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Abstract: The solvability of the inverse problem associated with the search for an unknown coefficient at the 
lowest term of a mixed parabolic-hyperbolic type equation with a non characteristic line of type change is 
studied. In the direct problem, we consider an analog of the Tricomi problem for this equation with a nonlocal 
condition on the characteristics in the hyperbolic part and initial-boundary conditions in the parabolic part of 
the domain. To determine unknown coefficient, with respect to the solution, defined in the parabolic part of the 
domain, the integral overdetermination condition is specified. The unique solvability of the inverse problem in 
the sense of the classical solution is proved. 
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1   Formulation of the Problem 
Let 𝛺𝑇 ⊂ ℝ2 be a finite open domain, bounded for 
𝑦 > 0 by segments 𝐴𝐵, 𝐵𝐶, 𝐶𝐷, where 𝐴(0,0), 
𝐵(0,1), 𝐶(𝑇, 1), 𝐷(𝑇, 0), 𝑇 is fixed positive number, 
and for 𝑦 < 0 - by the characteristics 𝐴𝐸: 𝑥 + 𝑦 = 0 
and 𝐷𝐸: 𝑥 − 𝑦 = 𝑇 of the following equations: 
 

𝐿𝑢 = {
𝑢𝑥 − 𝑢𝑦𝑦 − 𝑞(𝑥)𝑢 = 0,      𝑦 > 0,

𝑢𝑥𝑥 − 𝑢𝑦𝑦 = 0,      𝑦 < 0.
      (1) 

 
Equation (1) is of mixed parabolic-hyperbolic 

type, and its type change line 𝑦 = 0 is not a 
characteristic (parabolic degeneration of the first 
kind, [1]). In this case the parabolic boundary of 
equation (1) at 𝑦 > 0 is 𝐷𝐴 ∪ 𝐴𝐵 ∪ 𝐵𝐶. 
 Direct problem. Find in the domain 𝛺𝑙𝑇 the solution 
of the equation (1) satisfying the following 
boundary conditions: 

𝑢(0, 𝑦) = 𝜑(𝑦),   𝑦 ∈ [0,1],   𝑢(𝑥, 1) = 0,   𝑥 ∈
[0, 𝑇],                                                          (2) 

 
𝑢 (

𝑥

2
, −

𝑥

2
) + 𝑢 (

𝑥+𝑇

2
,

𝑥−𝑇

2
) = 𝜓(𝑥),     𝑥 ∈ [0, 𝑇].  (3) 

 
where 𝜑1(𝑦), 𝜑2(𝑦), 𝜓(𝑥) are given functions. 

By a solution (classical) of the direct problem (1)-
(3) we mean the function 𝑢(𝑥, 𝑦) from the class 
𝐶(𝛺𝑇) ∩ 𝐶1(𝛺𝑇) ∩ 𝐶𝑥,𝑦

1,2(𝛺1𝑇) ∩ 𝐶2(𝛺2𝑇), which 
satisfies equation (1) and conditions (2), (3). 
Let us formulate the inverse problem  as the 
problem of finding a pair of functions 
(𝑢(𝑥, 𝑦),  𝑞(𝑥)) ∈ 𝐶(𝛺𝑙𝑇) ∩ 𝐶1(𝛺𝑙𝑇) ∩

𝐶𝑥,𝑦
1,2(𝛺1𝑙𝑇) ∩ 𝐶2(𝛺2𝑙) ∪ 𝐶[0, 𝑙], 

that satisfies the equation (1), boundary conditions 
(2), (3) and the following overdetermination 
condition: 

∫ ℎ
1

0
(𝑦)𝑢(𝑥, 𝑦)𝑑𝑦 = 𝑓(𝑥),     𝑥 ∈ [0,  𝑇],    (4) 

 
where in (4) ℎ(𝑦), 𝑓(𝑥) are given sufficiently 
smooth functions. 
 

Direct and inverse problems for mixed type 
equations are not as well studied as similar problems 
for classical equations. Nevertheless, such problems 
are relevant from the point of view of applications. 
The importance of considering equations of mixed 
type, where the equation is of parabolic type in one 
part of the domain and hyperbolic in the other, was 
first pointed out in the work, [2]. Another example 
is the following phenomenon in electrodynamics: a 
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mathematical study of the tension of an 
electromagnetic field in an inhomogeneous medium 
consisting of a dielectric and a conducting medium 
leads to a system consisting of a wave equation and 
a heat equation, [3]. There are many such examples. 

The first results on the study of an analogue of 
the Tricomi problem for a hyperbolic-parabolic 
equation were obtained in [4]. Further, such 
problems with different classical and non-local 
boundary conditions for parabolic-hyperbolic 
equations with both characteristic and non-
characteristic type change lines are formulated and 
studied in [5], [6], [7], [8]. 

Methods for solving direct problems of finding 
the solution of an initial-boundary value problem for 
equations of the parabolic-hyperbolic type and 
inverse source problems for these equations in a 
rectangular domain were proposed in the 
monograph, [9].  

Note that with various inverse problems for 
classical differential equations of hyperbolic and 
parabolic types of the second order, the reader can 
get acquainted in works, [10], [11], [12], [13], [14]. 

This article continues the study of the author 
[15], in which the local unique solvability of the 
inverse problem of determining the variable 
coefficient at the lowest term of a hyperbolic 
equation for a mixed hyperbolic-parabolic equation 
with a noncharacteristic line of type change is 
investigated. 

Throughout this paper, with respect to the given 
ones, we will assume that the following conditions 
are satisfied: 
(B1) 𝜑(𝑦) ∈ 𝐶3[0,1],  𝜓(𝑥) ∈ 𝐶2[0, 𝑇]⋂𝐶2(0, 𝑇); 
(B2) 𝜑(1) = 0, 𝜑1(0) − 𝜑2(0) = 𝜓(0) − 𝜓(𝑙); 
(B3) ℎ(𝑦) ∈ 𝐶2[0,1], ℎ(0) = ℎ(1) = ℎ′(0) =

ℎ′(1) = 0, 𝑓(𝑥) ∈ 𝐶1[0, 𝑇], ∫ ℎ
1

0
(𝑦)𝜑(𝑦)𝑑𝑦 =

𝑓(0), |𝑓(𝑥)| ≠ 0 for all 𝑥 ∈ [0, 𝑇]. 
 

The study of inverse problems requires studying 
the differential properties of solutions of direct 
problems. This is most clearly seen in coefficient 
inverse problems (nonlinear problems), where, to 
obtain solvability theorems, one must carefully 
analyze the exact dependence of the differential 
properties of solutions of the direct problem on the 
smoothness of the coefficients and other data of the 
problem. That is why, let us study the direct 
problem first. 
 
 
2    Investigation of the Direct Problem  
Assume that the function 𝑞(𝑥) is known. 

Theorem 1. Let conditions (B1), (B2), 𝑞(𝑥) ∈
𝐶[0, 𝑇] be satisfied. 
Then, in the domain 𝛺𝑇 there exists an unique 
solution to the direct problem (1)-(3). 
Let there be a solution 𝑢(𝑥, 𝑦) of the direct problem 
(1)-(3). Let us introduce the notation: 𝜏(𝑥)

: = 𝑢(𝑥, 0), 𝜈(𝑥) =
∂

∂𝑦
𝑢(𝑥, 0). Then, due to the 

unique solvability of the Cauchy problem for the 
wave equation, the solution to the equation (1) in the 
domain 𝛺2𝑙 can be written using the d’Alembert 
formula 

𝑢(𝑥, 𝑦) = 
=

1

2
[𝜏(𝑥 + 𝑦) + 𝜏(𝑥 − 𝑦)] −

1

2
∫ 𝜈

𝑥−𝑦

𝑥+𝑦
(𝑠)𝑑𝑠.    (5) 

Taking into account condition (3) and equalities 
𝜏(0) = 𝜑(0) (a consequence of the definition of the 
classical solution), this implies the equality: 

2𝜏(𝑥) + 𝜑(0) + 𝜏(𝑇) − ∫ 𝜈

𝑇

0

(𝑠)𝑑𝑠 = 2𝜓(𝑥),  𝑥

∈ [0, 𝑇].                                              
(6) 

 
Further it follows from (3) at 𝑥 = 0: 𝑢 (

𝑇

2
, −

𝑇

2
) =

𝜓(0) − 𝜑(0). Then, comparing this with (5) at 𝑥 =
𝑇

2
, 𝑦 = −

𝑇

2
, we have ∫ 𝜈

𝑇

0
(𝑠)𝑑𝑠 = 3𝜑(0) −

2𝜓(0) + 𝜏(𝑇). Using this equality we eliminate 
∫ 𝜈

𝑇

0
(𝑠)𝑑𝑠 in (6) and we find 

𝜏(𝑥) = 𝜑(0) − 𝜓(0) + 𝜓(𝑥).             (7) 
 
Thus the function 𝜏(𝑥) becomes known. 

Introduce the notations 
𝐺𝑘(𝑥 − 𝜉, 𝑦, 𝜂) = 

=
1

2√𝜋(𝑥 − 𝜉)
∑ [exp (−

(𝑦 − 𝜂 + 2𝑛)2

4(𝑥 − 𝜉)
)

∞

𝑛=−∞

+ (−1)𝑘exp (−
(𝑦 + 𝜂 + 2𝑛)2

4(𝑥 − 𝜉)
)] ,   𝑘 = 1,2. 

 
Using the Green’s function 𝐺1(𝑥 − 𝜉, 𝑦, 𝜂) of 

the first initial-boundary value problem for the heat 
equation in the domain 𝛺1𝑇 , the solution of equation 
(1) with the conditions (2), and 𝑢|𝐴𝐷 = 𝜏(𝑥) 
represent in the form of integral equation: 

𝑢(𝑥, 𝑦) = ∫ 𝐺1

1

0

(𝑥, 𝑦, 𝜂)𝜑(𝜂)𝑑𝜂 + 

+ ∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 + 
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+ ∫ 𝑞

𝑥

0

(𝜉) ∫ 𝐺1

1

0

(𝑥 − 𝜉, 𝑦, 𝜂)𝑢(𝜉, 𝜂)𝑑𝜂𝑑𝜉. (8) 

Equations (8) represents a linear integral 
equation Volterra type of the second kind to 
determine the unknowns functions 𝑢(𝑥, 𝑦) (𝜏(𝑥) is 
known). It is known from the general theory of 
integral equations that under the conditions of 
Theorem 1 this equation is solvable in the class of 
continuous in 𝛺1𝑇 functions and determines the 
function 𝑢(𝑥, 𝑦) ∈ 𝐶𝑥,𝑦

1,2(𝛺1𝑇), that is, the solution of 
problem (1), (2) in the domain 𝛺1𝑇 . 

Note that the functions 𝐺𝑘(𝑥 − 𝜉, 𝑦, 𝜂),  𝑘 = 1,2 
have equivalent representations: 

𝐺1(𝑥 − 𝜉, 𝑦, 𝜂) = 

= 2 ∑ exp

∞

𝑛=1

[−(𝑛𝜋)2(𝑥 − 𝜉)]sin𝑛𝜋𝑦sin𝑛𝜋𝜂, 

𝐺2(𝑥 − 𝜉, 𝑦, 𝜂) = 

2 ∑ exp

∞

𝑛=1

[−(𝑛𝜋)2(𝑥 − 𝜉)]cos𝑛𝜋𝑦cos𝑛𝜋𝜂      (9) 

 
and are infinitely differentiable in 𝛺1𝑇 [3]. 
 
Since the functions 𝜏(𝑥) and 𝑢(𝑥, 𝑦) are known in 
𝛺1𝑇, let us now begin to find 𝜈(𝑥). For this, we 
calculate the derivatives of the first two terms on the 
right side of (8) using the obvious relations 

𝐺1𝑦(𝑥 − 𝜉, 𝑦, 𝜂) = −𝐺2𝜂(𝑥 − 𝜉, 𝑦, 𝜂), 
𝐺1𝜂(𝑥 − 𝜉, 𝑦, 𝜂) = −𝐺2𝑦(𝑥 − 𝜉, 𝑦, 𝜂), 

𝐺2𝜉(𝑥 − 𝜉, 𝑦, 𝜂) = −𝐺2𝑦𝑦(𝑥 − 𝜉, 𝑦, 𝜂).    (10) 
 
Integrating by parts, we get: 

∫ 𝐺1𝑦

1

0

(𝑥, 𝑦, 𝜂)𝜑(𝜂)𝑑𝜂 = 

= − ∫ 𝐺2𝜂

1

0

(𝑥, 𝑦, 𝜂)𝜑(𝜂)𝑑𝜂 

= 𝐺2(𝑥, 𝑦, 0)𝜑(0) − 𝐺2(𝑥, 𝑦, 1)𝜑(1) + 

+ ∫ 𝐺2

1

0

(𝑥, 𝑦, 𝜂)𝜑′(𝜂)𝑑𝜂. 

Using (10) and integrating by parts, we 
calculate the derivative with respect to 𝑦 of the 
following term in formula (8): 

∂

∂𝑦
∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 = 

= −
∂

∂𝑦
∫ 𝐺2𝑦

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 

= ∫ 𝐺2𝜉

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 = 

= −𝐺2(𝑥, 𝑦, 0)𝜏(0) − 

− ∫ 𝐺2

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏′(𝜉)𝑑𝜉. 

Taking into account the form of the function 
𝜏(𝑥) according to the formula (7), we finally have: 

∂

∂𝑦
∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 = 

= −𝐺2(𝑥, 𝑦, 0)𝜑(0) − 

− ∫ 𝐺2

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜓′(𝜉)𝑑𝜉. 

Using the above equalities, we now differentiate 
(8) with respect to 𝑦 and set 𝑦 = 0. Since (∂/
∂𝑦)𝑢(𝑥, 0) = 𝜈(𝑥),, taking into account the 
matching conditions (B2), we obtain: 

𝜈(𝑥) = ∫ 𝐺2

1

0

(𝑥, 0, 𝜂)𝜑′(𝜂)𝑑𝜂 − 

− ∫ 𝐺2

𝑥

0

(𝑥 − 𝜉, 0,0)𝜓′(𝜉)𝑑𝜉 + 

+ ∫ 𝑞
𝑥

0

(𝜉) ∫ 𝐺1𝑦

1

0

(𝑥 − 𝜉, 0, 𝜂)𝑢(𝜉, 𝜂)𝑑𝜂𝑑𝜉, 

𝑥 ∈ [0, 𝑇]. (11) 
 

Eliminating the function 𝜏(𝑥) in (8) using 
equality (7), we obtain integral equation for the 
function 𝑢(𝑥, 𝑦) 

𝑢(𝑥, 𝑦) = ∫ 𝐺1

1

0

(𝑥, 𝑦, 𝜂)𝜑(𝜂)𝑑𝜂 

+2 ∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜓 (
𝜉

2
) 𝑑𝜉 

+ ∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0) ∫ 𝜈

𝜉

0

(𝑠)𝑑𝑠𝑑𝜉 

+ ∫ 𝑞

𝑥

0

(𝜉) ∫ 𝐺1

1

0

(𝑥 − 𝜉, 𝑦, 𝜂)𝑢(𝜉, 𝜂)𝑑𝜂𝑑𝜉.    (12) 

 
Note that the following holds for the function 

𝐺2(𝑥 − 𝜉, 0,0) equality: 
𝐺2(𝑥 − 𝜉, 0,0) = 

=
1

√𝜋(𝑥 − 𝜉)
∑ exp

∞

𝑛=−∞

(−
𝑛2

𝑥 − 𝜉
) = 
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=
1

√𝜋(𝑥 − 𝜉)
+

2

√𝜋(𝑥 − 𝜉)
∑ exp

∞

𝑛=1

(−
𝑛2

𝑥 − 𝜉
). 

(13) 
 

Equations (11) and (12) represent a system of 
linear integral equations Volterra type of the second 
kind to determine the unknowns functions 𝑢(𝑥, 𝑦) 
and 𝜈(𝑥). By virtue of formula (13), integral 
equation (11) has a weak polar singularity. It is 
known from the general theory of integral equations 
that the system of equations (11) and (12) is 
solvable in the class of continuous in 𝛺1𝑇 functions. 
This solution can be found, for example, by the 
method of successive approximations and 𝜈(0) = 0, 
due to lim

𝑥→0
𝐺2(𝑥, 0, 𝜂) = 0 for 𝜂 ∈ (0,1). 

Considering equality: 

∫ 𝐺2𝑥

1

0

(𝑥, 0, 𝜂)𝜑′(𝜂)𝑑𝜂 = ∫ 𝐺2𝜂𝜂

1

0

(𝑥, 0, 𝜂)𝜑′(𝜂)𝑑𝜂, 

using integration by parts, based on conditions (B1), 
(B2), we find 

∫ 𝐺2𝜂𝜂

1

0

(𝑥, 0, 𝜂)𝜑′(𝜂)𝑑𝜂

= ∫ 𝐺2

1

0

(𝑥, 0, 𝜂)𝜑‴(𝜂)𝑑𝜂.         (14) 

 
Assuming now the existence of a derivative of 

the solution 𝜈(𝑥), taking into account conditions 
(B1), (B2) and (14), we obtain for 𝜈′(𝑥) the 
equation 

𝜈′(𝑥) = ∫ 𝐺2

1

0

(𝑥, 0, 𝜂)𝜑‴(𝜂)𝑑𝜂 − 

−
1

2
∫ 𝐺2

𝑥

0

(𝑥 − 𝜉, 0,0)𝜓″ (
𝜉

2
) 𝑑𝜉 − 

− ∫ 𝐺2

𝑥

0

(𝑥 − 𝜉, 0,0)𝜈′(𝜉)𝑑𝜉 + 

+ ∫ 𝑞
𝑥

0

(𝜉) ∫ 𝐺1𝑦𝑥

1

0

(𝑥 − 𝜉, 0, 𝜂)𝑢(𝜉, 𝜂)𝑑𝜂𝑑𝜉, 

 𝑥 ∈ (0, 𝑇], 
 
which is also solvable in the class of continuous 
functions instead of with equation (12). Thus, 
𝜈(𝑥) ∈ 𝐶[0, 𝑇]⋂𝐶1(0, 𝑇]. From the found function 
𝜈(𝑥), the function 𝜏(𝑥) is found from formulas (8). 
Due to conditions (B2) and 𝜈(𝑥) ∈ 𝐶1(0, 𝑇], we 
have 𝜏(𝑥) ∈ 𝐶1[0, 𝑇]⋂𝐶2(0, 𝑇]. And the function 
𝑢(𝑥, 𝑦), constructed as solution of equation (1) with 

conditions (2), and 𝑢|𝐴𝐷 = 𝜏(𝑥) when conditions 
(B1), (B2) are met and inclusion 𝑞(𝑥) ∈ 𝐶[0, 𝑇] 
belongs to the class 𝐶𝑥,𝑦

1,2(𝛺1𝑇). 
Thus, found in 𝛺1𝑇 solution 𝑢(𝑥, 𝑦) and 

function (6) in 𝛺2𝑇 together determine the classical 
solution to the direct problem (1)-(3) in the domain 
𝛺𝑇 . Theorem 1 is proved. 

 
 

3  Study of the Inverse Problem  
Assume that conditions (B3) are satisfied. 
Multiplying the equation (1) in the domain 𝛺1𝑇 by 
the function ℎ(𝑦) and integrating over the segment 
[0,1], in view of (4), we find 

𝑞(𝑥) =
𝑓′(𝑥)

𝑓(𝑥)
−

1

𝑓(𝑥)
∫ ℎ′′(𝑦)

1

0

𝑢(𝑥, 𝑦)𝑑𝑦, 

𝑥 ∈ [0, 𝑇].  (15) 
 

Now, substituting the right side of (15) instead 
of 𝑞(𝑥) in (8), we write the resulting equation in the 
operator form: 

𝑢(𝑥, 𝑦) = 𝑈[𝑢](𝑥, 𝑦),     (𝑥, 𝑦) ∈ 𝛺1𝑙𝑇 ,  (16) 
 
where the operator 𝑈 is defined by the equality: 

𝑈𝑢(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + 

+ ∫ ∫ 𝐺1

1

0

𝑥

0

(𝑥 − 𝜉, 𝑦, 𝜂) [
𝑓′(𝜉)

𝑓(𝜉)

−
1

𝑓(𝜉)
∫ ℎ

1

0

″(𝑠)𝑢(𝜉, 𝑠)𝑑𝑠] 𝑢(𝜉, 𝜂)𝑑𝜂𝑑𝜉,             (17) 

 
and in (17) 𝑢0 denotes the sum of terms of integral 
equation (8) which are free from unknown function: 

𝑢0(𝑥, 𝑦) : = ∫ 𝐺1

1

0

(𝑥, 𝑦, 𝜂)𝜑(𝜂)𝑑𝜂

+ ∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉. 

 
Recall that the function 𝜏(𝑥) is defined by the 

formula (7). 
The main result of this section is the following 
assertion: 
Theorem 2. Let conditions (B1)-(B3) be satisfied. 

Then, there are positive numbers 𝑇∗ such that 
equation (16) has a unique continuous solution in 

the domain 𝛺1𝑇 for 𝑇 ∈ (0, 𝑇∗). 
Proof. It is clear from (17) that under the conditions 
of the theorem the operator 𝑈 translates the 
functions 𝑢(𝑥, 𝑦) ∈ 𝐶(𝛺1𝑙𝑇) into functions also 
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belonging to the space 𝐶(𝛺1𝑇). The 𝑢 norm in 
𝐶(𝛺1𝑇) we define as follows: 

∥𝑢∥𝑇 = max
(𝑥,𝑦)∈𝛺1𝑇

|𝑢(𝑥, 𝑦)|. 

For brevity, we also introduce notations 
𝑓0 ≔ min

𝑥∈[0,𝑇]
|𝑓(𝑥)|,    𝑓1 ≔ max

𝑥∈[0,𝑇]
|𝑓′(𝑥)|,  

  ℎ0 : = max
𝑥∈[0,1]

|ℎ″(𝑦)|. 

 
Let us now show that, for sufficiently small 𝑇, 

the operator 𝑈 performs a contraction mapping of 
the ball: 

𝑆(𝑢0, 𝑟) : = {𝑢 ∈ 𝐶(𝛺1𝑇): ∥∥𝑢 − 𝑢0∥∥𝑇
≤ 𝑟}

⊂ 𝐶(𝛺1𝑇) 
 

with radius 𝑟 (𝑟 is a known number) and 
centered at the point 𝑢0(𝑥, 𝑦) of the functional space 
𝐶(𝛺1𝑇) into itself. Thus, we will prove that equation 
(16) has in the domain 𝛺1𝑇 an unique continuous 
solution satisfying the inequality ∥ 𝑢 − 𝑢0 ∥𝑇≤ 𝑟. 
It is obvious that for the element 𝑢 ∈ 𝑆(𝑢0, 𝑟) there 
holds an estimate: 

∥𝑢∥𝑇 ≤ ∥∥𝑢0∥∥𝑇
+ 𝑟 =: 𝑅, 

 
where 𝑅 denotes a known positive number. 
 

Let us estimate ∥∥𝑢0∥∥𝑇
. To do this, we need 

estimates for integrals involving the functions 𝐺1, 
𝐺1𝜂 in the definitions of the function 𝑢0(𝑥, 𝑦). In 
this case, we use the equality: 

∫ 𝐺

1

0

(𝑥, 𝜉, 𝑦)𝑑𝜉 = 1, 

which follows from the definition of the function 𝐺. 
Taking this into account, the first term of 𝑢0(𝑥, 𝑦) 
can be easily estimated in modulo: 

|∫ 𝐺

1

0

(𝑥, 𝜉, 𝑦)𝜑(𝜉)𝑑𝜉| ≤ ∥∥𝜑∥∥𝐶[0,𝑇].  (18) 

Based on (9), we have the equalities: 
𝐺𝜂(𝑥 − 𝜉, 𝑦, 0) = 

=
2

𝑙
∑ exp

∞

𝑛=1

[− (
𝑛𝜋

𝑙
)

2

(𝑥 − 𝜉)]
𝑛𝜋

𝑙
sin𝑛𝜋𝑦 

= ∫ 𝐺1𝜉

1

0

(𝑥 − 𝜉, 𝑦, 𝜂)(1 − 𝜂)𝑑𝜂, 

which are checked directly. Using these relations, 
we transform the following integral: 

∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉 = 

= ∫(𝑙 − 𝜂)

1

0

∫ 𝐺1𝜉

𝑥

0

(𝑥 − 𝜉, 𝑦, 𝜂)𝜏(𝜉)𝑑𝜉𝑑𝜂 = 

= ∫(𝑙 − 𝜂)

1

0

{[𝐺1(𝑥 − 𝜉, 𝑦, 𝜂)𝜏(𝜉)]0
𝑥

− ∫ 𝐺1

𝑥

0

(𝑥 − 𝜉, 𝑦, 𝜂)𝜏′(𝑥)𝑑𝜉} 𝑑𝜂 

= (1 − 𝑦)𝜏(𝜉) − 

− ∫(1 − 𝜂)

1

0

[𝐺1(𝑥 − 𝜉, 𝑦, 𝜂)𝜏(0)

+ ∫ 𝐺1

𝑥

0

(𝑥 − 𝜉, 𝑦, 𝜂)𝜏′(𝜉)𝑑𝜉] 𝑑𝜂. 

 
Here, in intermediate calculations, we used the 

relation lim𝜉→𝑥𝐺1(𝑥 − 𝜉, 𝑦, 𝜂) = 𝛿(𝑦 − 𝜂), 𝛿(⋅) is 
the Dirac’s delta function and the main property of 
the function 𝛿(⋅):   ∫ 𝑎

1

0
(𝜉)𝛿(𝑥 − 𝜉)𝑑𝜉 = 𝑎(𝑥) 

which is valid for any continuous function 𝑎(𝑥) on 
the interval (0,1). 

From these relations for (𝑥, 𝑦) ∈ 𝐶(𝛺1𝑇) easily 
it follows the estimate 

|∫ 𝐺1𝜂

𝑥

0

(𝑥 − 𝜉, 𝑦, 0)𝜏(𝜉)𝑑𝜉| ≤ 

≤ ∥∥𝜑∥∥𝐶[0,𝑇] + (2 + 𝑇)∥∥𝜓∥∥𝐶1[0,𝑇].    (19) 
 
Then, inequalities (18), (19) imply the estimate: 

∥∥𝑢0∥∥𝑇
≤ 3∥∥𝜑∥∥𝐶1[0,𝑇] + (2 + 𝑇)∥∥𝜓∥∥𝐶1[0,1]. 

 
We now turn to obtaining conditions for 𝑇 under 
which it is possible to apply the fixed point theorem 
to the operator 𝑈. Let 𝑢 ∈ 𝑆(𝑢0, 𝑟), then, for all 
(𝑥, 𝑦) ∈ 𝛺1𝑇, we obtain the inequalities: 

|𝑈𝑢 − 𝑢0| ≤ 

≤ ∫ ∫ 𝐺

1

0

𝑥

0

(𝑥, 𝜉, 𝑦 − 𝜂) [
|𝑓′(𝜉)|

|𝑓(𝜉)|

+
1

|𝑓(𝜉)|
∫|ℎ″(𝑠)|

𝑇

0

|𝑢(𝜉, 𝑠)|𝑑𝑠] |𝑢(𝜉, 𝜂)|𝑑𝜉𝑑𝜂 ≤ 

≤ (𝑓1 + ℎ0𝑅)
𝑅

𝑓0
𝑇 =: 𝑚1(𝑇).    

 
Condition ∥ 𝑢 − 𝑢0 ∥𝑇≤ 𝑟 (that is 𝑈𝑢 ∈

𝑆(𝑢0, 𝑟)) will be valid if 𝑇 is chosen from the 
condition 𝑚1(𝑇) < 𝑟. This condition is satisfied by 
all 𝑇 ∈ (0, 𝑇1), where 𝑇1 : = 𝑟𝑓0/𝑅(𝑓1 + ℎ0𝑅). 
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Let us now to show that the operator 𝑈 contracts 
the distance between elements of the ball 𝑆(𝑢0, 𝑟). 
To prove this, we take any two elements (𝑢1,  𝑢2) ∈
𝑆(𝑢0, 𝑟) and estimate the norm of the difference 
between their images 𝑈𝑢1,  𝑈𝑢2. For this purpose, 
using (17) we have the inequality 

|𝑈𝑢1 − 𝑈𝑢2| ≤ 

≤ ∫ ∫ 𝐺

1

0

𝑥

0

(𝑥, 𝜉, 𝑦 − 𝜂) × 

× [
|𝑓′(𝜉)|

|𝑓(𝜉)|
|𝑢1(𝜉, 𝑠) − 𝑢2(𝜉, 𝑠)| + 

+
1

|𝑓(𝜉)|
∫|ℎ″(𝑠)|

1

0

|𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂)

− 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)|𝑑𝑠]𝑑𝜉𝑑𝜂.                                      (20) 
 

Here to estimate the expression 
|𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂) − 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)|, we use 
inequality 

|𝑢1(𝜉, 𝑠)𝑢1(𝜉, 𝜂) − 𝑢2(𝜉, 𝑠)𝑢2(𝜉, 𝜂)| ≤ 
≤ |𝑢1(𝜉, 𝑠)||𝑢1(𝜉, 𝜂) − 𝑢2(𝜉, 𝜂)| + 
+|𝑢2(𝜉, 𝜂)||𝑢1(𝜉, 𝑠) − 𝑢2(𝜉, 𝑠)| ≤ 

≤ 2𝑅∥∥𝑢1 − 𝑢2∥∥𝑙𝑇 , (𝑠, 𝜉, 𝜂) ∈ [0,1] × [0,1] × [0, 𝑥], 
 
which holds for arbitrary (𝑢1,  𝑢2) ∈ 𝑆(𝑢0, 𝑟). 
 
Continuing the estimate (20), we get 

∥∥𝑈𝑢1 − 𝑈𝑢2∥∥𝑇 ≤ (𝑓1 + 2ℎ0𝑅)
𝑇

𝑓0
∥∥𝑢1 − 𝑢2∥∥𝑇

=: 𝑚2(𝑇)∥∥𝑢1 − 𝑢2∥∥𝑇 .               
 

We choose 𝑇 so that the inequality 𝑚2(𝑇) < 1 
holds, then the operator U contracts the distance 
between elements of the ball 𝑆(𝑢0; 𝑟). This 
condition is satisfied by 𝑇 ∈ (0, 𝑇2), where 𝑇2

: = 𝑓0/(𝑓1 + 2ℎ0𝑅). Let 𝑇∗ = min(𝑇1,  𝑇2). Since 
𝑟/𝑅 < 1, then, it is easy to see that 𝑇∗ =
𝑟𝑓0/𝑅(𝑓1 + 2ℎ0𝑅). Hence, the operator 𝑈 for 
𝑇 ∈ (0, 𝑇∗) performs a contraction mapping of 
the ball 𝑆(𝑢0, 𝑟) to itself. Hence, according to 
the contraction mapping principle, equation 
(16) defines a unique solution 𝑢(𝑥, 𝑦) ∈
𝑆(𝑢0, 𝑟). Theorem 2 is proved. 
After finding the function 𝑢(𝑥, 𝑦) the functions 
𝑞(𝑥) is determined by the formula (15). 
Thus the following assertion is valid: 
Theorem 3. Let conditions  (B1)-(B3) be satisfied 

and 𝑇 ∈ (0, 𝑇∗). Then, the formula (15) defines 
𝑞(𝑥) on any fixed segment [0, 𝑙]. 
 
 

4   Conclusion  
In this paper, the solvability of the inverse problem 
associated with the search for an unknown 
coefficient at the lowest term of a mixed parabolic-
hyperbolic type equation with a non-characteristic 
line of type change is investigated. In the direct 
problem, an analog of the Tricomi problem for this 
equation with a nonlocal condition on the 
characteristics in the hyperbolic part and initial-
boundary conditions in the parabolic part of the 
domain is considered. To determine the unknown 
coefficient, with respect to the solution of the direct 
problem, defined in the parabolic part of the 
domain, the integral overdetermination condition is 
specified. The unique solvability of the inverse 
problem in the sense of the classical solution is 
proved. 
Note that the zero-coefficient of the parabolic 
equation is defined here. Many applied problems 
require consideration of more general equations than 
(1) and determination of other coefficients in both 
parabolic and hyperbolic equations. Similar 
problems and the numerical study of the inverse 
problem considered in this article are open 
problems. 
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