
homogeneous–heterogeneous reactions, J. Magn.
Magn. Mater., Vol. 395, 2015, pp. 294–302.
[15] Y. Lin, L. Zheng, X. Zhang, L. Ma, G. Chen,
MHD pseudo-plastic nanofluid unsteady flow and
heat transform in a finite thin film over stretching
surface with internal heat generation, Int. J. Heat
Mass Transf., Vol. 84, 2015, pp. 903–911.
[16] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R.
Ellahi. Effects of thermal radiation on
magnetohydrodynamics nanofluid flow and heat
transform by means of two phase model, J. Magn.
Magn. Mater., Vol. 374, 2015, pp. 36–43.
[17] U. Farooq, Y.L. Zhao, T. Hayat, A. Alsaedi, S.J.
Liao. Application of the HAM-based Mathematica
package BVPh 2.0 on MHD Falkner–Skan flow of
nanofluid, Comput. Fluids, Vol. 11, 2015, pp. 69–
75.
[18] S.A. Shehzad, Z. Abdullah, A. Alsaedi, F.M.
Abbaasi, T. Hayat. Thermally radiative three-
dimensional flow of Jeffrey nanofluid with internal
heat generation and magnetic field, J. Magn. Magn.
Mater., Vol. 397, 2016, pp. 108–114.
[19] A. Moradi, H. Ahmadikia, T. Hayat, A. Alsaedi,
On mixed convection radiation interaction about an
inclined plate through a permeable medium, Int. J.
Thermal Sci. Vol. 64, 2013, pp. 129–136.
[20] M. Sheikholeslami, D.D. Ganji, M.Y. Javed, R.
Ellahi, Effect of thermal radiation on
magnetohydrodynamics nanofluid flow and heat
transform by means of two phase model, J. Mag.
Magnetic Materials, Vol. 374, 2015, pp. 36–43.
[21] T. Hayat, S. Hussain, A. Shehzad, A. Alsaedi,
Flow of Oldroyd-B fluid with nanoparticles and
thermal radiation, Appl. Math. Mech. Vol. 36, 2015,
pp. 69-80.
[22] M. Ashraf, T. Hayat, S. Shehzad, A. Alsaedi,
Mixed convection radiative flow of three
dimensional Maxwell fluid over an inclined
stretching sheet in occurrence of thermophoresis and
convective condition, AIP Adv. Vol. 5, 2015, pp.
027134 - 44.
[23] Hayat T., N. Gull, M. Farooq, B. Ahmad,
Thermal radiation effects in MHD flow of Powell-
Eyring nanofluid induced by a stretching cylinder, J.
Aerospace Eng., ASCE. Vol. 29, No. 1, 2015, pp.
1943-1955.
[24] Bidin B and Nazar R, Numerical Solution of
the Boundary layer flow over an Exponentially
Stretching Sheet with Thermal Radiation, Eur. J.
Sci. Res. Vol. 33, No. 4, 2009, pp. 710–717.
[25] Hady F.M, Ibrahim F.S, Abdel-Gaied S.M, Eid
M.R, radiation effects on viscous flow of a nanofluid
and heat transform over a nonlinearly stretching
sheet, Nano Scale Res Lett, Vol. 7, 2012, pp. 299-
312.
[26] Hayat T., M. Waqas, S.A. Shehzad, A. Alsaedi,
Effects of Joule heating and thermophoresis on
stretching flow with convective boundary layer
connditions, Scientia Iranica, Vol. 21, 2014, pp.
682–692.
[27] M. Mustafa, J. Khan, T. Hayat, A. Alsaedi,.
Sakiadis flow of maxwell fluid considering magnetic
field and convective boundary conditions, AIP Adv.,
Vol. 5, 2015, pp. 27106 - 11.
[28] Hayat T., M. Waqas, S. Shehzad, A. Alsaedi,
Mixed convection radiative stream of Maxwell fluid
near a stagnation point with convective condition, J.
Mech. Vol. 29, 2013, pp. 403–409.
[29] Hayat T., S. Qayyum, A. Alsaedi, A. Shafiq,
Inclined magnetic field and heat source/sink aspects
in flow of nanofluid with nonlinear thermal emission,
Int. J. Heat Mass Transport , Vol. 103, 2016, pp. 99–
107.
[30] Khan, M. Khan, W.A., Alshomrani, A.S. Non-
linear radiative flow of three dimensional Burgers
nanofluid with new mass flux effects, Int. J. Heat
Mass Transform, Vol. 101, 2016, pp. 570–576.
AUTHORS’ CONTRIBUTIONS: All authors
have contributed equally to this.
WSEAS TRANSACTIONS on HEAT and MASS TRANSFER
DOI: 10.37394/232012.2022.17.16
Parakapali Roja, Thummala Sankar Reddy,
Shaik Mohammed Ibrahim, Giulio Lorenzini
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US