oscillatory flow, Int. J. Heat
Mass Trans. 54, 2011, pp. 4518-4530.
[16] Zhang, X., and Chang, J., Onset and steady-
operation features of low temperature
differential multi-stage travelling wave
thermoacoustic engines for low grade energy
utilization, Energy Conv. Management 105,
2015, pp. 810-816.
[17] Kalra, S., Desai, K. P., Naik, H. B., and Atrey,
M. D., Theoretical study on standing wave
thermoacoustic engine, Phys. Procedia 67,
2015, pp. 456-461.
[18] Wang, K., Sun, D. M., Zhang, J., Zou, J., Wu,
K., Qiu, L. M., and Huang, Z. Y., Numerical
simulation on onset characteristics of
traveling-wave thermoacoustic engines based
on a time-domain network model, Int. J.
Thermal Sci. 94, 2015, pp. 61-71.
[19] Napolitano, M., Dragonetti, R., and Romano,
R., A method to optimize the regenerator
parameters of a thermoacoustic engine,
Energy Procedia 126, 2017, pp. 525-532.
[20] Kruse, A., Ruziewicz, A., Nems, A., and
Tajmar, M., Numerical analysis of competing
methods for acoustic field adjustment in a
looped-tube thermoacoustic engine with a
single stage, Energy Conv. Management 181,
2019, pp. 26-35.
[21] Saechan, P., and Jaworski, A. J., Numerical
studies of co-axial travelling-wave
thermoacoustic cooler powered by standing-
wave thermoacoustic engine, Renewable
Energy 139, 2019, pp. 600-610.
[22] Jin, T., Huang, J., Feng, Y., Yang, R., Tang,
K., and Radebaugh, R., Thermoacoustic prime
movers and refrigerators: Thermally powered
engines without moving components,” Energy
93, 2015, pp. 828-853.
[23] Timmer, M. A. G., Blok, K., and van der
Meer, T. H., Review on the conversion of
thermoacoustic power into electricity, J.
Acoust. Soc. Am. 143(2), 2018, pp. 841-857.
[24] Normah, M. G., Irfan, A. R., Koh, K. S.,
Manet, A., and Zaki, Ab. M., Investigation of
a portable standing wave thermoacoustic heat
engine, Procedia Eng. 56, 2013, pp. 829-834.
[25] Abdoulla-Latiwish, K. O. A., and Jaworski, A.
J., Two-stage travelling-wave thermoacoustic
electricity generator for rural areas of
developing countries, Appl. Acoust. 151, 2019,
pp. 87-98.
[26] Yang, T., Wang, Y., Jin, T., Feng, Y., and
Tang, K., Development of a three-stage
looped thermoacoustic electric generator
capable of utilizing heat source below 120 C,
Energy Conv. Management 155, 2018, pp.
161-168.
[27] Steiner, T. W., Hoy, M., Antonelli, K. B.,
Malekian, M., Archibald, G. D. S., Kanemaru,
T, Aitchison, W., Chardon, B. , Gottfried, K.
T., Elferink, M., Henthorne, T., O’Rourke, B.,
and Kostka, P., High-efficiency natural gas
fired 1 kWe thermoacoustic engine, Appl.
Thermal Eng. 199, 2021, 117548.
[28] Hrisko, J., and Garrett, S. L., The
vibroacoustical environment in two nuclear
reactors, J. Acoust. Soc. Am. 137, 2015, 2198.
[29] Garrett, S. L., Smith, J. A., Smith, R. W. M.,
Hendrich, B. J., and Heibel, M. D., Fission-
powered in-core thermoacoustic sensor, Appl.
Phys. Lett. 108, 2016, 144102.
[30] Rott, N., Damped and thermally driven
acoustic oscillations in wide and narrow tubes,
Z. Angew. Math. Phys. 20, 1969, pp. 230-243.
[31] Ueda, Y., and Kato, C., Stability analysis of
thermally induced spontaneous gas
oscillations in straight and looped tubes, J.
Acoust. Soc. Am. 124, 2008, pp. 851-858.
[32] Nowak, I., Rulik, S., Wroblewski, W., Nowak,
G., and Szwedowicz, J., Analytical and
numerical approach in the simple modelling
of thermoacoustic engines, Int. J. Heat Mass
Trans. 77, 2014, pp. 369-376.
[33] Rogozinski, K., Nowak, I., and Nowak, G.,
Modeling the operation of a thermoacoustic
engine, Energy 138, 2017, pp. 249-256.
WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
DOI: 10.37394/232012.2023.18.6