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Abstract: A steady-state heat conduction problem is considered in a two-dimensional solid body which is filled
up composite circular inclusions. The composite circular inclusions consist of a core and a coating both of which
are cylindrically orthotropic. In this paper the neutral inhomogeneity is defined as a foreign body (inclusion)
which can be introduced into the host body (matrix) without distributing the temperature field in the originally
homogeneous body. The perfect thermal contacts are assumed to be between the different components of non-
homogeneous bodies.
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1 Introduction
The existence of the neutral inhomogeneities in a two-
dimensional rectangular body in the case of steady-
state heat conductance is proven. It is assumed that
the original body which has no inclusions is sub-
jected to constant temperature gradient. The consid-
ered two-dimensional body is shown in Fig. 1. The
temperature field of the rectangle in the Cartesian co-
ordinate x, y is prescribed as

T0(y) = − t1
L
y + t1

L2

L
, (1)

where t1 is a given temperature. It is evident thatT0 =
T0(y) satisfies the boundary conditions

T0(−L1) = t1, T0(L2) = 0 (2)

and the heat flux vector q0 is as follows

q0 = k0
t1
L
ey, (3)

where k0 is the thermal conductance of the homo-
geneous isotropic rectangle. The unit vectors of
the Cartesian coordinate system Oxy are ex and ey
(Fig. 1).

The composite cylindrical inhomogeneity is intro-
duced to the homogeneous isotropic rectangular body
as shown in Fig. 2. The inclusion is placed to the
origin of the Cartesian coordinate system Oxy and it
contains two different material components. The first
component is a coating occupying the hollow circu-
lar domain A1 and the second component is the core
occupying the solid circular domain A2. In the polar
coordinate system Orϕ the domains A1 and A2 are
defined as

A1 = {(r, ϕ) |R2 ≤ r ≤ R1, 0 ≤ ϕ ≤ 2π} , (4)
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Figure 1: Rectangular body subjected to constant heat
flux vector.

A2 = {(r, ϕ) |0 ≤ r ≤ R2, 0 ≤ ϕ ≤ 2π} . (5)

The materials of the coating and core are homoge-
neous and cylindrically orthotropic with the thermal
conductivities k1r, k1ϕ and k2r, k2ϕ. In the polar co-
ordinate system Orϕ

T0(r, ϕ) = −t1
r

L
sinϕ+ t1

L2

L
, (6)

q0(r) = k
t1
L

(er sinϕ+ eϕ cosϕ) . (7)

The unit vectors of the polar coordinate system Orϕ
are er(ϕ) and eϕ(ϕ) (Fig. 2).
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Figure 2: A coated circular inhomogeneity in homo-
geneous rectangular body.

The existence of neutral inhomogeneity for imper-
fect thermal contact was analysed by Benveniste and
Miloh [1].

For the three-dimensional steady-state heat con-
duction problem the neutral inhomogeneity with
spherical orthotropic inclusions was studied in paper
[2], where the volume fraction of the core in all in-
homogeneities is the same. The functionally graded
material properties of inclusions are also discussed in
paper by Ecsedi and Baksa [2].

The existence of the neutral inhomogeneities in
different boundary-value problems of elasticity was
studied by Ru [3], Ru et al. [4], Benveniste and Chen
[5], Ecsedi and Baksa [6].

The steady-state temperature field in a two-
dimensional cylindrically anisotropic homogeneous
body is described by the following partial differential
equation in cylindrical coordinate system Orϕ [7]

kir
∂2Ti

∂r2
+

kir
r

∂Ti

∂r
+

kiϕ
r2

∂2Ti

∂ϕ2
= 0,

(r, ϕ) ∈ Ai, (i = 1, 2).

(8)

The expression of the heat flux in radial direction is

qir(r, ϕ) = −kir
∂Ti

∂r
, (r, ϕ) ∈ Ai, (i = 1, 2). (9)

2 Governing equations
According to equation (6) and

q0r = q0 · er = k0
t1
L
sinϕ, (10)

where the dot between two vectors denotes their
scalar product we assume that

T1(r, ϕ) = F1(r) sinϕ+t1
L2

L
, (r, ϕ) ∈ A1, (11)

x

y

Oa1 a2

L

P3

P4P2

P1

Figure 3: Several circular inhomogeneities in rectan-
gular homogeneous two-dimensional body.

T2(r, ϕ) = F2(r) sinϕ+t1
L2

L
, (r, ϕ) ∈ A2, (12)

From the partial differential equation (8) it follows
that

d2Fi

dr2
+

1

r

dFi

dr
− k2i

r2
Fi = 0, ki =

√
kiϕ
kir

,

for i = 1, R2 ≤ r ≤ R1,

for i = 2, 0 ≤ r ≤ R2.

(13)

The solution of the ordinary differential equation (13)
for F1 = F1(r) and F2 = F2(r) are

F1(r) = C1r
k1 + C2r

−k1 , R2 ≤ r ≤ R1, (14)

F2(r) = C3r
k2 + C4r

−k2 , 0 ≤ r ≤ R2. (15)

The function F2 = F2(r) is bounded at r = 0, from
this fact it follows that

C4 = 0. (16)

The temperature fields in inhomogeneity are

T1(r, ϕ) =
(
C1r

k1 + C2r
−k1

)
sinϕ+ t1

L2

L
,

(r, ϕ) ∈ A1,
(17)

T2(r, ϕ) = C3r
k2 sinϕ+ t1

L2

L
,

(r, ϕ) ∈ A2.
(18)
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The whole temperature field of the rectangular body
with cylindrically anisotropic inclusion is as follows

T (r, ϕ) = (H(r)−H(r −R2))T2(r, ϕ)+

+ (H(r −R2)−H(r −R1))T1(r, ϕ)+

+H(r −R1)T0(r, ϕ), (r, ϕ) ∈ A =

= {(x, y)| − a1 ≤ x ≤ a2,−L1 ≤ y ≤ L2} .

(19)

Here,H = H(r) is the Heaviside function [8]. In the
case of perfect thermal contact the following equa-
tions are valid

T1(R1, ϕ) = T0(R1, ϕ), 0 ≤ ϕ ≤ 2π, (20)

q1r(R1, ϕ) = q0r(R1, ϕ), 0 ≤ ϕ ≤ 2π, (21)

T1(R2, ϕ) = T2(R2, ϕ), 0 ≤ ϕ ≤ 2π, (22)

q1r(R2, ϕ) = q2r(R2, ϕ), 0 ≤ ϕ ≤ 2π. (23)

The system of equations (20–23) contains only three
unknown C1, C2 and C3 which has unique solution
if the geometrical and material properties satisfy cer-
tain conditions. Section 3 of this paper deals with the
answering the question what kind of connection must
exist between R1, R2 and k0, k1r, k1ϕ, k2r, k2ϕ to
compute the constants C1, C2 and C3 from the sys-
tem of equations (20–23).

3 Formulation of the conditions of

neutral inhomogeneity
The detailed form of system of equations (20–23) is

C1R
k1

1 + C2R
−k1

1 + t1
R1

L
= 0, (24)

κ1C1R
k1

1 − κ1C2R
−k1

1 + k0t1
R1

L
= 0, (25)

C1R
k1

2 + C2R
−k1

2 − C3R
k2

2 = 0, (26)

κ1C1R
k1

2 − κ1C2R
−k1

2 − κ2C3R
k2

2 = 0, (27)

where

κ1 =
√
k1rk1ϕ, κ2 =

√
k2rk2ϕ. (28)

System of equations (24–27) generates a homoge-
neous system of linear equations for the C1, C2, C3

and

X = t1
R1

L
. (29)

Figure 4: The contour lines of the temperature func-
tion.

This system of equations has only non-trivial solu-
tions for C1, C2, C3 andX if its determinantD0 van-
ishes, that is

D0 =

∣∣∣∣∣∣∣∣
Rk1

1 R−k1

1 0 1

κ1R
k1

1 −κ1R
−k1

1 0 k0
Rk1

2 R−k1

2 −Rk2

2 0

κ1R
k1

2 −κ1R
−k1

2 −κ2R
k2

2 0

∣∣∣∣∣∣∣∣ = 0.

(30)
After some manipulations the determinant D0 can be
written in the form

D0 =

∣∣∣∣∣∣∣∣
Rk1

1 R−k1

1 0 1

d1R
k1

1 −d2R
−k1

1 0 0

Rk1

2 R−k1

2 −Rk2

2 0

d3R
k1

2 −d4R
−k1

2 0 0

∣∣∣∣∣∣∣∣ = 0, (31)

where

d1 =

(
1− k0

κ1

)
, d2 =

(
1 +

k0
κ1

)
,

d3 =

(
1− κ2

κ1

)
, d4 =

(
1 +

κ2
κ1

)
.

(32)

The condition of the neutral inhomogeneity which as-
sures that there is a non-trivial solution of homoge-
neous system of linear equations for C1, C2, C3 and
X can be formulated as(

1 +
k0
κ1

)(
1− κ2

κ1

)
R−k1

1 Rk1

2 −

−
(
1− k0

κ1

)(
1 +

κ2
κ1

)
Rk1

1 R−k1

2 = 0.

(33)
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Figure 5: The contour lines of the radial component
of heat flux vector.

Independently of the size and the position of neutral
inhomogeneity equation (33) satisfies if

k0 = κ1 = κ2. (34)

It must be noted that there is no restriction to the po-
sition of the origin of the coordinate system Oxy.

From equations (24–27) the following formulae
can be derived for C1, C2 and C3

C1 = −t1
R1−k1

1

L
, C2 = 0,

C3 = −t1
R1−k1

1

L
Rk1

2 R−k2

2 .

(35)

The expression of radial component of the heat flux
vector in the domain A1 ∪A2 is

q2r(r, ϕ) = t1k2r
R1−k1

1

L
Rk1

2 R−k2

2 rk2−1 sinϕ,

0 ≤ r ≤ R1, 0 ≤ ϕ ≤ 2π,

(36)

q1r(r, ϕ) = t1k1r
R1−k1

1

L
rk1−1 sinϕ,

R2 ≤ r ≤ R1, 0 ≤ ϕ ≤ 2π.

(37)

On the whole rectangular domain the radial compo-
nent of the heat flux vector is as follows

qr(r, ϕ) = (H(r)−H(r −R1)) q1r(r, ϕ)+

+ (H(r −R1)−H(r −R2)) q2r(r, ϕ)+

+H(r −R2)q0r(r, ϕ).

(38)

Figure 6: The plots of temperature function as a func-
tion of r.

Figure 7: The graphs of the radial component of heat
flux vector as a function of r.
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It is evident that in the case of several circular cylin-
drically anisotropic inclusions (Fig. 3) when the tem-
perature field of the host body is given by equation
(1), if

k0 =
√
kirkiϕ, (i = 1, 2 . . . , N) (39)

then the temperature field does not disturb outside of
the inclusions.

4 Numerical example
The numerical example uses the following data: t1 =
200 K, L1 = 0.8 m, L2 = 0.8 m, a1 = 0.8 m,
a2 = 0.8 m, R1 = 0.25 m, R2 = 0.15 m, k1r = 45
W/mK, k1ϕ = 62 W/mK, k2r = 67.5 W/mK, k2ϕ =
41.33333W/mK, k0 = 52.82045058W/mK.

The contour lines of the temperature function T =
T (r, ϕ) is shown in Fig. 4. The contour lines of radial
component of the heat flux vector is given in Fig. 5.
The plots of function T = T (r, ϕ) for five different
values of ϕ (ϕ = 0, ϕ = π

6 , ϕ = π
4 , ϕ = π

3 , ϕ = π
2 )

as a function of r for 0 ≤ r ≤ 5R1 are shown in
Fig. 6. The graphs of the radial component of heat
flux vector are presented for five different values of
ϕ (ϕ = 0, ϕ = π

6 , ϕ = π
4 , ϕ = π

3 , ϕ = π
2 ) as a

function of radial coordinate r for 0 ≤ r ≤ 5R1 in
Fig. 7.

5 Conclusion
Paper gives the existence conditions of neutral inho-
mogeneities in a rectangular domain for a one dimen-
sional steady-state heat flow problem. The compos-
ite inclusions consist of a core and coating which are
cylindrically orthotropic. A numerical example illus-
trates the validity of the presented theory. The main
result of the paper is a contribution to the existing ex-
act benchmark solution for heat conduction in com-
posite solid bodies.
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