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ET us consider a bounded domain  3R   with the 
boundary     of the class  C   piecewise, and the 

following system of fluid dynamics 
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In this system   1 2 3, ,x x x x   is the space variable, 
 

 

        1 2 3, , , , , ,u x t u x t u x t u x t
   is the velocity field,  

 ,p x t   is the scalar field of the dynamic pressure and  

 ,x t   is the dynamic density. We suppose that the 
stationary distribution of density is described by the function  

3Nx
e
  , where  N   is a positive constant. For the 

compressibility coefficient    , we assume  0.    In the 
model (1) the stratified fluid is rotating over the vertical axis 
with the constant angular velocity   0,0, . 

   
For non-rotational case, the equations (1) are deduced, for 
example, in [1], [2]. 
Despite an extensive study of stratified flows from the physical 
point of view (see, for example, [3-6]) we would like to 
observe that there have been relatively few works considering 
the mathematical aspect of the problem. We associate the 
system (1) to the first boundary value (Dirichlet) condition  

0.p

  

The following separation of variables allows us to consider the 
problem of normal vibrations 
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We denote   4 5, ,v v v v

    and write the system (1) in the 
matrix form 
                                           0Lv 


                                      ( 3 )     

   
where 

L 

On the Structure of the Spectrum of Internal Vibrations for Stratified 

Rotating Compressible Flows in General Domains, in Rectangular 

Domains, in General Cylinders and in Spherical Volumes 

 

A. GINIATOULLINE 

Los Andes University, Cr. 1 No 18A-12 Uniandes Dept. Mathematics, 111711 
Bogota, COLOMBIA 

 

Abstract:—For exponentially stratified rotating compressible fluid, we investigate the localization and the 
structure of the spectrum of inner waves caused by the gravitational force and the Coriolis force. We find the 
essential spectrum for the first boundary value problem in general domains. Our main result is the explicit 
examples of the eigenvalues and the corresponding orthogonal eigenfunctions for parallelepipeds, for general 
cylinders and for spherical volumes.  

Keywords:—Compressible flows, computational fluid dynamics, essential spectrum, internal waves, turbulence 
and multiphase flows.
Received: May 25, 2022. Revised: October 26, 2022. Accepted: December 3, 2022. Published: December 31, 2022.  

 

1. Introduction 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2022.17.23 A. Giniatoulline

E-ISSN: 2224-3461 214 Volume 17, 2022



 

 

L M I   
and 

1

2

3

1 2 3

1

1

1

1 1 1

0 0 0

0 0 0

.0 0 0

0 0 0 0
0 0

x

x

x

x x x

M N

N







  














  
  

 




 


 
 

 

 
We define the domain of the operator  M   as follows. 
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where   
0

1
2W    is a closure of the functional space   0C    

in the norm 
1
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In this paper, we investigate the structure and the localization 
of the spectrum of the operator  M  for general three-
dimensional domains, and also we construct the explicit 
examples of the eigenvalues and eigenfunctions for 
rectangular, cylindrical and spherical domains. 
From the point of view of applications, the separation of 
variables (2) may serve as a tool to represent every non-
stationary motion described by (1) as a linear sum of the 
stationary modes. The knowledge of the spectrum of normal 
oscillations may be very useful for studying the stability of the 
flows. Besides, the spectrum of operator  M   plays an 
important role in the investigation of weakly non-linear flows, 
since the bifurcation points where the small non-linear 
solutions arise, belong to the spectrum of linear normal 
vibrations, i.e., to the spectrum of operator  M  . 
It can be easily seen that the operator  M   is a closed 

operator, and its domain is dense in    
5

2L   . 

Let us denote by   ess M   the essential spectrum of operator  
M  . We recall that the essential spectrum 

    :   is not of Fredholm type ,ess M C M I      
is composed of the points belonging to the continuous 
spectrum, limit points of the point spectrum and the 
eigenvalues of infinite multiplicity ([7-9]). 
To find the essential spectrum of the operator  M  , we will 
use the following property ([10]): 

  ,ess M Q S    
where 

 :   is not elliptic in sense of 
Douglis-Nirenberg

C M I
Q
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and 

 

\ : the boundary conditions for the operator 
.

    do not satisfy Lopatinski conditions
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We recall the following two definitions. 
Definition 1. Let us consider a differential matrix operator 

   
11 1

1

1

...
... ... ... ,  , ,..., ,

... ij

N

ij ij n

n

N NN

l l

L l a D

l l

 



  





  
 
 

  

1

11 1
1

... ,  ,  ... .
...

n

n
n j n

j n

D D D D
x x x





  

 
     

  
 

Let    1
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i i
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
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j j
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
  be two sets of integer numbers such that, 

if  0,ijl    then  degij ij i jn l s t    . In case  0ijl   , we do 
not require any condition for the sum  

i js t  . Now, we 

construct the main symbol of   L D   as follows. 
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If there exist the sets  s   and  t   which satisfy the above 
conditions and, additionally, if the following condition holds, 


   det 0  for all \ 0 ,nL R    

then the operator   L D   is called elliptic in sense of Douglis-

Nirenberg (see[11]). 
 Definition 2. Let us consider   1 2 3, , ,        1 2, ,  


   


 L    the matrix of the algebraic complements of the main 

symbol matrix  

 ,L      G    is the main symbol of the 

matrix   G D   which defines the boundary conditions,  

    , ,jM       
 

    j 


  are the roots of the 

equation  

 det , 0L   


  with positive imaginary part. If the 

rows of the matrix   

 , ,G L   

 
  are linearly independent 

with respect to the module   ,M  


  for  0 


 , then we 

will say that the conditions of Lopatinski are satisfied (see 
[10]). 
Now we establish the following two theorems. 
Remark 1. We note that, for the boundary condition  

0u n


 
   , the results analogous to the Theorems 1 and 2, 

were proved in [12]. The operator  M   with boundary 
condition  0p


   has not been considered previously. 

 

 Theorem 1. The operator  M   is skew-selfadjoint. 
 

 Proof. We represent  M   as 
0  ,NM M B B    
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are anti-symmetric bounded operators. From [7] we have that 
it is sufficient to prove the skew-selfadjointness for the 
operator  0M   with the domain     0 .D M D M   We note 

first that, integrating by parts, for   0,u v D M
 
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In particular, for   50,0,0,0,u u
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Since  0M   is not acting on the fourth component of the vector  
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  we may consider  4 4 4 0.u v f     
Summing up the obtained results, we have verified that 

   0 0 .D M D M   
The reciprocal inclusion can be proved analogously and thus 
the theorem is proved. 
Remark 2. Since  M   is skew-selfadjoint, then its spectrum 
belongs to the imaginary axis. Indeed,   v D M 
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from which it follows that   ,M v v
 

  is imaginary. If     is an 

eigenvalue of  M   with the corresponding eigenfunction  v
  , 

then     also is imaginary since   
2

,M v v

v
 

 

  . If we remove 

from the spectrum of  M   all the isolated points which are 
eigenvalues of finite multiplicity, the remaining set will form 
the essential spectrum of the operator  M  . 

   Theorem 2. Let   min ,a N   ,   max , .A N   Then, 
the essential spectrum of  M   is the following symmetrical set 
of the imaginary axis: 
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Moreover, the points       0 , ,ia iA    are eigenvalues of 
infinite multiplicity. 
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the numbers  
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We calculate the determinant of the last matrix 
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From (6) we can see that, if     does not belong to the set (5), 
then  L   is elliptic in sense of Douglis-Nirenberg. It is easy to 
prove that the boundary condition  0p


   satisfies 

Lopatinski conditions. Indeed, if we write it as  0Gu
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Evidently, every vector-function of the form 
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satisfies the last system and thus  0    is an eigenvalue of 
infinite multiplicity. The cases     ,ia iA     , are 
analogous, for example, for  i    the system (3) has an 
infinite set of solutions 

 , ,0,0,0 ,v i  

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where   0C     and has the form     1 2 3,x x ix x   . 
In this way, the theorem is proved. 
Remark 3. There exists  an alternative criterion of the 
essential spectrum which is attributed to Weyl [8]: a necessary 
and sufficient condition that a real finite value   be a point of 
the essential spectrum of a selfadjoint operator M  is that there 
exists a sequence of elements  nv D M   such that 

 1 ,    tends weakly to zero, and 0n n nv v M I v   . 
In the proof of the analogous result for the operator  M   with 
boundary condition 0u n
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  in [12], there was constructed 

the following explicit Weyl sequence for the essential 
spectrum of the operator  M : 
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where the components 
k  are defined as follows 
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We observe that the above Weyl sequence is also valid for the 
boundary condition  0p


 , which was proved in [13]. 

Remark 4. The statement of Theorem 2 corresponds clearly to 
the previously studied particular cases of  0    [9], [14], 
where it was proved that     ,ess M iN iN    , as well as the 
particular case of  0N    [9], where it was proved that  

   ,ess M i i    . 
Remark 5. The case of essential spectrum of stratified (non-
rotational) viscous fluid was considered in [15].  

   We consider the boundary value problem (3) in its 
component representation, where, without loss of generality, 
we put  1   : 

                            

5

1

5

2

5

3

31 2

1 2 3

1 2

1 2

3 4

3 4

5

0

0

0
.

0
0

0

v

x

v

x

v

x

vv v

x x x

v v

v v

v Nv

Nv v

v

 

 

















 

  



   


  

   


  
   

 

                             ( 7 ) 

 Theorem 3. Let     be a rectangular parallelepiped in  3R   :  
     0, 0, 0, .a b c     Then, the eigenfunctions  5v   of the 

problem (7) have the form 

    31 2
5 , ,

2 2 sin sin sin , 

, , 1,2,3,...

k j n

nxkx jx
v x

a b cabc

k j n

     
      

    



      ( 8 ) 

and the corresponding eigenvalues are   kjn   , where 

  

 

  

  

1
222 2

2 2 2

22 2

2 2 2

22 2 2

2 2 2

2 2 2

2
2 2 2

2 2 2 2

.
2

4

jk n

a b c

jk n
kjn a b c

jn k

c a b

N

i
N

N

 

  

  



     
 
 
      
 
        

      ( 9 ) 

The set   kjn   forms a discrete spectrum outside the set (5), 

while the set   kjn   is dense in (5)  \ 0  . Every point of the 

set (5)  \ 0   is a limit point of the eigenvalues (9). 
Remark 6. After substituing  5 , ,k j nv   in (7), the rest of the 

coordinates of the eigenfunctions   1 2 3 4, , ,v v v v   can be easily 
found from the resulting algebraic system. 
Proof. By consecutive differentiation and substitution, we can 
exclude the unknown functions   1 2 3 4, , ,v v v v   from the 
system (7)and thus obtain the following scalar equation for  5v    

      
2

2 2 2 2 2 2 2 25
2 5 52

3

0v
N v N v

x
     


       


( 10 ) 

with the boundary condition  5 0v

  , where  2 2

2 2
1 2

2 .
x x

 

 
     

We put  i    and solve the problem (1)0 by using the 
separation of variables 
                           5 3 ,v x w x z x                                   ( 11 ) 

where   1 2, .x x x    
Therefore, we obtain 

        
 
 

 
2

2
3

2 2
2 22

2 2
.

d z

dx
N w

N
w z


 

 

 
    


                    ( 12 ) 

From (12), we solve first the problem for the function   3z x   

                 
   

2

2
3

0
.

0 0

d z

dx
z

z z c

  


 

                                             ( 13 ) 

The solutions of the problem (13) are 
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 

   3

2

2
3

.
sin  ,  1,2,3,...

n
n c

nx

n c cz x n





 


 

 

For the function   w x  , we obtain the problem 

                      
   

2

0, ,

0
,0

a o b

w w

w





  
 

                                         ( 14 ) 

where 
 
 

 
2 2 2

2 2
2 2

.n
N

cN

  
 



  
    

    

 

It is easy to see that the solutions of the problem (14) are 

 
     

22

2 2

1 2

2

2
1 2

.
, sin sin , , 1,2,3,...

jk
kj a b

kx jx

kj a bab
w x x k j

 

   


 


 

Thus we conclude that the eigenvalues of the problem (10) and 
(7) are found from the equation 

     
2 2 2

2 2 2 2 2 2 2
2 2 ,n k j

N N
c a b


    

  
        

     

( 15 ) 

which can be written as 
2 2 2

4 2 2 2 2
2 2 2

2 2 2 2
2 2 2 2

2 2 2 0.

k j n
N

a b c

n k j
N

c a b

   


  

  
      
   

 
     

  

 

The roots of the last equation are 
2 2 2

2 2 2 2
2 2 22 k j n

N
a b c

  


     
 

 

                                                                                           ( 16 ) 
22 2 2

2 2 2
2 2 2

2 2 2 2
2 2 2 2

2 2 2

.

4

k j n
N

a b c

n k j
N

c a b

 


  

 
     

  


  
       

   

 

Keeping in mind that  i   , we obtain the eigenvalues (9). 
The eigenfunctions   5 , ,k j nv x  , according to the separation of 
variables (11), are represented by 

  31 2
5 , ,

2 2 sin sin sin , 

, , 1,2,3,...

k j n

nxkx jx
v x

a b cabc

k j n

     
      

    



 

We note that the sign "   " before     in   kjn   means that 
the spectrum is symmetrical with respect to zero. 
Evidently, the subset   kjn   forms a discrete spectrum on 
the imaginary axis outside the set (5). 
Let us show that the subset   kjn   is dense in (5)  \ 0   and 

thus every point of (5)  \ 0   is a limit point of the eigenvalues 
(9). For that, we will consider a positive function 

 
   

2 2

22 2 2 2 2

1 .
2 4

L

N L Q

f Q
N L Q L N Q



  

    

        

  

 

                                                                                           ( 17 ) 

We observe that for  L   2 2

2
n

c

   and   
22

2 2
2 jk

a b
Q     we have 

that    2
L kjnf Q   , where  2

kjn   are defined in (16). 

We also represent the function  fLQ   as 

 
 

   

2 2 2

2 2

22 2 2 2 2

2
.

4

L

L N Q
f Q

N L Q

N L Q L N Q

 



  

  
 


   

       
 

( 18 ) 

Using (18), for  L   and  Q   sufficiently large, we can estimate  

 Lf Q   as 

                            ,L L LF Q f Q G Q                           ( 19 ) 
where 

 
2 2 2 2

2 2 ,L

L N Q N
F Q

N L Q

 



 


  
 

 
2 2 2 2

2 2 2 2

2
.L

L N Q N
G Q

N L Q N L Q

 

 

   


      
 

For fixed  L  , we have 
                                     2lim .L

Q
f Q N


                             ( 20 ) 

On the other hand, for fixed  Q  , we have 
                                     2lim .L

L
f Q 


                              ( 21 ) 

Evidently, the properties (20), (21) are also valid for the 
functions   LF Q   and   LG Q   . 

Now, if we denote   min ,a N  ,  max ,A N  , then 
we can easily see that, for sufficiently large  L   and  Q  , the 
values of the functions   LF Q   and   LG Q   (and thus the 

values of the function   Lf Q  ) will belong to the interval  
2 2,a A    . Additionally, it can be easily seen that every point 

of the interval  2 2,a A     can be represented as a limit point of 

the functions   LF Q   and   LG Q   (and thus as a limit point 

of the function   Lf Q  ) for appropriate election of  
, .L Q   

Indeed, for example, let  N   ,  2 2,p N    ,  

 2 2 2p N      ,   0 1   .  We will show, for 
example, that for suitable election of  ,L Q   for arbitrary 
small  0    , the estimate will hold: 
                                  0 .Lp F Q                               ( 22 ) 
Indeed, 

   
2 2 2 2

2 2
2 21L

L N Q N
p F Q N

N L Q

 
  



 
     

  
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   2 2 4 2

2 2

1 1
.

N L Q N

N L Q

     



         
  

            ( 23 ) 

 
In (23) we choose   1L Q


   and thus we have  

            
 4 2

2 2

1
.L Q

N
p F Q

N 

  



 
 

 
                              ( 24 ) 

From (24) we obtain that for every arbitrarily small  0    
there exists sufficiently large  0Q    such that (22) will hold, 
where   1L Q


  . Therefore, every point of the interval  

2 2, N     is a limit point of the function   LF Q   for  

,L Q  .  The same property for the function   LG Q   can 
be verified analogously and thus the Theorem is proved. 

 

   Theorem 4. Let     be a circular cylinder in  3R  : 
  2 2 2

1 2 3 1 2 3, , : , 0 .x x x x x R x c      

Then, the eigenfunctions  5v   of the problem (7) have the form 

 
 

 

 

3
5 , ,

2 2 2
1 2

1

2 sin exp  ,

 , , 1,2,3,...    , arctan  ,          ( 25 )

  are positive roots of the Bessel function 

k

j

k j n kk

k j

k

j k

r nx
v x J ik

R cR J c

x
k j n r x x

x

J

 


 



 



 
       


    

 

 
and the corresponding eigenvalues are   kjn   , where 

       

 

 

 

1
2 2

2 2

2 2

2
2 2

2 2

2
2 2

2 2

2 2

2
2 2

2 2 2

.
2

4

k
j

k
j

k
j

n

c R

n

c Rkjn

n

c R

N

i N

N














 



 
    

 
        

 
  

     
   

          ( 26 ) 

The set   kjn   forms a discrete spectrum outside the set (5), 

while the set   kjn   is dense in (5)  \ 0  . Every point of the 

set (5)  \ 0   is a limit point of the eigenvalues (26). 
Proof. As in Theorem 3, we solve the problem (10) using the 
separation of variables (11). For the function   3z x   we have 

         3
3

2 sin  ,  1,2,3,...n

nx
z x n

c c

 
  

 
                      ( 27 ) 

For   w x   we obtain the boundary value problem 

                     
2 0

,0
x R

w w

w



 

  
 

                                          ( 28 ) 

where 

 
 

 
2 2 2

2 2
2 2

.n
N

cN

  
 



  
    

    

 

Solving the problem (28) in polar coordinates, we have that for 

 
2

2  , , 1,2,3,...
k

j

kj k j
R


    

the solutions have the form 

                   
   

 
,

exp
, ,

k
j r

Rk

k j k

k j

J ik
w r

R J





 

                         ( 29 ) 

where  k

j   are positive roots of the Bessel function   kJ   . 
In this case, the eigenvalues of the problem (10) are found 
from the equation 

     
 

22
2 2 2 2 2 2

2 .
k

jn
N N

c R


   

 
      

   

 

Therefore, the eigenvalues of the problem (10) (and also of the 
problem (7)) are: 

 

 

 

1
2 2

2 2

2 2

2
2 2

2 2

2
2 2

2 2

2 2

2
2 2

2 2 2

.
2

4

k
j

k
j

k
j

n

c R

n

c Rkjn

n

c R

N

i N

N














 



 
    

 
        

 
  

     
   

 

From (11), (27) and (29) we have that the corresponding 
eigenfunctions have the form: 

 
 

 3
5 , ,

2 sin exp .
k

j

k j n kk

k j

r nx
v x J ik

R cR J c

 


 

 
       

 

To prove the properties that the set   kjn   is dense in  

(5)  \ 0   and that every point of the set (5)  \ 0   is a limit 
point of the eigenvalues (26), we can follow exactly the 
reasoning of the proof of Theorem 3, using the same functions  

 LF Q   ,   Lf Q   and   LG Q   with   2 2

2
n

c
L    and  

 
2

2

k
j

R
Q


 . We only need the fact that  k

j   be infinite, 
countable, do not have finite limit points and posess the 
property 
                               lim .k

j
j

k 


                                      ( 30 ) 

For the Bessel functions    ,
k
j r

k R
J

   these properties, including 

(30), as well as the properties of orthogonality and 
completeness in  2L  , are established, for example, in [16]. 
Additionally, not only for the circle but also for more general 
domains, it is well known that for the problem 

0
0

w w

w





  



 

the same properties are valid (see, for example, [17]). In 
particular, the eigenvalues are positive, tend to infinity, have 
finite multiplicity and do not have finite limit points. The 
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eigenfunctions form a complete system in  2L   and can be 
chosen orthogonal. 
In this way, the Theorem is proved. 
Remark 7. The reasoning we used in the proofs of the 
Theorems 3 and 4 may be easily extended to the cases of more 
general domains of arbitrary cylinders   

  3 2
1 2 3: , ,  0C x R x x R x c      . 

Remark 8. For arbitrary domains  2G R   with Lipshchitz 
boundary ,   the property of positiveness of the eigenvalues 
and orthogonality of the eigenfunctions for the problem 

         
 

2 2

2 2 0  ,  ,
,

0

v v

x y

G

v x y G

v

 

 



    




                              ( 31 ) 

can be deduced directly from the following simple 
calculations. Indeed, let  v   be a solution of (31). Integrating 
the identity 

22
v v v v

v v v v
x y x x y y

         
         

         
 

in the domain  G  , we have 
22

2 ,

G

G G G

v v
dxdy

x y

v
v ds v vdxdy v dxdy

n




  
    

     


   





  

 

from which we obtain the positiveness of    . Now, if  
k m    are eigenvalues of (31) with the corresponding 

eigenfunctions  
kv   and  

mv  , then, after integrating the 
equation 

m k m k
k m k m

k m m k

v v v v
v v v v

x x x y y y

v v v v

    
    

        

   

 

in the domain  G  , we obtain 

    0.k m m k k m k m

G G

v v v v dxdy v v dxdy         

   Theorem 5. Let     be a spherical volume in  3R  : 
  2 2 2 2

1 2 3 1 2 3, , : .x x x x x x R     

Then, the eigenfunctions  5v   of the problem (7) have the form 

   

 

   

1
2

5 , , 1
2

1
2

1
2

cos

=0,1,...   =1,2,...   =0, 1,...,  ,        

 are positive roots of the Bessel function 

1 are Legendre polynomials  
2 !

n

njm j

k j n n
n

n

j
n

n

n n n

c r
v x J P

Rr

n j m n

J

d
P P

n




 


 


 

 




 

 






 


 

 


 2 1

,
n

nd



 

                                                                                         ( 32 ) 

and the constants
njmc  are chosen such that the normalization 

condition holds: 

 

 
 

12
2 22

1
20 0 0

1
2

1
2

1 cos

!1
2 1 !

R
n

j n
n

njm

n
nm

j
n

r
J P rdrd d

c R

l m
R J

l l m

 

   


 


 

 




 

 




 

 
 

  
        

  
 

and the corresponding eigenvalues are   nj   , where 

       

 

 

 

1
2 21

2

2 2

21
2

2 2

21
2

2 2

12

2

12

12 2 2

2

2
.

2

4

n

j

n

j

n

j

n n

R R

n n

R R

nj

n n

R R

N

Ni

N









 


 

 


 

 


 

 



   



   





   

 
 

   
 
 

 
   

   
  
 

 
       
  

  

   ( 33 ) 

The set   nj   forms a discrete spectrum outside the set (5), 

while the set   nj   is dense in (5)  \ 0  . Every point of the 

set (5)  \ 0   is a limit point of the eigenvalues (32). 
Proof. We use the spherical coordinates 

1

2

3

sin cos
sin sin
cos .

x r

x r

x r

 

 









 

Assuming that    5 5 ,v x v r  does not depend on  , we 
solve the problem (10) using the separation of 
variables      5 ,v r z r Y  . In this way, for the function  

 Y    we have the problem 

             1 sin 0
sin

d dY
Y

d d
 

  


  

 
  .                           ( 34 ) 

After the substitution      c o s   ,    a r c c o sy Y      we 
obtain that (34) has a bounded solution only if     

 1n n n    , and that the solutions of (34) are Legendre 

polynomials  
 2 11

2 !

n
n

n n n

d
P

n d







 . 

For  ( )z r   we obtain the boundary value problem 

   

     

2 2 2 0

1 ,   0 ,    0
n

n

r z A r z

n n z z R





   

    

, 

which has the solutions expressed in terms of the Bessel 

functions ([17]):    1
2

1
n

n
z R J Ar

r 
 . Proceeding 

analogously as in the proof of Theorem 4, we obtain that the 
eigenvalues are found from the 

equation
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 
 

   

21
2

2 2 2 2 2 2
2 2

1

n

j

n n
N N

R R



   


 

 
 
 

    
     

 
. 

Keeping in mind that i  , we obtain finally that the 
eigenvalues have the form (33). From the orthogonality and 
completeness of Bessel functions in   2 0,L R  and Legendre 

polynomials in  2 1L S ,  we obtain the useful property that the 
found set of the eigenfunctions (32)  is complete and 
orthonormal in  2L  . The rest of the proof is totally 

analogous to the proofs of the Theorems 3 and 4. 

   For the considered particular cases of parallelepipeds, 
cylinders and spheres, the explicitly calculated spectrum 
clearly corresponds to the essential spectrum for general 
domains. 
   The constructed systems of eigenfunctions (8), (25) and (32) 
are complete and orthonormal in   2L   , which can be used 
for solving more general problems in various applications 
modelling rotating stratified comressible fluid. 
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