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Abstract: -Thermal energy storage is of critical importance for the highly-efficient utilization of renewable 
energy sources. Over the past decades, the single-tank thermocline technology has attracted much attention 
owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s 
non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks, 
using the analytical model obtained by the Laplace transform. Our analyses prove that the different porosity 
distributions can result in the significantly different behaviors of outlet temperature and thus the varied 
charging and discharging efficiencies, when the total amount of filler materials (i.e., the integration of porosity) 
is fixed. The results indicate that a non-uniform distribution of the fillers with the proper design can improve 
the heat storage performance without changing the total amount of the filling materials, which may provide a 
new way to optimize the thermocline storage tanks. 
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1 Introduction 
The utilization of renewable energy sources serves 
as the key solution for the problems from carbon 
emission to environment pollution. In this regard, 
the solar energy has shown its feasibility for various 
industrial and domestic applications [1]. Due to the 
strong time dependence of solar irradiation, the 
integration of thermal energy storage (TES) 
modules plays the crucial role for the solar plants, 
which allows the power output be flexible and stable 
[2][3]. Therefore, the performance of TES is of 
critical importance for the overall efficiency of solar 
plants [4]. 
    Among the existing thermal energy storage 
technologies, the single-tank thermocline tank [5], 
where both the hot and cold fluids are contained in a 
single tank, has received much attention due to its 
high cost-effective approach compared to the 
conventional two-tank storage systems. For a 
thermocline tank, some inexpensive solid materials 
are usually filled into it to reduce the volume of 
expensive heat transfer fluid (HTF) required for 
storage and improve the degree of thermal 

stratification [6]. The research on the influence of 
the filler’s properties, like material types, porosity 
and thermal conductivity etc., has been extensively 
investigated in literature [6–9]. Nevertheless, the 
filler distribution within the thermocline tank is 
usually assumed to be uniform. Few research papers 
have well discussed the effect of non-uniform 
distributions of filler on the performance of 
thermocline storage tanks. 
   The present work is to study the packed-bed 
sensible heat thermocline tanks with the filler of 
non-uniform distribution. An analytical model is 
derived by the Laplace transform, which is capable 
of considering the non-uniform distribution of filler 
porosity. Based on this model, it is found that the 
different porosity distributions can led to the 
significantly different behaviors of outlet 
temperature of HTF when the total amount of filler 
materials is fixed. 
 
2 Problem Formulation 
Fig. 1 illustrates a typical thermocline heat storage 
tank with height H and diameter 2R. Here, different 
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from the previous work, the porosity distribution of 
filler is non-uniform and assumed to be dependent 
on the height of tank.  

 
Fig. 1 Schematic of the thermocline heat storage 

tank during the discharging process. 
 

      To construct the governing equations, a set of 
assumptions are adopted as follows:     
(a) The distributions of fluid flow and solid filler 

are assumed to be uniform in radial direction, 
and thus the problem becomes one dimensional 
along the axil direction; 

(b) The heat conduction within packed bed along 
axil direction is neglected; 

(c) The flow is assumed to be incompressible and 
laminar. 

Therefore, the transient thermal transport process 
within a specific packed-bed sensible heat 
thermocline storage tank for discharging is governed 
by the 1D equations for the heat transfer fluid and 
the solid filler respectively,  

𝜀𝜀(𝑧𝑧)𝜌𝜌f𝐶𝐶f
𝜕𝜕𝑇𝑇f
𝜕𝜕𝜕𝜕

+ 𝜀𝜀(𝑧𝑧)𝜌𝜌f𝐶𝐶f𝑈𝑈(𝑧𝑧)
𝜕𝜕𝑇𝑇f
𝜕𝜕𝜕𝜕

=

ℎfs(𝑧𝑧)𝑎𝑎fs(𝑧𝑧)(𝑇𝑇s − 𝑇𝑇f) + ℎ0𝑎𝑎0(𝑇𝑇0 − 𝑇𝑇f) (1)
 

�1 − 𝜀𝜀(𝑧𝑧)�𝜌𝜌s𝐶𝐶s
𝜕𝜕𝑇𝑇s
𝜕𝜕𝜕𝜕

=

−ℎfs(𝑧𝑧)𝑎𝑎fs(𝑧𝑧)(𝑇𝑇s − 𝑇𝑇f) + ℎ0𝑎𝑎0(𝑇𝑇0 − 𝑇𝑇s) (2)
 

in which ε(z) is the porosity of the packed-bed 
fillers, 𝑇𝑇f(s) is the temperature of fluid “f” and solid 
“s”,  𝜌𝜌f(s)  is the density, 𝐶𝐶f(s)  is the specific heat, 
𝑈𝑈(𝑧𝑧) is the fluid velocity, ℎ0  is the effective heat 
transfer coefficient (HTC) for heat loss to the 
ambient of temperature 𝑇𝑇0 , and 𝑎𝑎0  is the area per 
unit length for the ambient heat loss. The heat 
transfer surface area of fillers per unit length 𝑎𝑎fs is  

𝑎𝑎fs(𝑧𝑧) =
6�1 − 𝜀𝜀(𝑧𝑧)�𝜋𝜋𝑅𝑅2

𝑑𝑑
(3) 

with the equivalent diameter of filler particles d.  
Moreover, the HTC, ℎfs(𝑧𝑧), between fluid and solid 
in porous 

media is given by [9],   

ℎfs = 0.191
𝑚̇𝑚𝐶𝐶f
𝜀𝜀𝜋𝜋𝑅𝑅2 𝑅𝑅𝑅𝑅

−0.278𝑃𝑃𝑃𝑃−2/3 (4) 

where 𝑚̇𝑚  is the mass flow rate, Pr is the Prandtl 
number, and the Reynolds number (Re) is modified 
for porous media as [6],  

𝑅𝑅𝑅𝑅 =
4𝑚̇𝑚

𝜀𝜀𝜋𝜋𝑅𝑅2𝜇𝜇f
𝜀𝜀𝜀𝜀

4(1 − 𝜀𝜀)
(5) 

with the fluid dynamic viscosity 𝜇𝜇f. 
    Here, the porosity ε is set as a function varying 
with the height of the storage tank (z), which 
corresponds to the non-uniform distributions of 
filling materials. The average porosity 𝜀𝜀̅  of the 
fillers is calculated as,  

𝜀𝜀̅ =
∫ 𝜀𝜀(𝑧𝑧)𝑑𝑑𝑑𝑑𝐻𝐻
0

𝐻𝐻
(6) 

Then, the average fluid velocity is given by,  

𝑈𝑈� =
𝑚̇𝑚

𝜌𝜌f𝜀𝜀𝜋̅𝜋𝑅𝑅2
. (7) 

    For clarity, the governing equations (1) & (2) are 
converted to be dimensionless:  

𝜕𝜕𝜃𝜃f
𝜕𝜕𝑡𝑡∗

=
1
𝜏𝜏fs

(𝜃𝜃s − 𝜃𝜃f) −
𝑈𝑈
𝑈𝑈�
𝜕𝜕𝜃𝜃f
𝜕𝜕𝑧𝑧∗

+
1
𝜏𝜏0

(𝜃𝜃0 − 𝜃𝜃f), (8) 

𝜕𝜕𝜃𝜃s
𝜕𝜕𝑡𝑡∗

= −
HCR
𝜏𝜏fs

(𝜃𝜃s − 𝜃𝜃f) −
HCR
𝜏𝜏0

(𝜃𝜃s − 𝜃𝜃0), (9) 

with the dimensionless numbers as below,   

𝑧𝑧∗ =
𝑧𝑧
𝐻𝐻

, 𝑡𝑡∗ =
𝑈𝑈�𝑡𝑡
𝐻𝐻

, 

𝜃𝜃f =
𝑇𝑇f − 𝑇𝑇𝑐𝑐
𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐

,𝜃𝜃s =
𝑇𝑇s − 𝑇𝑇𝑐𝑐
𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐

,𝜃𝜃0 =
𝑇𝑇0 − 𝑇𝑇𝑐𝑐
𝑇𝑇ℎ − 𝑇𝑇𝑐𝑐

, 

𝜏𝜏fs  =  
𝑈𝑈�
𝐻𝐻
𝜀𝜀𝜌𝜌f𝐶𝐶f
ℎfs𝑎𝑎fs

, 𝜏𝜏0  =  
𝑈𝑈�
𝐻𝐻
𝜀𝜀𝜌𝜌f𝐶𝐶f
ℎ0𝑎𝑎0

,  

𝐻𝐻𝐻𝐻𝐻𝐻 =
𝜌𝜌f𝐶𝐶f𝜀𝜀

(1 − 𝜀𝜀)𝜌𝜌s𝐶𝐶s
. 

where 𝑇𝑇ℎ  is the inlet temperature of fluid for 
charging, while 𝑇𝑇𝑐𝑐 is that for discharging. 

𝐻𝐻

2𝑅𝑅

𝜀𝜀 𝑧𝑧
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For the discharging process, the initial condition 
is given by,  

𝑡𝑡∗ = 0:   𝜃𝜃s = 𝜃𝜃f = 𝑓𝑓0(𝑧𝑧∗), (10) 

where 𝑓𝑓0(𝑧𝑧∗)  is the initial dimensionless 
temperature distributions. The boundary conditions 
are,

𝑧𝑧∗ = 0:    𝜃𝜃f = 0, 𝑑𝑑𝑑𝑑s
𝑑𝑑𝑑𝑑

= 0. (11) 
Solving Eqs. (8) and (9) with the corresponding 

initial and boundary conditions Eqs. (10) and (11) 
derives the predictive model for the temperature of 
fluid and solid during the discharging process. Due 
to the symmetry between discharging and charging 
processes [10], the discharge model can also be 
employed to predict the charging behavior by the 
transform of two variables 𝜃𝜃 and 𝑧𝑧∗ as below,  

  𝜃𝜃c = 1 − 𝜃𝜃d, 𝑧𝑧c∗ = 1 − 𝑧𝑧∗d. (12) 
 
3 Problem Solution 
The Laplace transform can be used to solve the 
equations above. The Laplace transform of 
dimensionless temperature is expressed as, 

𝜃𝜃�f(𝑠𝑠) = � 𝜃𝜃f(𝑡𝑡)exp(−𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑
∞

0
,

𝜃𝜃�s(𝑠𝑠) = � 𝜃𝜃s(𝑡𝑡)exp(−𝑠𝑠𝑠𝑠)𝑑𝑑𝑑𝑑
∞

0
. (13)

 

Then, Eqs. (8) and (9) are transformed to,   

𝑠𝑠𝜃𝜃�f − 𝑓𝑓0 =
1
𝜏𝜏fs

�𝜃𝜃�s − 𝜃𝜃�f� −
𝑈𝑈
𝑈𝑈�
𝜕𝜕𝜃𝜃�f
𝜕𝜕𝑧𝑧∗

+
1
𝜏𝜏0
�
𝜃𝜃0
𝑠𝑠
− 𝜃𝜃�f� , (14)

 

𝑠𝑠𝜃𝜃�s − 𝑓𝑓0 =

−
HCR
𝜏𝜏fs

�𝜃𝜃�s − 𝜃𝜃�f� −
HCR
𝜏𝜏0

�𝜃𝜃�s −
𝜃𝜃0
𝑠𝑠
� . (15) 

Solving Eqs. (14) and (15) gives the analytical 
models of 𝜃𝜃�f and 𝜃𝜃�s,  

𝜃𝜃�f(𝑠𝑠, 𝑧𝑧∗) =

� exp�−� 𝑃𝑃f

𝑧𝑧∗

𝜉𝜉
𝑑𝑑𝑑𝑑� �𝑄𝑄f1𝜃𝜃0 + 𝑄𝑄f2𝑓𝑓0(𝜉𝜉)�𝑑𝑑𝑑𝑑

𝑧𝑧∗

0
, (16) 

𝜃𝜃�f(𝑠𝑠, 𝑧𝑧∗) =
HCR
𝜏𝜏fs

𝜃𝜃�f(𝑠𝑠) + HCR
𝜏𝜏0

𝜃𝜃0
𝑠𝑠

+ 𝑓𝑓0(𝑧𝑧∗)

𝑠𝑠 + HCR � 1
𝜏𝜏fs

+ 1
𝜏𝜏0
�

. (17) 

with 

𝑃𝑃f =
𝑈𝑈�
𝑈𝑈 �

𝑠𝑠 +
1
𝜏𝜏fs

+
1
𝜏𝜏0
−

1
𝜏𝜏fs

HCR
𝜏𝜏fs

𝑠𝑠 + HCR � 1
𝜏𝜏fs

+ 1
𝜏𝜏0
�
�, 

𝑄𝑄f1 =
𝑈𝑈�
𝑈𝑈

1
𝑠𝑠 �

1
𝜏𝜏fs

HCR
𝜏𝜏0

𝑠𝑠 + HCR � 1
𝜏𝜏fs

+ 1
𝜏𝜏0
�

+
1
𝜏𝜏0
�, 

𝑄𝑄f2 =
𝑈𝑈�
𝑈𝑈 �

1 +
1
𝜏𝜏fs

1

𝑠𝑠 + HCR � 1
𝜏𝜏fs

+ 1
𝜏𝜏0
�
�. 

 
The analysis on the influence of filler porosity’s 
non-uniform distributions on the thermal 
performance of the storage tank are conducted using 
the analytical model above. 

 
4 Results and Discussions 
The performance of a specific heat storage tank is 
usually characterized by the discharging (𝜂𝜂disch ) 
and charging (𝜂𝜂ch) efficiencies [5],  

𝜂𝜂d =
∫ 𝑚̇𝑚𝐶𝐶f�𝑇𝑇f,out(𝑡𝑡)− 𝑇𝑇c�𝑑𝑑𝑑𝑑
𝑡𝑡d80%
0

∫ 𝑚̇𝑚𝐶𝐶f{𝑇𝑇h − 𝑇𝑇c}𝑑𝑑𝑑𝑑𝑡𝑡c20%
0

, (18) 

𝜂𝜂c =
∫ 𝑚̇𝑚𝐶𝐶f�𝑇𝑇h − 𝑇𝑇f,out(𝑡𝑡)�𝑑𝑑𝑑𝑑
𝑡𝑡c20%

0

∫ 𝑚̇𝑚𝐶𝐶f{𝑇𝑇h − 𝑇𝑇c}𝑑𝑑𝑑𝑑𝑡𝑡c20%
0

. (19) 

where 𝑡𝑡c20% is the cut-off time for charging as the 
outlet temperature of fluid reaches 20% of the 
temperature difference (𝑇𝑇h − 𝑇𝑇c ), and 𝑡𝑡d80%  is the 
the cut-off time for discharging as the outlet 
temperature of fluid decreases to 80% of the 
temperature difference ( 𝑇𝑇h − 𝑇𝑇c ). Due to the 
symmetry between discharging and charging, 𝑡𝑡c20% 
should be equal to 𝑡𝑡d80%. 
     Following the identical manner to convert Eqs. 
(18) and (19) to dimensionless, we have   

𝜂𝜂d = � 𝜃𝜃f,out𝑑𝑑𝑡𝑡∗
𝑡𝑡d80%
∗

0
= 𝜂𝜂c. (20) 

In this sense, we only need to analyze the outlet 
temperature of fluid, 𝜃𝜃f,out, during discharging for 
evaluating the influence of different filler’s porosity 
distributions on both the charging and discharging 
efficiencies.   
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    In the numerical experiments, the parameters 
setting is as follows: average porosity 𝜀𝜀̅ = 0.5, tank 
height 𝐻𝐻 = 2 m , tank radius  𝑅𝑅 = 2 m , equivalent 
diameter of solid particles 𝑑𝑑 = 0.01 m, mass flow 
rate 𝑚̇𝑚 = 2 kg/s , and 𝑇𝑇c = 𝑇𝑇0 . Moreover, the 
properties of fluid (solar salt) and filler material 
(quartzite) are given in Tab.1 referring to Ref. [6]. 
 
Tab.1 Properties of fluid and filler material [6] 

Material Density 
kg/m3 

Specific 
heat 

J/kg-K 

Dynamic 
viscosity 
kg/m-s 

Thermal 
conductivity 

W/m-K 
Solar 
salt 1899 1495 0.00326 0.57 

Quartzite 
rock 2640 1050 N/A 2.8 

 
Fig. 2 (a) Outlet temperature of fluid varying with 
time; (b) Varied porosity distributions along z*.  

 
According to Fig.2, even when the total amount 

of filler material, that is, the integration of porosity, 
is prescribed, the varied porosity distributions can 
lead to the different behaviors of outlet temperature. 
Furthermore, in order to evaluate the degree of non-
uniformity, the standard variation of porosity along 
the axil direction is calculated,   

𝜎𝜎𝜀𝜀 =
�∫ (𝜀𝜀(𝑧𝑧) − 𝜀𝜀)̅2𝑑𝑑𝑧𝑧∗1

0

𝜀𝜀̅
. (21)

 

Apparently, the non-uniformity increases with the 
increasing 𝜎𝜎𝜀𝜀 . Fig.2 shows that the cut-off time 
𝑡𝑡d80%  for discharging increases as the non-
uniformity, i.e., 𝜎𝜎𝜀𝜀 , is enhanced. A bigger  𝑡𝑡d80% 
means a longer valid discharging process, since the 
outlet temperature of HTF can maintain at the high 
temperature during a longer time range. Thus, the 
thermal performance of the storage tank is improved 
as well.  
 
4 Conclusion 
In the present work, the analytical model for 
characterizing the transient thermal transport 
process within the packed-bed sensible heat 
thermocline storage tanks with a height-dependent 
filler porosity is derived using the Laplace 
transform. The analyses based on the models 
indicate that the different porosity distributions can 
result in the significantly-different behaviors of 
outlet temperature and thus the varied charging and 
discharging efficiencies, when the total amount of 
filler materials is fixed, and the thermal performance 
will be improved with the increasing non-uniformity 
of filler porosity distributions. Our work may 
provide a new way to optimize the thermocline 
storage tanks in practice. 
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