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Abstract: - This study aims to explore the heat flow transfer on materials (i.e., homogenous material, particle 

material, and sandwich material) by using an open-source simulation.  The heat flow occurs due to the 

conduction process equation with the 2T model of the source.   We use the Finite Element Method (FEM) to 

obtain the global heat transfer solution without heat interaction between the walls or layers.  The results showed 

that each domain has a different temperature value according to the point and time used.  So further research is 

expected to research other types of heterogeneous materials. 
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1 Introduction 
Recently,  there has been a tendency to design the 

material structure such as composite for a particular 

application, where various heterogeneities formed 

from particles or sandwich material are also present 

due to the manufacturing procedure.  Thermal 

application in heterogeneous materials, [1] range for 

insulation, heat exchangers, and heat sinks had 

characterized by the thermal behavior and heat flow 

processes [2].  Thermal behavior is essential in 

numerous applications, affecting any device's 

lifetime and safe operations [3].  The recent 

experimental findings [4], [5] suggest that 

heterogeneous materials can show thermal behavior 

different from Fourier's law at room temperature in 

a macroscale object due to parallel heat conduction 

channels.  The use of approaches two-temperature 

model, compared with the experimental data under 

certain conditions for physical background and 

characteristic behavior,  found that the 2T model 

offers different insights about the observed heat 

conduction phenomenon [6].  

The difference in the heat conduction channels 

originates in the heterogeneity.  For instance, the 

homogenous material in a metal sample has good 

conductivity properties, while the particle material 

in the inclusions is more similar to an insulator.  

Assume the modeling that thermal radiation and 

heat convection could not contribute to the thermal 

behavior [7].   

The two-temperature (2T) approach, [6], [7], [8]  

however, it has not been tested on heat pulse 

experiments so far but has a good background and 

could influence, e.g., the thermoelectric conversion 

processes [9], [10].  The 2T model has been 

successfully used for heat transport in metals under 

ultrashort heat pulses, [11] but they are not tested or 

not applicable for macroscale solids at room 

temperature.  Furthermore, many other heat 

equations can be found in the literature [12], [13], 

[14], but type equations are derived as exceptional 

cases.  

In the present paper, we focus on heat transfer 

and the thermal characterization of heterogeneous 

materials,  considering only isotropic, heat 

conduction channels, and constant material 

parameters using two thermal approaches developed 

for the materials.  We needed the assumption that 

the initial and boundary conditions can differ from 

the subsystem and that both subsystems receive 

different amounts of heat.  We also assumed that the 

heat capacities are equal, and the model needs 

information about the material structure, especially 

the constituents.  Illustrations or splitting the 

computational domain into individual small patches 

and finding local solutions continued on these 

patches to obtain global heat transfer solutions using 

the finite element methods (FEM), [15], [16], [17].  

However, we need a good command of matrix 

algebra and computer programming to apply a 

powerful tool to engineering problems and obtain 

valuable solutions. 

 

 

2 Numerical Formulation 
In this study, we suppose that the heterogeneous 

material in heat conduction channels (i.e., particle 

material and sandwich material) divide into two 
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subsystems that obey the Fourier law.  The system is 

characterized by two diffusivities, presenting two 

distinct characteristic time scales.  The heat transfer 

model shows  three spatial dimensions as 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= −𝜅𝛻2𝑇 + 𝑓(𝑥)   x ∈ 𝛺;    (1) 

𝜅
𝜕𝑇

𝜕𝑥
= 𝑞(𝑥)      (2) 

where ρ, c, , T, 𝑞(𝑥),  f (x) are the mass density 

(kg/m3), specific heat (J/kg K), thermal conductivity 

(W/m K), temperature (K) and heat flux (W/m) and 

source term ((W/m2),  for the corresponding 

subsystem, respectively.  Moreover, ∂ it denotes the 

partial derivative concerning time (t) or space (x).  If 

there are no further the source terms f (x)= 0, the 

system will be in the balance of internal energy.  

The temperature on the boundary of the body is 

prescribed by 𝑇(𝑥, 0) = 𝑇0, 𝑥 = [𝑥1, 𝑥2]  ∈ 𝛺 

where T0  is a known function, simply a constant.  

Equation (2) is a constitutive, called Fourier's law.  

If the heat flux 𝑞(𝑥) out of the body (perpendicular 

to the surface) is determined, then Fourier's law 

helps us in deciding the partial derivative of the 

temperature concerning the outward normal vector 

n: 𝑇 = 𝑔(𝑥)  ; 𝜅
𝜕𝑇

𝜕𝑛
= 𝑞̇ For the perfect insulation in 

ГN, the equation becomes a homogeneous Neumann 

boundary condition  
𝜕𝑇

𝜕𝑛
= 0.  Transformation of the 

model  to the non-dimensional system was using the 

finite element methods (FEM) with assumptions  

that  𝑇̃ =
𝑇−𝑇₀

𝑇₀
   , 𝑋̃ =

𝑋

𝐿𝑅
 , 𝑇 ̃(𝑥̃, 0) = 𝑇̃0 ;   𝑥̃ ∈

𝛺̃,   then equation (1) became                       
𝜕𝑇 ̃

𝜕𝑡
= 𝜅̃𝛻 ̃2𝑇̃ +  𝑓 ̃(𝑥);  𝜅̃

𝝏𝑻 ̃

𝝏𝒏
= 𝑞 ̃(𝑥) 𝑖𝑛 ГN ;    

𝑇 ̃ =  𝑔 ̃(𝑥) in ГD         (3) 

  

The entire system is characterized by two 

diffusivities, presenting two distinct characteristic 

time scales, where a situation can occur in two 

specific components, such as sandwich material and 

particle material.  The internal heat generation may 

emerge due to chemical reactions or a heat current 

flowing through the rod; the left end is kept at a 

constant temperature, while at the right boundary, 

no heat is allowed, the source term (𝑓 ̃(𝑥) = 0), the 

heat exchange between the subsystems and the 

interface area is uniform in the domain of interest.  

  Assuming that this functional system is also 

appropriate for the temperature function T and can 

express the existence of parallel heat conduction 

channels, the problem may now be written in the 

weak formulation and T  a solution in the weak 

sense.  For this purpose, we multiply the differential 

in equation (3) with the so-called test function v, 

which 𝑣 ∈ 𝛺̃  and  𝑣|Г𝐷
= 0, and integrate both sides 

over the whole domain Ω = (0, L).  Therefore, 

.∫
𝜕𝑇 ̃

𝜕𝑡
• 𝑣 𝑑𝐴 =  ∫ 𝜅 ̃∇̃2𝑇̃ • 𝑣 𝑑𝐴

𝛺̃𝛺̃
      (4) 

  

If we require the test function v to satisfy the same 

Dirichlet boundary condition, 𝑣|Г𝐷
= 0  as the 

temperature T,  and remember the homogeneous 

Neumann boundary condition  
𝜕𝑇 ̃

𝜕𝑛
= 0,  by using the 

Divergence Theorem,  equation (4) becomes  

 ∫
𝜕𝑇 ̃

𝜕𝑡
• 𝑣 𝑑𝐴 = − ∫ 𝜅 ̃∇̃𝑇̃

𝛺̃𝛺̃
• ∇̃ 𝑣 𝑑𝐴 +

∫ 𝜅 ̃
𝜕𝑇̃

𝜕𝑛Г𝐷
 𝑣 𝑑𝑆 + ∫ 𝜅 ̃

𝜕𝑇̃

𝜕𝑛Г𝑁
 𝑣 𝑑𝑆 .    (5) 

 

In conduction channels ∫
𝜕𝑇 ̃

𝜕𝑡
• 𝑣 𝑑𝐴 = − ∫ 𝜅 ̃∇̃𝑇̃

𝛺̃𝛺̃
•

∇̃ 𝑣 𝑑𝐴, so  equation (5) becomes  

∫
𝜕𝑇 ̃

𝜕𝑡
• 𝑣 𝑑𝐴 = − ∫ 𝜅 ̃∇̃𝑇̃

𝛺̃𝛺̃
• ∇̃ 𝑣 𝑑𝐴 = 0   (6) 

  

The first derivative of v appears inside an integral.  

Since the integration provides a smoothing effect, 𝑣̇ 

Need to be continuous, so the calculus comes into 

play for a differentiable function of the weak 

derivative that is equal to the usual result.   

If time discretization was using implicit schema and 

assuming  that 𝑇̃𝑘(𝑥)  ≈ 𝑢(𝑥, 𝜅 𝜏), qk(x) ≈

𝑞(𝑥, 𝜅 𝜏),  and  
𝑻̃𝜅−𝑻̃𝜅−1

𝝉
 ≈

𝜕𝑇 ̃

𝜕𝑡
(𝑥, 𝜅 𝜏) which 𝜏 is 

time interval  (𝜏 > 0),  𝜅 = 1, 2, 3, … 𝑛 ,  the  heat 

transfer model show as 

∫ 𝑻̃𝒌𝑣 𝑑𝐴 + 𝑘̃
𝛺̃ ∫ 𝝉

𝛺̃
∇̃𝑇̃𝑘 • ∇̃ 𝑣 𝑑𝐴 =   ∫ 𝑻̃𝒌−𝟏

𝛺̃
 𝑣 𝑑𝐴  

    (7)     

 

where ∫ 𝑻̃𝒌𝑣 𝑑𝐴 ̃
𝛺̃

  is a given function and  

∫ 𝑻̃𝒌𝑣 𝑑𝐴 + 𝑘̃
𝛺̃ ∫ 𝝉

𝛺̃
∇̃𝑇̃𝑘 • ∇̃ 𝑣 𝑑𝐴 ̃ An unknown 

function.      

 The numerical solution simulation uses 

FreeFem++ software, an open-source software 

combined with Gnuplot, to perform a chart.  One 

must define initial and boundary conditions to solve 

these heat conduction models.  In this study, we 

will restrict the material to three domains (i.e., 

a homogeneous domain, a particle domain, and a 

sandwich domain, with a specific boundary surface 

to make it easier to simulate.  Heterogeneous 

materials define as materials with dramatic 

heterogeneity in composition from one domain area 

to another.  The domain sizes could range from 

micrometers to millimeters, and the domain 

geometry can vary to form very diverse material 

systems.  
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 One must define the initial temperature 

distribution and boundary surface for a homogenous 

domain material model.  The boundary conditions 

are defined through the constitutive equations to 

preserve physical consistency.  In particle material,  

the subsystems are composed of large-size particles 

scattered in the material.  The boundary conditions 

do not require special situations, whereas,  in 

sandwich material with a multi-layer domain, each 

layer has different characteristics, which could be a 

restrictive property.  The field is rectangular on the 

x-axis and y-axis, as shown in figure1.   

 

 

First, we need to perform boundary coordinates in 

the x-y plane, which surface one is on (
𝑥
𝑦) = t (

2
1

) +

(1 − 𝑡) (
1
1

), surface II on (
𝑥
𝑦) = 𝑡 (

2
2

) + (1 −

𝑡) (
2
1

), surface III on (
𝑥
𝑦) = 𝑡 (

1
2

) + (1 − 𝑡) (
2
2

), 

and surface IV on (
𝑥
𝑦) = 𝑡 (

1
1

) + (1 − 𝑡) (
1
2

).  In 

FreeFem++ programming, each coordinate point 

will be generating mesh and connecting each line in 

a triangle form,  for example  

int n =5.;  

border C1(t=0,1){x = 1+t;y=1;label=1;}; /Surface I  

border C2(t=0,1){x = 2; y=1+t;label=2;};/Surface II  

border C3(t=0,1){x = 2-t;y=2;label=3;}; /Surface III  

border C4(t=0,1){x = 1; y=2-t;label=4;}; /Surface IV 

mesh Th = build mesh(C1(n)+C2(n)+C3(n)+C4(n)); 

plot(Th,ps="mesh.eps"); 

On the particle domain displayed in figure 1, we 

need to perform 14 circles with a diameter of 0.15; 

for example, the center point of circle 1 is on x = 

1.1+0.075 cos θ and y = 1.2+0.075 sin θ, circle 

two on x = 1.3+0.075 cos θ and y = 1.2+0.075sin 

θ, and so forth.   

On the other side, for sandwich-structured 

composite, the domain comprises four layers of 

material consisting of two types of materials with 

13 boundary surfaces.  On the x-y plane, surface 

one is lying on (
𝑥
𝑦) = t (

2
1

) + (1 − 𝑡) (
1
1

) , or x = 

1+t  and  y = 1, surface 2 on (
𝑥
𝑦) = t (

2
1.25

) +

(1 − 𝑡) (
2
1

), or x = 2 and y = 1+0.25t, surface 

three on (
𝑥
𝑦) = t (

2
1.5

) + (1 − 𝑡) (
2

1.25
) , or x = 2  

and y = 1.25+0.25 t, and so on. 

 

 

 

 

 

3 Results and Discussion 
 

3.1 Numerical Simulation on Homogeneous 

Materials 

The system has an initial temperature of 0℃; on the 
top layer at y = 2,   the temperature is set at 300℃.  
Otherwise, at the bottom layer at y = 1,  the 

temperature is set at 20℃.  The interval used for 

iteration time is 0.01.  The iteration process starts 

from t = 0, 0.01, 0.02, up to t = 5.  Regarding the 

boundary conditions, the heat will not come out 

from the left and the suitable material because that 

part is the insulin surface which will not penetrate 

heat and does not transfer heat, so the temperature 

inside changes faster.  The illustration of heat flow 

in the homogenous material is present in figure 2.    

We will consider on three-point where the first 

point (1.5,1.8), the second point (1.5,1.5), and the 

third point (1.5,1.2)  have the same temperature 

initial  00C  at the t = 0.  Furthermore, the 

temperature at the first point, the nearest 

temperature of 3000C, has changed at all times, 

where for 100 times iteration at t = 1, it is 243° C; 

for 200 times iteration at t = 2, it is 244° C, and at t 

= 3, t = 4, and t = 5 the temperature value is is the 

same as when t = 2 which is 244° C.  Furthermore, 

at the second point, the temperature value has 

changed at each time, t = 1 of 159° C, at time of t = 

 

a. Homogen domain 

 

b. Particle Domain 

 

c. Sandwich Domain 

Fig. 1:   Illustrating the materials: a. Homogen domain, b.  Particle domain, and c.  Sandwich   domain 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2023.18.1 Rosliana Eso, Arman

E-ISSN: 2224-3461 3 Volume 18, 2023



 

 

2 of 160°, and at time of t = 3, t = 4, and t = 5 the 

value the temperature is the same as when t = 2 

which is 160° C.  For the third point near the bottom 

surface with a temperature of 200 C, the temperature 

has changed,  where for 100 times iteration at t = 1, 

the value was 75° C.  At 200 times iteration, t=2, its 

temperature was 76° C and stable not change for t = 

3 (300 iterations), t = 4 (400 iterations), and t = 5 

(500 iterations).    

The dramatic temperature change appears for 0 

to 200 times iterations and then tends to be stable.  It 

is clear that along the y-axis, the temperature 

changes vertically where at the first point,  nearest 

the source at 300 0C,  the temperature was stable at 

244 0C; at the second point, in the middle, the 

temperature was stable at 160 0C and the third point, 

in the bottom nearest temperature 20 0C, the 

temperature was steady at 760C.  On the other side, 

from figure 2,  the shape of the heat flow is flat, 

which shows that the x-axis will have the same 

temperature at each of the same y-coordinate.  

 

Fig. 2:  Temperature distribution on homogeneous 

materials at different iteration times ; (a) when t = 0, 

(b) when t = 1, (c) when t = 2, (d) when t = 3, (e) 

when t = 4, (f) when t = 5 

So, we can see for all points, such as points 

"1.5,1.8, 1.5,1.5, and 1.5,1.2",  the temperature only 

changes for maximal 200 times iteration from  t= 

0.01  to t = 2, then at t = 3, t = 4, and t = 5 tend to be 

stable and unchanging as shown by figure 3. 

 
Fig. 3:  Temperature graph of the observable 

point in the homogeneous material simulation 

 

3.2 Numerical Simulation of Particle 

Material  
For particle material, we consider on three-point, the 

first point (1.4,1.8), the second point (1.4, 1.5), and 

the third point (1.4, 1.2), which have the same 

temperature initial  00C  at the t = 0.  After 100 

times iteration at t = 1,  the temperature at the first 

point near the heat source 3000C is 247,010C,  in the 

middle for the second point is 159,751° C, and for 

the third near the heat source (20 0C)  is 72.728 °C.  

Furthermore, at  200 times iteration t = 2,  the first 

point temperature is 247.150C, the second point is 

159.9970C, and the third point temperature is 

72.8570C.  Furthermore,  in the next iteration, with   

t = 3, t = 4, and t = 5, the temperature of the three-

point tends to be stable and does not far differ from 

 t = 2, as shown in figure 4. 

 

Fig. 4: Temperature distribution on material 

particles at different times iteration; (a) when t = 0, 

(b) t = 1, (c) t = 2, (d) t = 3, (e) t = 4,  and (f) t = 5 

  

There are differences in the distribution of 

temperature values at each point reviewed of the 

particle material compared to the homogeneous 

material.  For the y-axis, the temperature changes 

a 

 

b 

 

c 

 

 

d 

 

e 

 

f 

a 

 

b 

 

c 

 

 
d 

 
e 

 
f 
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vertically where at the first point,  nearest the source 

at 300 0C,  the temperature was stable at 247.15 0C; 

at the second point, in the middle, the temperature 

was stable at 159.997 0C, and the third point, in the 

bottom nearest temperature 20 0C, the temperature 

was steady at 72.8570C.   

 For homogeneous material, the shape of the heat 

flow is flat.  In contrast, for particle material,  the 

heat flow makes a ripple which shows that the x-

axis will have different temperatures at each of the 

same y-coordinate, so they have a different pattern.  

The temperature of particle material is at a parallel 

point; however, the difference in temperature values 

is small enough between points along the x-axis to 

cause the appearance of small ripples, such as 

shown in figure 4.   

The graphic simulation in figure 3 and figure 5 

shows the case that the exact coordinates point has 

little difference in temperature value for the two 

sample materials.   

 

Fig. 5:  Temperature graph of the observable 

point in particle material simulation  

 
 Considering the two coordinate points (1.4,1.8) 

and (1.5, 1.8) near the heat source 3000C, only one 

line appears because overlain both mean almost the 

same temperature values.  Likewise, in coordinates 

(1.4,1.2) and (1.5,1.2), point near the heat source 

200C, only one line appears because of the overline 

of the same temperature value.  Minor changes to 

the temperature values along the x-axis are only 

observed when plotting the data for all points and 

will appear like ripples, as shown in Figure 4. 

 

3.3 Numerical Simulation on Sandwich 

Materials 
The results of numerical simulations on sandwich 

materials obtained from the FreeeFEM++ are shown 

in Figures 6 and 7.  For sandwich material, we 

consider four points where the first point (1.5,1.85), 

the second point (1.5, 1.65),  the third point (1.5, 

1.4), and the fourth point (1.5, 1.15) have the same 

with initial temperature 00C  at the t = 0.  100 times 

iteration at t = 1,  the temperature at the review point 

becomes,  the first point at 243.818 0C,  the second 

at 187.692°C,  the third at  122,393°C, and the 

fourth at 47,906°C.  Furthermore,  at  200 times 

iteration, t=2, the temperature increase slightly from 

t =2,  the first point temperature at 2440C,  the 

second point at 187,90C,  the third point at 

122,660C, and the fourth point at 47,99°C.  Then,  in 

the 300 iterations, t = 3, the first point temperature is 

2440C, tends to be the same with t =2, whereas the 

second point,  the third point, and the fourth point, 

the average temperature rises a little, respectively at 

1880C,  122,670C, and 48°C.  For 400 iteration t = 4 

and 500 iteration t = 5, the average temperature of 

all points considered tends to be stable.  It does not 

differ from t=3, as shown in figure 6 and precisely 

the d section of the illustration.  

Fig. 6:  Temperature distribution on sandwich 

material at different times; (a) when t = 0, (b) when t 

= 1, (c) when t = 2, (d) when t = 3, (e) when t = 4, 

(f) when t = 5. 

 

 Based on the selected at the three coordinate 

points (1.5,1.8), (1.5,1.5), and (1.5,1.2) for the 2T 

model, which T1at the top of the material is 300°C, 

and T2 on the bottom is 20°C, both homogenous 

material and heterogenous material approaches can 

model the same phenomenon.  However, there are 

 
a 

 
b 

a 

 

b 

 

c 

 

 
d 

 
e 

 
f 
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several differences, such as the shape of heat flux 

and the amount of heat received by each point at the 

same iteration time.  First, with the same initial and 

boundary conditions,  we needed the assumption 

that all material domains receive the same amount 

of heat.  It appears that from the three points,  the 

homogeneous domain temperature average of point 

1 at t = 1s is 247,0060C, t = 2, t = 3, t = 4, and t = 5 

at 247.1480C  and the material particle domain at t 

= 1 is 247.010C, t = 2 at  247.150C, t = 3s t = 4s and 

t = 5 at 247.150C.  Successively, the temperature 

average of point 2 for homogenous material and the 

material particle domain at t = 1 is 159°C and 

159.751°C, t = 2s is 160 °C and 159.9972°C, t = 3s 

is  160 °C and 159.9973°C when t = 4s is 160  and 

159.9974°C, and t = 5s is 160 °C  and 159.9975°C.  

Point 3, the temperature average for homogenous 

material at time t = 1 is 75°C, at time t = 2, t = 3, t = 

4, and t = 5  is 76°C.  In contrast, for the material 

particle domain at time t = 1 is 72.7283°C, at time t 

= 2 is 72.8566°C, at time t = 3 is 72.85683°C, at 

time t = 4 is 72.85684°C, and at when t = 5 is 

72.85685°C.   

 With the assumption that the heat capacities are 

equal, information about the material structure, 

especially about the constituents, is necessary for 

heat flux to determine the difference in the heat 

received due to differences in the composition of the 

material.   Figure 7a, figure 7b, and 7c show where 

the grey line represents the homogenous material, 

and the purple line represents the heterogeneous 

material.  It shows that a model should be predictive 

for practical applications.  On designs of composite 

structures, it is easier to estimate the characteristic 

time scales using the average temperature model 

that accommodates the Fourier heat equations.  

However, creating heterogeneous material would be 

challenging as it depends on several factors, such as 

the material structure and a specific heat transfer 

coefficient for a constituent in the future 

investigation concerning the presented physical and 

mathematical aspects. 

 The graph in figure 7 shows that each point has a 

different temperature level.  It is also clear that the 

increase in temperature occurs from time t = 0 to t = 

1 (iteration 100 times) and towards t = 2  and tends 

to stable in more than 300 times iterations (t = 3, 4, 

and 5).   From the point observable shown in the 

graph in fig. 7, the homogenous materials have a 

uniform temperature along the x-axis.  They are also 

higher than the particle material and the sandwich 

material.  

 

Fig. 7:  Temperature distribution of homogenous, 

particle, and sandwich materials at different times 

iteration and point coordinates 

 

 

4 Conclusion 
Thermal conductivity of heterogenous and 

homogenous materials have been successfully 

simulated using open-source software.  The heat 

flow has several differences, such as the shape of 

heat flux and the amount of heat each point receives 

at the exact iteration times.  For homogeneous 

material, the form of the heat flow is flat, while for 

particle material,  the heat flow makes a ripple, so 

they have a different pattern.  The heat flow of 

sandwich material has distributed horizontally 

where the temperature change rate maximum only 

occurs from 0 to 200 times iteration and tends to be 

the fastest instability.    It would be interesting to 

extend the analysis of temperature efficiency and 

distribution in both homogenous and heterogenous 

domain material and the usefulness of a practical 

system of heat transfer processing 
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