
A New Robust Molding of Heat and Mass Transfer Process in 

MHD Based on Adaptive-Network-Based Fuzzy Inference System 
 

AHMAD A. ALHARBI1, AMR R. KAMEL2*, SAMAH A. ATIA3 
1Department of Mathematics, Faculty of Science and Arts, Northern Border University,  

Arar, SAUDI ARABIA 
2Department of Applied Statistics and Econometrics, Faculty of Graduate Studies for Statistical 

Research (FGSSR), Cairo University, Giza 12613, EGYPT 
2Data Processing and Tabulation at Central Agency for Public Mobilization and 

 Statistics (CAPMAS), Nasser City 2086, EGYPT 
3Department of Mathematical Statistics, Faculty of Graduate Studies for Statistical Research 

(FGSSR), Cairo University, Giza 12613, EGYPT 
 

Abstract:- This study concerns with the Process intensification deal with the complex fluids in mixing 

processes of many industries and its performance is based on the flow of fluid, magnetohydrodynamic (MHD) 

heat and mass transfer. This paper proposes a dynamic control model based on adaptive-network-based fuzzy 

inference system (ANFIS), weighted logistic regression and robust relevance vector machine (RRVM).  

Suitable similarity variables are applied to convert the flow equations into higher order ordinary differential 

equations and solved numerically. The surface-contour plots are utilized to visualize the influence of active 

parameters on velocity, thermal, nanoparticles concentration and motile microorganism’s density. The hybrid-

learning algorithm comprised of gradient descent and least-squares method is employed for training the ANFIS. 

A novel RRVM is presented to predict the endpoint. RRVM solves the problem of sensitivity to outlier 

characteristic of classical relevance vector machine (RVM), thus obtaining higher prediction accuracy. The key 

idea of the proposed RRVM is to introduce individual noise variance coefficient to each training sample. In the 

process of training, the noise variance coefficients of outliers gradually decrease so as to reduce the impact of 

outliers and improve the robustness of the model. To compare the proposed RRVM and other methods with 

outliers, the Monte Carlo simulation study has been performed. The simulation results showed that, based on 

mean squared error (MSE), mean absolute error (MAE), root mean squared error (RMSE) and coefficient of 

determination (𝑅2) criteria, the proposed RRVM give better performance than other methods when the data 

contain outliers. While when the dataset does not contain outliers, the results showed that the classical RVM is 

more efficient than other methods. 
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1 Introduction 
 
The magnetohydrodynamic (MHD) heat and mass 

transfer processes over a moving surface are of 

interest engineering and geophysical applications 

such as geothermal reservoirs, thermal insulation, 

enhanced oil recovery, packed-bed catalytic 

reactors, cooling of nuclear reactors. Many 

chemical engineering processes, such as metallurgy 

and polymer extrusion, require cooling a molten 

liquid as it is stretched into a cooling system; the 

fluid mechanical characteristics of the final product 

are mostly determined by the cooling liquid 

employed and the velocity of stretching. Some 

polymer fluids with higher electromagnetic 

characteristics, such as polyethylene oxide and 

polyisobutylene solution in cetane, are commonly 

employed as cooling liquids because their flow 

may be managed by external magnetic fields to 

improve the quality of the final product. Many 

transport processes in the industrial world include 

simultaneous heat and mass transfer as a result of 

the combined buoyancy effects of thermal diffusion 

and chemical species diffusion. This might be due 

to the fact that the research of combined heat and 

mass transfer is beneficial in a variety of 

technological transfer procedures. make a few 

attempts in this direction. The study of magnetic 

fields and the movement of electrically conducting 

fluids in porous media has raised significant 

concerns [1]. 
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      Nomenclature     Greek Symbols 

𝑥, 𝑦 space coordinates 𝑇𝑖 target value 

𝑢, 𝑣 velocity components 𝐹𝑖 forecast value 

𝑈𝑤(𝑥, 𝑡) stretching sheet velocity 𝑇‾  average target value 

𝐵(𝑥, 𝑡) magnetic field strength 𝑁 number of data 

𝑇𝑤 surface temperature 𝑏 power law index 

𝑇∞ ambient temperature Γ material time constant 

𝑁𝑤 surface motile microorganism density 𝜌 fluid density 

𝑁∞ ambient motile microorganism density 𝜈 kinematic viscosity 

𝑛 power law index 𝑘∗ mean absorption coefficient 

𝑡 time 𝜉 similarity variable 

𝑇 fluid temperature 𝑙1 velocity slip factor 

𝐶 nanoparticle volume fraction 𝑙2 thermal slip factor 

𝑁 density of motile microorganisms 𝑙3 concentration slip factor 

𝐶𝑤 surface nanoparticle concentration 𝑙4 microorganism slip factor 

𝑊𝑐 maximum cell swimming speed 𝑅𝑟 fuzzy rule 

𝐶∞ ambient concentration 𝑙(𝑢) logistic loss function 

𝑞𝑟 radiative heat flux Σ variance matrix 

𝑐𝑝 specific heat μ mean value vector 

𝐷𝐵 Brownian diffusion coefficient 𝑤𝑖 weight associated 

𝐷𝑇 thermophoresis diffusion coefficient 𝜎 kernel width 

𝐷𝑛 microorganism diffusion coefficient 𝛼𝑗 unique hyperparameter individually 

𝑛 chemotaxis constant 𝜎∗ Stefan-Boltzmann constant 

 

Toki and Tokis [2] study unstable free convection 

fluid flows that are incompressible and viscous near 

a porous infinite plate with arbitrary time dependent 

heating plate. Senapati et al. [3] published the 

results of chemical reactions of viscous fluids that 

are electrically conducting via a porous material in 

two-dimensional steady free convection flow along 

a vertical surface with slip flow area. 

Moreover, the non-newtonian fluids and their 

properties play an important role in the 

intensification of mixing processes in a variety of 

sectors, including plastics, paper, rubber, food, and 

minerals. The carreau rheological model is a non-

newtonian rheological model in which the 

constitutive relation holds for both high and low 

shear rates. Because of its numerous uses in 

engineering and technology, the Carreau fluid flow 

has gotten a lot of attention. Several researches on 

the heat and mass transfer properties of magneto 

Carreau nanofluids with diverse characteristics such 

as heat source/sink, thermal radiation, 

suction/injection, and changing thermal conductivity 

over a permeable/impermeable stretched sheet have 

been conducted, see [4,5]. Nanofluids improve heat 

transmission and can be used to improve the 

efficiency of heat exchangers and reactors. In 

nanofluids, bioconvection improves mass transfer, 

induces microvolume mixing, improves stability, 

and prevents nanoparticle clustering. Bio-nano 

cooling systems, microfluidic devices, enhanced  

 

energy conservation devices, medical filtration, and 

microbial fuel cell technologies are all possible uses 

of bioconvection phenomena in nanofluids. 

Understanding MHD is inextricably linked to an 

understanding of the physical consequences that 

occur in MHD. Electric current is induced in the 

conductor as it travels into a magnetic field, and the 

conductor develops its own magnetic field. The 

magnetic field lines will be excluded from the 

conductor because the generated magnetic field 

seeks to eradicate the original and externally 

supported field. The induced field enhances the 

applied field when the magnetic field forces the 

conductor to move it out of the field. As a result of 

this procedure, the force lines appear to be pulled 

together with the conductor. The fluid with 

complicated movements is the conductor in this 

article. To comprehend the dynamical impact, we 

must first understand that when cur rents are created 

by a conducting fluid moving through a magnetic 

field, a Lorentz force acts on the fluid and alters its 

velocity. In MHD, movement affects the field and 

vice versa. As a result, the theory is significantly 

non-linear. 

The data-processing techniques like artificial 

neural network (ANN), adaptive-network-based 

fuzzy inference system (ANFIS) and genetic 

algorithm (GA) attracted the researchers because of 

its applications in many non-linear systems. An 

ANFIS can assist us in determining the best 
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distribution of membership functions by 

determining the mapping relation between input and 

output data via hybrid learning. This inference 

system is made up of five levels. The node function 

describes numerous nodes in each tier. Fixed nodes, 

shown by circles, represent parameter sets that are 

fixed in the system, whereas adaptive nodes, 

denoted by squares, represent parameter sets that are 

modifiable in these nodes. The current layer's input 

will be the output data from the preceding levels' 

nodes. 

To alleviate the above drawbacks, Tipping [6,7] 

proposed the relevance vector machine (RVM). The 

RVM is a Bayesian evidence-based nonlinear 

probabilistic model. To optimize the 

hyperparameters of the model and get a sparse 

solution, it employs the type-II maximum likelihood 

approach, often known as the "evidence process." 

For each of the model coefficients, an independent 

zero-mean Gaussian prior is assumed, as well as an 

independent Gamma hyper prior for each 

hyperparameter. After that, a training data set is 

used to determine posterior distributions of model 

coefficients and hyperparameters. Initially, the 

posterior distributions were calculated using the 

type-II maximum likelihood approach, which is an 

evidence procedure. A variational inference 

technique, which maximizes a variational lower 

bound on the marginal log likelihood, is an alternate 

strategy for the approximation. 

The posterior distributions of several of the 

model coefficients are strongly peaked around zero, 

and so those coefficients may be omitted from the 

final model, thanks to the hierarchical prior structure 

known as automated relevance determination prior. 

As a result, we can have a sparse solution. The 

relevance vectors are the training observations with 

non-zero coefficient values. The support vector 

machine (SVM) is another common kernel-based 

learning technique that also delivers a sparse 

solution, see [8]. The support vectors in the SVM 

are the observations that contribute to the final 

decision boundary. In practice, the RVM offers 

significant benefits over the SVM. The number of 

relevance vectors is substantially fewer than the 

number of support vectors, resulting in a higher 

degree of sparsity. Second, it generates probabilistic 

results (e.g., class probability estimates). Finally, 

model complexity may be controlled automatically, 

without the need for an extra regularization 

parameter. However, RVM has a serious weakness 

that it assumes all of the training samples are 

coupled with independent Gaussian 

noise: 𝜀~𝑁(0, 𝜎2). A well-known disadvantage 

with Gaussian noise model is that it is not robust. 

The accuracy of the RVM model will be 

considerably harmed if the training samples are 

polluted by outliers. 

 In this paper, a novel robust relevance vector 

machine (RRVM) is contrived, which posits that 

each training sample has its own coefficient of noise 

variance. To discover and eradicate outliers, the 

coefficients corresponding to outliers will be 

severely reduced throughout the model training 

method. To estimate the endpoint carbon content 

and temperature of molten steel, we use the 

suggested RRVM as an identifier. Measured data 

are frequently intermixed with outlying observations 

in MHD heat and mass transfer processes, although 

RRVM can lessen the impact of outliers and has 

strong generalization capacity. As a result, it is 

appropriate to build the endpoint prediction model. 
 

The remainder of this paper is organized as 

follows: In Section 2, the literature review of MHD 

heat and mass transfer processes described. Section 

3 presents the The mathematical formulation of the 

problem. Section 4 introduces the methods ANFIS, 

Weighted logistic regression with Transformation of 

the logistic function and RRVM utilized in this 

paper. RRVM for classification using variational 

inference are given in Section 5. Section 6 contains 

the Monte Carlo simulation study. In Section 7, the 

conclusions are drawn. 

 

2 Modeling Studies: literature review 
 

There is a growing body of research in the topic of 

nanofluids, and multiple examinations of their 

thermal conductivities have been carried out to 

assess the impact of various factors. While 

experimental work necessitates a significant 

investment in a well-equipped laboratory and 

appropriate instruments, which is a significant 

barrier for some scholars, predictive approaches are 

increasingly popular for a faster and less expensive 

view of various influential parameters on desired 

parameters. Actually, predicting the impact of 

thermal conductivity of nanofluids is quite difficult, 

and this has been a focus of intense research for 

scientists. 

Naveed et al. [9] examined MHD BL (boundary 

layer) unsteady flow above curved stretching 

surface. Abbas et al.  examined numerically 

radiation impacts on MHD flow above curved 

stretching surface of nanofluid by assimilating the 

slip, collective radiation and heat generation effects. 

Sahoo [10] investigated the mass and heat transfer 

in MHD flow of viscoelastic fluid via porous media 

bounded by vacillating plate in slip flow system. 
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Singh et al. 11 have inspected mass transfer and heat 

in MHD flow or viscous fluid past a straight up 

plate in oscillatory velocity suction. Noor et al. [11] 

used the shooting approach to investigate MHD 

flow on an inclined surface with heat source/sink 

effects. MHD fluid flow across a spinning disc was 

researched by Turkyilmazoglu [12]. He analysed the 

viscous dissipation and Joule heating components 

using a spectral numerical integration approach. 

Chen [13] studied heat and mass transport in MHD 

free convective flow with Ohmic heating and 

viscous dissipation using a numerical technique. 

In recent years, statistical learning theory has 

been rapidly developed. It is based on the notion of 

structural risk reduction and focuses on managing 

the generalization ability of the learning process, see 

[14]. The SVM was created based on this notion. It 

improves processing capabilities by translating data 

into a high-dimensional space and employing kernel 

functions. In addition, Müller et al. [15] established 

a regularization parameter C to adjust the trade-off 

between model complexity and training error. As a 

result, SVM has shown to be an effective tool for 

identifying non-linear systems, with several 

successful applications, see [16]. SVM has also 

performed well in the application of steelmaking 

process control. To forecast the endpoint parameters 

of electric arc furnace steelmaking, Yuan et al. [17] 

combined multiple support vector machines with 

principal component regression. Valyon and Horvth 

[18] suggested a sparse and robust extension of 

least-square SVM (LS-SVM) for calculating the 

quantity of oxygen blasted in Basic oxygen furnace 

(BOF) steelmaking, and showed that LS-SVM 

outperformed ANNs. Despite its popularity, 

however, SVM has a number of major and practical 

drawbacks. Predictions, for example, are not 

probabilistic, hence the kernel function must meet 

Mercer's requirement. Cross validation is required to 

estimate the error/margin trade-off parameter C, 

which takes a long time. Furthermore, despite the 

fact that SVM is a sparse model, the number of 

support vectors rises linearly with the size of the 

training sample set. These drawbacks limit the scope 

of SVM future uses. 

On the other hand, several projects have been 

undertaken to construct robust kernel-based learning 

algorithms, see Hwang et al. [19,20]. The robust 

truncated hinge loss SVM was proposed by Wu and 

Liu [21]. They used the difference convex approach 

to solve the nonconvex problem through a series of 

convex sub-problems because the underlying 

optimization problem comprises nonconvex 

minimization. However, because they were created 

using the SVM technique, these studies are unable 

to provide statistical information such as a class 

probability. For the logistic regression, Park and Liu 

[22] used a truncated logistic loss function to 

remove the effect of outlying observation. Despite 

the fact that this study can estimate the class 

probability, it does not provide a sparse solution. 

Furthermore, if a dataset contains outliers, a 

decision boundary derived from the RVM may be 

severely warped. Because data sets with outliers are 

regularly encountered in practice, a robust learning 

algorithm for the RVM that is insensitive to outliers 

is sought. In this paper, the influence of an outlier 

on the decision boundaries from the SVM (dotted 

line), RVM (dashed line), and the new approach, 

which is dubbed the RRVM (full line), is illustrated 

using a simulated dataset example in Figures 1-2. 

Figure 1 represents the decision boundaries obtained 

by employing the linear kernel, while Figure 2 

displays the decision boundaries obtained by radial 

basis function (RBF) kernel with 𝜎 =  2. For the 

SVM, the regularization constant C is set to 1. From 

the figures, it is observed that the decision 

boundaries from the SVM and RVM are pulled 

toward to the outlier regardless of the type of 

kernels.  

Fig. 1 A simulated dataset with outliers: plots of 

the decision boundaries from SVM, RVM and 

RRVM by employing the linear kernel. 

An adaptive-network-based fuzzy inference 

system (ANFIS) is used to generate the values of 

these control variables, which is based on operator 

control experience and production data from a steel 

factory. ANFIS can learn from a set of input-output 

data and offers competitive computation accuracy. 
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Combining ANFIS with RRVM, a dynamic control 

model of MHD heat and mass transport processes is 

created. In order to achieve the intended control 

effect, the RRVM model must be well-trained as an 

identifier to approximate the link between input and 

output and correctly anticipate the endpoint carbon 

content and temperature. The simulations in the 

final section of this paper will demonstrate that 

RRVM has a high degree of approximation ability 

and robustness. 

Fig. 2 A simulated dataset with outliers: plots of 

the decision boundaries from SVM, RVM and 

RRVM obtained by RBF kernel with 𝜎 = 2. 

Finally, a trimmed relevance vector machine 

(TRVM) was suggested by Yuan et al. [17], which 

redefined the likelihood function as a trimmed one. 

During model training, outliers are removed, and a 

weighted technique is used to determine the 

trimmed subset. The new technique can detect 

outliers and improve the model's robustness. Many 

robust methods are discussed by many papers in 

several models, see e.g. [23-26]. 
 

3 The Mathematical Formulation of 

the Problem 
In this section, our new robust modeling 

approach is described. Initially, the description 

on how the MHD heat and mass transfer 

processes are handled is presented. The 

adaptation to convective effects is also 

included. 

3.1 Modeling Description 
 

Consider an unsteady 2D flow of a 

magnetohydrodynamic Carreau nano-fluid 

containing gyrotactic micro-organisms influenced 

by a slendering stretching surface in the presence of 

thermal radiation and multiple slips. The heat 

transfer and mass transfer features are examined 

with the effects of Brownian motion and 

thermophoresis. 
 

The slendering sheet is stretched in the               

𝑥-direction with velocity 𝑈𝑤(𝑥, 𝑡)  =
 𝑈0(𝑥 + 𝑏)𝑚 1 − 𝑐𝑡⁄   and 𝑦-axis is normal to the 

flow, see Figure 3. The surface is assumed to be 

impermeable (𝑣𝑤  =  0) with the thickness 𝑦 =

 𝐴(𝑥 +  𝑏)
1−𝑚

2  where 𝑚 ≠ 1. A uniform magnetic 

field of strength             𝐵(𝑥, 𝑡)  =  𝐵0 √
(𝑥+𝑏)𝑚−1

1−𝑐𝑡
 is 

imposed in the direction transverse to the flow. The 

temperature 𝑇𝑤(𝑥, 𝑡), nanoparticle concentration 

𝐶𝑤(𝑥, 𝑡), and density of motile microorganisms 

𝑁𝑤(𝑥, 𝑡), at the stretching sheet are assumed to be 

greater than the ambient values 𝑇∞, 𝐶∞ and 𝑁∞, 

respectively. 
 

Fig. 3 Schematic form of the physical model 

 

3.2 Boundary Conditions and Governing 

Equations 
 

Based on the foregoing assumptions, the governing 

equations for mass, momentum, energy, 

nanoparticle concentration, and microorganisms are 

as follows: 
∂𝑢

∂𝑥
+

∂𝑣

∂𝑦
= 0                             (1) 
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∂𝑢

∂𝑡
+ 𝑢

∂𝑢

∂𝑥
+ 𝑣

∂𝑢

∂𝑦
=  

𝜈
∂2𝑢

∂𝑦2 [1 + Γ2 (
∂𝑢

∂𝑦
)

2
]

𝑛−1

2

+ 𝜈(𝑛 − 1)Γ2 ∂2𝑢

∂𝑦2 (
∂𝑢

∂𝑦
)

2
×  

[1 + Γ2 (
∂𝑢

∂𝑦
)

2
]

𝑛−1

2

−
𝜎𝐵2(𝑥,𝑡)

𝜌
𝑢                                (2) 

 
∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
=  

𝛼𝑚
∂2𝑇

∂𝑦2 + 𝜏 [(
𝐷𝑇

𝑇∞
) (

∂𝑇

∂𝑦
)

2
+ 𝐷𝐵

∂𝑇

∂𝑦

∂𝐶

∂𝑦
] −

1

𝜌𝑐𝑝

∂𝑞𝑟

∂𝑦
      (3) 

 

∂𝐶

∂𝑡
+ 𝑢

∂𝐶

∂𝑥
+ 𝑣

∂𝐶

∂𝑦
= 𝐷𝐵

∂2𝐶

∂𝑦2 + (
𝐷𝑇

𝑇∞
)

∂2𝑇

∂𝑦2                  (4) 

 
∂𝑁

∂𝑡
+ 𝑢

∂𝑁

∂𝑥
+ 𝑣

∂𝑁

∂𝑦
= 𝐷𝑛

∂2𝑁

∂𝑦2 −
𝑏𝑊𝑐

Δ𝐶
[

∂

∂𝑦
(𝑁

∂𝐶

∂𝑦
)]      (5) 

 

The problem boundary conditions are defined as 

follows: 

𝑢 = 𝑈𝑤(𝑥, 𝑡) + 𝑙1
∂𝑢

∂𝑦
[1 + Γ2 (

∂𝑢

∂𝑦
)

2
]

𝑛−1

2

,   

𝑣 = 0, 𝑇 = 𝑇𝑤(𝑥, 𝑡) + 𝑙2
∂𝑇

∂𝑦
, 𝐶   

= 𝐶𝑤(𝑥, 𝑡) + 𝑙3
∂𝐶

∂𝑦
, 𝑁 = 𝑁𝑤(𝑥, 𝑡) + 𝑙4

∂𝑁

∂𝑦
𝑎𝑡𝑦   

= 𝐴(𝑥 + 𝑏)
1−𝑚

2 𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞, 𝑁 →
     𝑁∞ as 𝑦 → ∞                                                     (6)  

 

where (𝑢, 𝑣) denotes the components of velocity 

along (𝑥, 𝑦) directions, t is the time, 𝑇, 𝐶 and 𝑁 

represent the fluid temperature, nanoparticles 

volume fraction and motile micro-organisms 

density, 𝛤 and 𝑛 stand for material time constant 

and power law index, 𝜌, 𝜈, 𝜎 and 𝛼𝑚 are the density, 

kinematic viscosity, electrical conductivity and 

thermal diffusivity, 𝑐𝑝 is the specific heat,            

𝜏 = (𝜌𝑐)𝑝 (𝜌𝑐)𝑓⁄   where (𝜌𝑐)𝑝 is effective heat 

capacity of nanoparticles and (𝜌𝑐)𝑓 is heat capacity 

of base fluid, 𝐷𝐵, 𝐷𝑇 and 𝐷𝑛 indicate the Brownian, 

thermophoretic and microorganism diffusion 

coefficients, 𝑏 and 𝑊𝑐 are the chemotaxis constant 

and maximum cell swimming speed (𝑏𝑊𝑐 -

constant), 𝑙1, 𝑙2, 𝑙3 and 𝑙4 signify the velocity, 

thermal, concentration and microorganism slip 

factors. 

𝑇𝑤(𝑥, 𝑡)  = 𝑇∞ + 𝑇0√
(𝑥+𝑏)1−𝑚

1−𝑐𝑡
,

 

       

𝐶𝑤(𝑥, 𝑡) = 𝐶∞ + 𝐶0√
(𝑥+𝑏)1−𝑚

1−𝑐𝑡
, 𝑁𝑤(𝑥, 𝑡)      

= 𝑁∞ + 𝑁0√
(𝑥+𝑏)1−𝑚

1−𝑐𝑡
                                             (7) 

However, the heat flux 𝑞𝑟 can be expressed as; 

𝑞𝑟 = −
4𝜎∗

3𝑘∗

∂𝑇4

∂𝑦
= −

16𝜎∗𝑇∞
3

3𝑘∗

∂𝑇

∂𝑦
                (8) 

 

where 𝜎∗ denote Stefan-Boltzmann constant and 𝑘∗ 

is mean absorption coefficient, respectively. 

 

In make use of Eq. (8), the Eq. (3) reduced to 

 
∂𝑇

∂𝑡
+ 𝑢

∂𝑇

∂𝑥
+ 𝑣

∂𝑇

∂𝑦
=  

(𝛼𝑚 +
16𝜎∗𝑇∞

3

3𝑘∗𝜌𝑐𝑝
)

∂2𝑇

∂𝑦2 + 𝜏 [(
𝐷𝑇

𝑇∞
) (

∂𝑇

∂𝑦
)

2
+ 𝐷𝐵

∂𝑇

∂𝑦

∂𝐶

∂𝑦
]  (9) 

 

 

4. Methods Utilized 
 

In this section, the methods utilized in the dynamic 

control model, such as ANFIS, Weighted logistic 

regression with Transformation of the logistic 

function, and RRVM, will be presented. 
 

4.1 Adaptive-Network-Based Fuzzy 

Inference System 

 
Adaptive-network-based fuzzy inference system 

(ANFIS) is an off-line learning model.  It's a type of 

artificial neural network that uses the Takagi–

Sugeno fuzzy inference system as its foundation. In 

the early 1990s, the approach was developed. It has 

the potential to capture the benefits of both neural 

networks and fuzzy logic principles in a single 

framework because it integrates both. Its inference 

system is made up of a set of fuzzy IF–THEN rules 

with the capacity to approximate nonlinear functions 

through learning. As a result, ANFIS is regarded as 

a universal estimator. By building a collection of 

fuzzy if-then rules with appropriate membership 

functions, it has been widely employed in the 

modeling and control of nonlinear systems, see [27]. 

Generally, an ANFIS model consists of five layers. 

The architecture is shown in Figure 4. 

 

The fuzzy rules extracted from input–output pairs 

are described as; 

𝑅𝑟: if 𝑥1 is 𝐴1
𝑠1 and 𝑥2 is 𝐴2

𝑠2 … and 𝑥𝑛 is 𝐴𝑛
𝑠𝑛 

 

Then 𝑓𝑟 = 𝑓𝑟(𝑥1, 𝑥2, … , 𝑥𝑛),  𝑟 = 1, … , 𝐾      (10) 
 

where 𝑅𝑟 denotes the 𝑟𝑡ℎ fuzzy rule, and A1
S1 , … , An

sn 

are the fuzzy sets associated with the input variables 

𝑥1, … , 𝑥𝑛. Function 𝑓𝑟 = 𝑓𝑟(𝑥1, 𝑥2, … , 𝑥𝑛) is the 

output of the 𝑟𝑡ℎ fuzzy rule. The different functions 

of five layers are described as follows: 
 

Layer 1: Input variables are fuzzificated and the 

membership of 𝑥𝑙(𝑙 = 1, … , 𝑛) on different fuzzy 

sets are calculated according to formula; 
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𝜇𝑙
𝑠𝑙 = 𝜇

𝐴1

𝑠𝑙 (𝑥𝑙)                            (11) 

where 𝜇
𝐴1

𝑠𝑙 (⋅) denotes the membership function of 

variable 𝑥𝑙 on fuzzy sets 𝐴𝑙
𝑆𝑙 and 𝜇𝑙

𝑠𝑙 is the 

membership degree.  

 

Layer 2: Calculate the confidence degrees of fuzzy 

rules. As for the 𝑟𝑡ℎ fuzzy rule, the degree of 

confidence is calculated as formula; 

𝜔𝑟 = 𝜇1
𝑠1 ⋅ 𝜇2

𝑠2 ⋯ 𝜇𝑛
𝑠𝑛 ,  𝑟 = 1, … , 𝐾         (12) 

Layer 3: All of the confidence degrees are 

normalized as: 

�̅�r = 𝜔r/(∑  𝐾
𝑝=1 𝜔𝑝), 𝑟 = 1, … , 𝐾            (13) 

 

Layer 4: Calculate the output of each fuzzy rule 

according to formula (14). Here Takagi–Sugeno 

type fuzzy rules are adopted. 
 

𝑓𝑟 = 𝑝1
𝑟𝑥1 + 𝑝2

𝑟𝑥2 + ⋯ + 𝑝𝑛
𝑟𝑥𝑛 + 𝑞𝑟        (14) 

 

where 𝑝1
𝑟, 𝑝2

𝑟 , … , 𝑝𝑛
𝑟  and 𝑞𝑟 are fuzzy consequent 

parameters which can be determined based on least-

square regression. 
 

Layer 5: Calculate the final output of ANFIS. It is 

the weighted summarization of 𝑓𝑟, and the weight is 

𝜔‾𝑟(𝑟 = 1, … , 𝐾). 
 

𝑦 = ∑  𝐾
𝑟=1 𝜔‾𝑟𝑓𝑟                       (15) 

 
Fig. 4 The architecture of ANFIS 

 

 

4.2 Weighted Logistic Regression 
 

In this section, we briefly describe a standard 

logistic regression and its weighted version for 

achieving the robustness. Consider a data set of 𝑁 

input-target pairs {𝑥𝑖, 𝑡𝑖}𝑖=1
𝑁 , where 𝑥𝑖 represents a 

d-dimensional input vector and 𝑡𝑖 represents class 

labels: 𝑡𝑖 = 0 if the ithobservation belongs to the 

first class and 𝑡𝑖 = 1 if it belongs to the second 

class. A decision boundary can be defined as a 

linear combination of 𝑀 basis functions as follows: 
 

𝑓(𝜙(𝑥)) = 𝛽𝑇𝜙(𝑥) = 𝛽0 + ∑  𝑀
𝑖=1 𝛽𝑖𝜙𝑖(𝑥)       (16) 

 

where 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑀)𝑇 is a vector of model 

coefficients and ϕ(𝑥) = (1, 𝜙1(𝑥), … ,, 𝜙𝑀(𝑥))𝑇 is 

a vector of basis functions. By employing some 

nonlinear basis functions, the decision boundary 

𝑓(𝜙(𝑥)) becomes a nonlinear function with respect 

to 𝑥. Some commonly used basis functions are the 

polynomial kernel, 𝜙𝑖(𝑥) = (1 + ⟨𝑥, 𝑥𝑖⟩)𝑑, where 

the parameter d is the degree of polynomial to be 

used, and the Gaussian RBF kernel; 

 

𝜙𝑖(𝑥) = 𝑒𝑥𝑝 {−
(𝑥−𝑥𝑖)𝑇(𝑥−𝑥𝑖)

𝜎
}, 

where the parameter 𝜎 is the kernel wid th. 
 

 In a standard logistic regression, the conditional 

distribution for t is given by; 
 

𝑝(𝑡 ∣ 𝛽) = 𝜎(𝛽𝑇𝜙(𝑥))𝑡{1 − 𝜎(𝛽𝑇𝜙(𝑥))}1−𝑡 

 

where 𝜎(𝑢) is the logistic function defined as 

𝜎(𝑢) = 1/1 +  𝑒−𝑢. Assuming independent and 

identically distributed data, the likelihood function 

can be written as; 

 

𝑝( 𝑡 ∣∣ 𝛽 ) = ∏  𝑁
𝑖=1 𝑝(𝑡𝑖 ∣ 𝛽) =

∏  𝑁
𝑖=1 𝜎(𝛽𝑇𝜙(𝑥𝑖))

𝑡𝑖
{1 − 𝜎(𝛽𝑇𝜙(𝑥𝑖))}

1−𝑡𝑖
        (17) 

 

The model coefficients 𝛽 can be estimated by the 

maximum likelihood approach which can be 

formulated as the following optimization problem in 

the loss function framework: 

 

𝑚𝑖𝑛
𝛽

 ∑  𝑁
𝑖=1 𝑙{(2𝑡𝑖 − 1)𝑓(𝜙(𝑥𝑖))}               (18) 

 
where 𝑙(𝑢)  =  𝑙𝑛 1 +  𝑒−𝑢 denotes the logistic loss 

function. It should be noted that the solution of 

minimizing the sum of loss functions is equivalent 

to that of maximizing the log likelihood function, 

that is; 
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min
𝛽

 ∑  𝑁
𝑖=1 𝑙{(2𝑡𝑖 − 1)𝑓(𝜙(𝑥𝑖))} ⇔  

𝑚𝑎𝑥
𝛽

  𝑙𝑛 𝑝(𝑡 ∣ 𝛽) ⇔ 𝑚𝑎𝑥
𝛽

 ∑  𝑁
𝑖=1 𝑙𝑛 𝑝(𝑡𝑖 ∣ 𝛽)        (19) 

 

To obtain a robust classification result, a 

weighting strategy can be employed to the standard 

logistic regression model in the loss function 

framework as follows; 
 

𝑚𝑖𝑛
𝛽

 ∑  𝑁
𝑖=1 𝑤𝑖𝑙{(2𝑡𝑖 − 1)𝑓(𝜙(𝑥𝑖))}         (20) 

where 𝑤𝑖 is a weight associated with the 

𝑖𝑡ℎ observation. If a small weight is given to an 

outlying observation, the effect of an outlier can be 

reduced and therefore a robust decision boundary 

can be obtained. Then, one question is raised: how 

the concept of a weighted loss can be transformed 

into the maximum likelihood approach. From Eq. 

(19), the following relationship can be obtained: 

min
𝛽

 ∑  𝑁
𝑖=1 𝑤𝑖𝑙{(2𝑡𝑖 − 1)𝑓(𝜙(𝑥𝑖))} ⇔  

max
𝛽

 ∑  𝑁
𝑖=1 𝑤𝑖 𝑙𝑛 𝑝(𝑡𝑖 ∣ 𝛽) ⇔  

max
𝛽

 ∑  𝑁
𝑖=1  𝑙𝑛 𝑝(𝑡𝑖 ∣ 𝛽)𝑤𝑖                                    (21) 

 

Therefore, the concept of a weighted loss can be 

dealt with in the maximum likelihood approach by 

replacing 𝑝(𝑡𝑖 ∣ 𝛽) with 𝑝(𝑡𝑖 ∣ 𝛽)𝑤𝑖. 
 

To avoid the overfitting problem while 

considering a complex model, the regularization 

concept has been used in machine learning. By 

employing the regularization concept to the original 

logistic regression, the formulation in Eq. (18) can 

be extended as follows; 
  

𝑚𝑖𝑛
𝛽

 ∑  𝑁
𝑖=1 𝑙{(2𝑡𝑖 − 1)𝑓(𝜙(𝑥𝑖))} + 𝜆 𝐽(𝑓)     (22) 

 

where λ >  0 is a regularization parameter which 

controls the smoothness of a decision boundary and 

𝐽 ( 𝑓 ) denotes a regularization term which 

represents a penalty for a complex decision 

boundary. 

 

4.3 Classical Relevance Vector Machine 
 

The relevance vector machine (RVM) is a Bayesian-

based probabilistic model. Consider the training 

samples to be a data collection of input-target pairs 

{𝑥𝑖; 𝑡𝑖}𝑖=1
𝑁  , where 𝑥𝑖 ∈ 𝑅𝑛 signifies an 𝑛-

dimensional input vector and 𝑡𝑖 ∈ 𝑅𝑛 denotes a 

scalar-measured output. Assume that the objectives 

are sampled separately from the regression model 

with extra noise εi as follows: 
 

𝑡𝑖 = 𝑦(𝑥𝑖; 𝑤) + 𝜀𝑖                       (23) 
 

where 𝜀𝑖 is assumed to be the mean-zero Gaussian 

noise with variance 𝜎2, namely 𝜀𝑖~𝑁(𝜀𝑖|0, 𝜎2). 

Similar to SVM, the prediction function 𝑦(𝑥;  𝑤) of 

RVM is defined as a linear combination of the 

weighted basis functions: 
 

𝑦(𝑥; 𝑤) = ∑𝑖=1
𝑁  𝑤𝑖𝐾(𝑥, 𝑥𝑖) + 𝑤0         (24) 

where 𝐾(𝑥, 𝑥𝑖) is a basis function, effectively define 

one basis function for each sample in training data 

set. The weight parameter vector is defined as 𝑤 =
[𝑤0, … , 𝑤𝑁]𝑇. According to Eq. (23) and the noise 

assumption of εi, we have the Gaussian distribution 

over ti with mean 𝑦(𝑥𝑖; 𝑤) and variance σ2, viz., 

𝑝(𝑡𝑖 ∣ 𝑥𝑖) = 𝑁(𝑡𝑖 ∣ 𝑦(𝑥𝑖; 𝑤), 𝜎2). For convenience, 

a hyperparameter β is defined as β = 1/σ2. 

Therefore, the likelihood function of the complete 

training data set is expressed as; 

𝑝(𝑡 ∣ 𝑤, 𝛽) = (
𝛽

2𝜋
)

𝑁/2
𝑒𝑥𝑝 {−

𝛽

2
∥ 𝑡 − 𝛷𝑤 ∥2}  (25)    

where 𝑡 = [𝑡1, 𝑡2, … , 𝑡𝑁]𝑇 and 𝛷 ∈ 𝑅𝑁×(𝑁+1) 

defined as 𝛷 = [𝜙(𝑥1), 𝜙(𝑥2), … , 𝜙(𝑥𝑁)]𝑇, which 

is called design matrix. The definition of 𝜙(𝑥𝑖) is  
 

𝜙(𝑥𝑖) = [1, 𝐾(𝑥𝑖 , 𝑥1), 𝐾(𝑥𝑖, 𝑥2), … , 𝐾(𝑥𝑖, 𝑥𝑁)]𝑇 

         ; 𝑖 = 1, … , 𝑁. 
 

     The goal of RVM training is to figure out what 

the posterior distribution is over the weight 

vector 𝑤. The prior distribution over              

𝑤𝑗 (𝑗 =  0, . . . , 𝑁) should be determined first in 

order to keep the likelihood function sparse and 

optimize it. Assume that 𝑤𝑗 follows a Gaussian 

distribution with mean zero and variance a 𝛼𝑗
−1, thus 

the previous distribution over 𝑤 is; 

𝑝(𝑤 ∣ 𝛼) = ∏  𝑁
𝑗=0 𝑁(𝑤𝑗 ∣ 0, 𝛼𝑗

−1)             (26) 

where αj is the unique hyperparameter individually 

associated with each weight parameter 𝑤𝑗 in a 

multivariate Gaussian distribution, and                 

𝛼 = [𝛼0, 𝛼1, … , 𝛼𝑁]𝑇 The posterior distribution over 

w may be estimated using the Bayesian rule and the 

defined prior distribution Eq. (26) and likelihood 

function Eq. (25). 
 

𝑝(𝑤 ∣ 𝑡, 𝛼, 𝛽) =
𝑝(𝑤∣𝛼)𝑝(𝑡∣𝑤,𝛽)

𝑝(𝑡∣𝛼,𝛽)
                (27) 

 

Since 𝑝(𝑤 ∣ 𝛼) and 𝑝(𝑡 ∣ 𝑤, 𝛽) are all Gaussian, the 

product of these two distributions is also Gaussian. 

Furthermore, 𝑝(𝑡 ∣ 𝛼, 𝛽) does not include 𝑤, so it is 

considered as a normalization coefficient. 
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The posterior distribution over w is also Gaussian 

and can be expressed as: 

 
𝑝(𝑤 ∣ 𝑡, 𝛼, 𝛽) = 𝑁(𝑤 ∣ 𝜇, 𝛴)             (28) 

 

where μ is the mean value vector and Σ is the 

variance matrix, which are expressed as formulas 

(29) and (30), respectively: 

Σ = (𝛽𝛷𝑇𝛷 + 𝐴)−1                    (29) 

𝜇 = 𝛽Σ𝛷𝑇𝑡                           (30) 

where 𝐴 =  diag(𝛼0, 𝛼1, . . . , 𝛼𝑁). The posterior 

distribution over 𝑤 are determined by 

hyperparameters 𝛽 and 𝛼, thus the hyperparameters 

are optimized by using evidence procedure. The 

iterative optimization formulas for hyperparameters 

are; 

𝛼𝑗 = 1/(𝜇𝑗
2 + Σ𝑗𝑗) = 𝛾𝑗/𝜇𝑗

2,  𝑗 = 0,1, … , 𝑁      (31) 

𝛽 = 𝑁 − ∑  𝑁
𝑗=0  𝛾𝑗 ∥ 𝑡 − 𝛷𝜇 ∥⁄                            (32) 

where 𝜇𝑗 denotes the 𝑗 th ellement of vector 𝜇 and 

Σ𝑗𝑗 denotes the 𝑗 th diagonal element of matrix 

Σ, 𝛾𝑗 = 1 − 𝛼𝑗Σ𝑖𝑗. In the process of training, 

Equations (13) – (16) are calculated iteratively. 

Most of 𝛼𝑗 tend to ward infinity and the 

corresponding 𝜇𝑗 will tend toward zero. The training 

stops until all the hyperparameters are convergent or 

the maximum number of iterations is reached. 

Classic RVM is based on the assumption that 

each training samples noise 𝜀i is a mean-zero 

Gaussian distribution with the same variance σ2 (or 

hyperparameter 𝛽). Measured data is usually tainted 

by outlying observations in actual applications, 

making the Gaussiannoise assumption 

unsustainable. This will weaken the RVM 

regression model's resilience and diminish its 

prediction accuracy. To alleviate this problem, 

researchers have proposed some modified methods. 

Tipping and Lawrence [28] improved RVM by 

using the Student-t noise model, which had a larger 

tail distribution than the Gaussian noise model. The 

updated technique, on the other hand, was 

developed using variational approximation, which 

takes longer to compute.  
 

4.4 Proposed New Modeling 
 

In this section, our new modeling approach is 

described. Initially, the description on how the 

MHD heat and mass transfer processes are handled 

is presented. The above modified strategies are 

mainly based on variational inference or trimming 

data set. A proposed modeling of robust relevance 

vector machine (RRVM) is presented to reduce the 

impact of outliers and the model can still be 

implemented by using evidence procedure. Rather 

than using the same noise variance for all samples, 

we assume that each training sample has its own 

noise variance coefficient. The iteration formulae 

are then deduced using the Bayesian evidence 

framework to maximize the hyperparameters and 

noise variance coefficients. Outliers noise variance 

coefficients will decrease during the optimization 

process, allowing outliers to be detected and 

eliminated. The following is a full description of the 

optimization technique. 

In reference to Bayesian weighted linear 

regression,Ting et al. [29] assume that the individual 

noise distribution of the 𝑖𝑡ℎ training sample is: 
 

𝑝(𝜀𝑖) = 𝑁(𝜀𝑖|0, 𝜎2/𝛽𝑖),   𝑖 =  1, … , 𝑁         (33) 

where 𝜎2denotes the average variance of all the 

training samples and 𝛽𝑖 denotes the noise variance 

coefficient of the 𝑖𝑡ℎ sample. The prior distribution 

of 𝛽𝑖  is assumed to be Gamma distribution, namely 
 

𝑝(𝛽𝑖) = Gamma (𝑎𝑖, 𝑏𝑖) = Γ(𝑎𝑖)−1𝑏𝑖
𝑎𝑖𝛽𝑖

𝑎𝑖−1
𝑒−𝑏𝑖𝛽𝑖  

with "gamma function" 𝛤(𝑎𝑖) = ∫0

∞
 𝑡𝑎𝑖−1𝑒−𝑡𝑑𝑡. 

Define the vector 𝛽 = [𝛽1, 𝛽2, … , 𝛽𝑁]𝑇 and the 

likelihood function of the complete training sample 

set will change from Eq. (25) to; 

 

𝑝(𝑡 ∣ 𝑤, 𝛽, 𝜎2) = (2𝜋𝜎2)−𝑁/2|𝐵|1/2

 
  

× 𝑒𝑥𝑝 {−
1

2𝜎2 (𝑡 − 𝛷𝑤)𝑇𝐵(𝑡 − 𝛷𝑤)}                  (34) 

 

where 𝐵 = 𝑑𝑖𝑎𝑔 (𝛽1, 𝛽2, … , 𝛽𝑁), and | ⋅ | is the 

determinant of matrix. The definitions of 𝑡, 𝑤 and 𝛷 

are the same as before. The prior distribution over w 

is still expressed as Eq. (26). According to Bayesian 

rule, the posterior distribution of w is computed as; 
 

𝑝(𝑤 ∣ 𝑡, 𝛼, 𝛽, 𝜎2) =
𝑝(𝑤∣𝛼)𝑝(𝑡∣𝑤,𝛽,𝜎2)

𝑝(𝑡∣𝛼,𝛽,𝜎2)
 = 𝑁(𝑤 ∣ 𝜇, 𝛴)  

 

where the variance matrix Σ and mean value vector 

μ can be computed by using following formulas; 
 

Σ = (𝐴 + 𝜎−2𝛷𝑇𝐵𝛷)−1   

= (𝐴 + 𝜎−2 ∑  𝑁
𝑖=1  𝛽𝑖𝜙(𝑥𝑖)𝜙(𝑥𝑖)𝑇)

−1
                 (35) 

 
𝜇 = 𝜎−2Σ𝛷𝑇𝐵𝑡 

= 𝜎−2Σ(∑  𝑁
𝑖=1  𝛽𝑖𝜙(𝑥𝑖)𝑡𝑖)                                    (36) 
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Since the computation formulas of variance matrix 

and mean value vector are both influenced by 𝛼 , 𝛽 

and 𝜎2, these hyperparameters need to be optimized 

so as to maximize the posterior distribution of w. 

The marginal likelihood function is computed as 

follows: 

 

𝑝(𝑡 ∣ 𝛼, 𝛽, 𝜎2)  = ∫  𝑝(𝑡 ∣ 𝑤, 𝛽, 𝜎2)𝑝(𝑤 ∣ 𝛼)𝑑𝑤

 
    

= (2𝜋)−𝑁/2|𝐶|−1/2𝑒𝑥𝑝 {−
1

2
𝑡𝑇𝐶−1𝑡}                 (37) 

 

where 𝐶 = 𝜎2𝐵−1 + 𝛷𝐴−1𝛷𝑇. Equivalently, we 

can optimize the logarithm of the product of 

𝑝(𝑡 ∣ 𝛼, 𝛽, 𝜎2) and 𝑝(𝛽). Moreover, we maximize 

this quantity with respect to log 𝛼, log 𝛽 and log 𝜎2 

for convenience of computing. Therefore, the 

objective to be optimized is; 

log 𝑝(𝑡 ∣ log 𝛼, log 𝛽, log 𝜎2) + ∑𝑖=1
𝑁  log 𝑝(log 𝛽𝑖)  

Note that 𝑝(log 𝛽𝑖) = 𝛽𝑖 ⋅ 𝑝(𝛽𝑖) and delete the terms 

which are independent of 𝛼, 𝛽 and σ2, we get the 

objective function; 

 𝐿 = −
1

2
[− log|Σ| − log|𝐴| + 𝑁log 𝜎2 − log|𝐵| +

𝜇𝑇𝐴𝜇+𝜎−2(𝑡 − 𝛷𝜇)𝑇𝐵(𝑡 − 𝛷𝜇)] +  

  ∑  𝑁
𝑖=1   (𝑎𝑖log 𝛽𝑖 − 𝑏𝑖𝛽𝑖)                               (38) 

 

The optimized value of 𝛼, 𝛽 and σ2 cannot be 

obtained in closed form, and have to be re-estimated 

iteratively. Take the partial derivative of Eq. (25) 

with respect to log  𝛼𝑗(𝑗 = 0,1, … , 𝑁),        

log 𝛽𝑖(𝑖 = 1, … , 𝑁) and log σ2, and rearrange the 

equations to obtain the iteration formulas of 𝛼, 𝛽 

and σ2 as following; 
 

𝛼𝑗 =
1

𝜇𝑗
2+𝛴𝑗𝑗

=
𝛾𝑗

𝜇𝑗
2                                                    (39) 

𝛽𝑖 =
𝑎𝑖+0.5

𝑏𝑖+0.5⋅[𝜎−2(𝑡𝑖−𝜙(𝑥𝑖)𝑇𝜇)2+𝜎−2𝑡𝑟 (𝛴𝜙(𝑥𝑖)𝜙(𝑥𝑖)𝑇)]
 (40) 

 

𝜎2 =
(𝑡−𝛷𝜇)𝑇𝐵(𝑡−𝛷𝜇)

𝑁−∑  𝑁
𝑗=0  𝛾𝑗

                                             (41) 

where j = 0, … , N, i = 1, … , N. Σjj is the j th diagonal 

element of variance matrix Σ, 𝛾𝑗 = 1 − 𝛼𝑗𝛴𝑖𝑗 and 

𝑡𝑟 (⋅) denotes the trace of matrix. Finally the 

iterative formulas for optimization are all obtained. 

Formulas (35), (36), (39), (40) and (41) are the 

iterative estimations of Σ, μ and hyperparameters 

𝛼𝑗 , 𝛽𝑖, 𝜎2, respectively. 

 

5. RRVM for Classification Using 

Variational Inference 
 

In classification, it is not possible to directly seek 

the posterior distributions over the model 

coefficients since the logistic likelihood function is 

not suitable to be combined with a Gaussian prior. 

To resolve this issue, Jaakkola and Jordan [30] 

introduced a transformed logistic function that is 

quadratically dependent on the model coefficients in 

the exponent and used it to assess a logistic 

regression model with a Gaussian prior over the 

model coefficients in a Bayesian framework. Bishop 

and Tipping [31] used these findings to develop an 

alternate training procedure for the RVM in the 

context of variational inference. 
 

The following is a lower bound on the logistic 

function with the functional form of a Gaussian, see 

[30]. To begin, decompose the log of the logistic 

function σ(u) as follows: 
 

𝑙𝑛 𝜎(𝑢) =  −𝑙𝑛(1 +  𝑒−𝑢)  

=
𝑢

2
− 𝑙𝑛 (𝑒𝑢 2⁄  +  𝑒−𝑢 2⁄ )                                (42) 

 

Note that the function 𝑓 (𝑢)  =  −𝑙𝑛 𝑒𝑢 2⁄  +  𝑒−𝑢 2⁄  

is a convex function with respect to the variable 𝑢2. 

Since a tangent surface to a convex function is a 

global lower bound for the function, the global 

lower bound on 𝑓(𝑢) can be obtained with a first 

order Taylor expansion in the variable 𝑢2 at the 

point 𝜉 (called a variational parameter in the 

variational inference framework). That is; 

 

𝑓(𝑢) ≥ 𝑓(𝜉) +
∂𝑓(𝜉)

∂(𝜉2)
(𝑢2 − 𝜉2)  

= −
𝜉

2
+ 𝑙𝑛 𝜎(𝜉) +

1

4𝜉
𝑡𝑎𝑛ℎ (

𝜉

2
) (𝑢2 − 𝜉2).  

 
Combining this lower bound on 𝑓(𝑢) with Eq. 

(42), the lower bound on the logistic function can be 

obtained as; 

 

𝜎(𝑢) ≥ 𝜎(𝜉)exp {
𝑢−𝜉

2
− 𝜆(𝜉)(𝑢2 − 𝜉2)}            (43) 

where  λ(ξ) =
1

4ξ
tanh (

ξ

2
) =

1

2ξ
{σ(ξ) −

1

2
}. 

The bound has the form of the exponential quadratic 

function of 𝑢, which makes the Bayesian approach 

analytically tractable. 

Again, the conditional distribution for 𝑡𝑖 can be 

written as; 
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𝑝(𝑡𝑖 ∣ 𝛽)  = 𝜎(𝛽𝑇𝜙(𝑥𝑖))
𝑡𝑖

{1 − 𝜎(𝛽𝑇𝜙(𝑥𝑖))}
1−𝑡𝑖

 = (
1

1+𝑒−𝛽𝑇𝜙(𝑥𝑖)
)

𝑡𝑖
(1 −

1

1+𝑒−𝛽𝑇𝜙(𝑥𝑖)
)

1−𝑡𝑖

 = 𝑒𝛽𝑇𝜙(𝑥𝑖)𝑡𝑖𝜎(−𝛽𝑇𝜙(𝑥𝑖))

  

Then, the following relationship holds due to Eq. 

(43): 

𝑝(𝑡𝑖 ∣ 𝛽)  = 𝑒𝛽𝑇𝜙(x𝑖)𝑡𝑖𝜎(−𝛽𝑇𝜙(x𝑖))

 ≥ 𝜎(𝜉𝑖)exp {
𝛽𝑇𝜙(x𝑖)𝑡𝑖 −

𝛽𝑇𝜙(x𝑖)+𝜉𝑖

2
−

𝜆(𝜉𝑖) ((𝛽𝑇𝜙(x𝑖))
2

− 𝜉𝑖
2)

}

 ≡ ℎ(𝛽, 𝜉𝑖)                                                         (44)   

  

 

Therefore, the likelihood function can be written as; 
 

𝑝(t ∣ 𝛽) = ∏  𝑁
𝑖=1 𝑝(𝑡𝑖 ∣ 𝛽) ≥ ∏  𝑁

𝑖=1 ℎ(𝛽, 𝜉𝑖)  

Consequently, from Eq. (21), the modified 

likelihood function to downweight outliers is given 

by; 

 

𝑝( t ∣∣ 𝛽, w ) = ∏  𝑁
𝑖=1  𝑝(𝑡𝑖 ∣ 𝛽)𝑤𝑖 =

∏  𝑁
𝑖=1   [

𝜎(𝛽𝑇𝜙(x𝑖))
𝑡𝑖

{1 − 𝜎(𝛽𝑇𝜙(x𝑖))}
1−𝑡𝑖

]

𝑤𝑖

     

 

≥ ∏  

𝑁

𝑖=1

  [𝜎(𝜉𝑖)exp {
𝛽𝑇𝜙(x𝑖)𝑡𝑖 −

𝛽𝑇𝜙(x𝑖) + 𝜉𝑖

2

−𝜆(𝜉𝑖) ((𝛽𝑇𝜙(x𝑖))
2

− 𝜉𝑖
2)

}]

𝑤𝑖

 

 

= ∏  𝑁
𝑖=1  ℎ(𝛽, 𝜉𝑖, 𝑤𝑖) ≡ ℎ(𝛽, 𝜉, w)  

 

 

6 Simulation Study 
 

Monte Carlo experiments were performed in the 

presence of outliers; we use the benchmark and 

industrial data to evaluate the performance of 

dynamic control model. To investigate the 

performance of some models in different situations, 

different simulation factors will be used. To sum up 

the above arguments, the whole training procedure 

of RRVM is as follows: 

 

In practical utilization of this algorithm, we 

should set the initialization of the priors used in 

equations (35) - (41). First of all, α and σ2 can be 

initialized according to the characteristic of the data 

set, e.g. 𝛼𝑗 = 𝑁/𝑣𝑎𝑟 (𝑡), 𝜎2 = 𝑣𝑎𝑟 (𝑡), where 

𝑣𝑎𝑟 (𝑡) is the variance of 𝑡. Secondly, the scale 

parameters 𝑎𝑖 and 𝑏𝑖, which are included in 𝛽𝑖 is 

prior distribution Gamma(𝑎𝑖 , 𝑏𝑖), should be selected 

so that the prior means of 𝛽𝑖 are 1 . For example, 

when the parameters are set as 𝑎𝑖 = 1 and 𝑏𝑖 = 1, 

the noise variance coefficient 𝛽𝑖 has a prior mean of 

𝑎𝑖/𝑏𝑖 = 1 with a variance of 𝑎𝑖/𝑏𝑖
2 = 1. That 

means we start by assuming the noise distributions 

of all the samples are Gaussian with the same 

variance, that is to say, all of the training samples 

are inliers. By using these values, it shows clearly 

that the range of 𝛽𝑖 is 0 < 𝛽𝑖 < 1.5, which could be 

inferred from Eq. (40). This setting of prior 

parameter values is generally valid for most 

applications or data sets. During the process of 

iteration, the 𝛽𝑖 corresponding to outliers will 

gradually become small. 

 

Eq. (40) reveals that the prediction error             

(𝑡𝑖 − 𝜑(𝑥𝑖)𝑇𝜇)2 of data point {𝑥𝑖, 𝑡𝑖} is in the 

denominator. If the prediction error in ti is so large 

that it dominates over other denominator terms, then 

the corresponding noise variance coefficient 𝛽𝑖 of 

that point will be very small. When the prediction 

error term in the denominator tends to infinity, the 

βi will approach to zero. As can be seen from Eq. 

(35) and (36), the calculation formulas of Σ and μ of 

the posterior distribution over w both include a term 

which is the linear weighted combination of all the 

samples, and the weight is exactly 𝛽𝑖. If a sample 

has an extremely small coefficient, it will make 

smaller contribution to the estimate of Σ and μ. This 

effect is equivalent to the detection and removal of 

an outlier if the coefficient of the data sample 
{𝑥𝑖, 𝑡𝑖} is small enough, which can improve the 

robustness of the model. After training, RRVM can 

be used to make prediction based on the posterior 

distribution over w. For a new input datum 𝑥∗, the 

output is 𝑦∗ = 𝜙(𝑥∗)𝑇𝜇. 

 
The size of sample set is N =100,150,300 and 

400. At first, we investigate the approximation 

performance of RRVM with the clean training 

sample set. Then, some outliers generated from 

standard Gaussian distribution are added into the 

training sample set. We interfuse 10, 20, 30, and 40 

outliers with the clean training samples, 

respectively. To evaluate the generalization 

performance in terms of the robustness, each data 

set is randomly divided into the training (60%) and 

test data sets (40%).Ο 
 

6.1 Iterative algorithm 
 

Update equations from (35) to (41) given the 

hyperparameters. The training procedure of the 

proposed method can be summarized as follows: 
 

Step 1: Initialize the hyperparameters 𝛼, 𝛽 and 𝜎2  

as well as 𝑎𝑖 and  𝑏𝑖 ; 𝑖 =  1, . . . , 𝑁. 
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Step 2: Compute the variance matrix Σ and mean 

value vector  𝜇 of posterior distribution over 𝑤 by 

the use of equations (35) and (36), respectively. 

 

Step 3: Iteratively optimise the hyperparameters, 

𝛼, 𝛽 and 𝜎2 according to (39) – (41). Many of 𝛼𝑗 

will trend to infinity during the optimization method 

(as determined by a big threshold number, such as 

109). This indicates that 𝜇𝑗 will trend to zero, as 

would 𝑤𝑖, based on Eq. (39). The model sparsity is 

obtained by pruning the corresponding basis 

functions. 
 

Step 4: Check to see if all of the parameters are 

convergent or if the maximum number of iterations 

has been achieved. If this is the case, you should 

cease iterating and training. Return to Step 2 if 

necessary. The basis functions corresponding to 

non-zero 𝜇𝑗 are referred to as "relevance vectors" 

when the training is completed. 
 

Step 5: All Monte Carlo experiments involved 

replications and all the results of all separate 

experiments are obtained by precisely the same 

series of random numbers.  

 

6.2 Error Estimation Methods 
 

For comparison, five other methods are also 

implemented in the experiment, including one-

nearest neighbor (1-NN), 𝑘-nearest neighbor         

(𝑘-NN), SVM, classical RVM and TRVM. To 

verify the robustness of the proposed method 

RRVM compared to other classification algorithms, 

the generalization performance of each method is 

evaluated in terms of three performance measures 

which are listed below: 
 

 Mean square error (MSE) 

 Mean absolute error (MAE) 

 Root mean square error (RMSE) 
 

MSE =
1

𝑁
∑  𝑁

𝑖=1 (𝑇𝑖 − 𝐹𝑖)2,  

MAE =
1

𝑁
∑  𝑁

𝑖=1 |(𝑇𝑖 − 𝐹𝑖)| , 

RMSE = √
1

𝑁
∑  𝑁

𝑖=1 (𝑇𝑖 − 𝐹𝑖)2. 

 

Moreover, we used the Coefficient of Determination 

(𝑅2), which are defined as; 
 

 

𝑅2 = 1 −
∑  𝑁

𝑖=1 (𝑇𝑖 − 𝐹𝑖)2

∑  𝑁
𝑖=1 (𝑇𝑖 − �̅�)2

, 

where 𝑇𝑖𝐹𝑖, 𝑇 ̅and 𝑁 are the target value, forecast 

value, average target value and the number of data, 

respectively. 

 

The RMSE depends on the predicted values, not 

on how the values fall relative to a threshold or 

relative to each other. It measures how much 

predictions deviated from the true target values. 

Note that smaller values of the MSE, MAE, and 

RMSE mean the better classification ability of the 

model, while for the 𝑅2, higher is better. 

 

6.3 Results and Discussions 
 

The SVM is implemented using LIBSVM software 

[32], and the source code to run Classical RVM is 

obtained from Tipping’s website1. Moreover, 

Hybrid learning algorithm was employed to update 

the network parameters and optimum model of 

ANFIS [33] was constructed using the trial-and-

error process. Also, the proposed method (RRVM) 

toolbox of MATLAB 7.5 is utilized to implement 

the algorithm. 

The number of nearest neighbor k should be 

chosen for 𝑘-NN. In this, simulation study, the 

training data set is subjected to a five-fold cross 

validation technique, after which the ideal number 

of k resulting in the lowest error rate is determined. 

The SVM and RVM model parameters are 

optimized using a similar technique. The SVM has 

two model parameters: the regularization parameter 

C and the kernel parameter (e.g., the width σ of the 

kernel function in the case of the RBF kernel), 

whereas the RVM only has one (the kernel 

parameter value). The proposed RRVM also has the 

kernel parameter as a single model parameter. While 

the parameters of the SVM should be optimized 

through the cross validation procedure which is 

computationally demanding, the parameter of the 

RVM can be selected efficiently by comparing the 

lower bound values. 

 

 

 

                                                 
1Tipping’s website: 

http://www.miketipping.com/. 
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Table 1:  Generalization Performance of Classification Methods for 𝑁 = 100 

Method Measure 
Percentages of Outliers 

0% 10% 20% 30% 40% 

1-NN MSE 2.9658 4.2119 4.7871 5.9100 7.2963 

 MAE 3.4365 4.5104 5.5024 6.7931 8.7091 

 RMSE 1.7222 2.0523 2.1879 2.4311 2.7012 

  𝑅2 0.9034 0.8722 0.9013 0.8925 0.8860 

𝑘-NN MSE 1.2021 2.8330 3.1983 3.9486 4.8748 

 MAE 3.3571 4.1632 5.1848 6.4010 8.2064 

 RMSE 1.0964 1.6832 1.7884 1.9871 2.2079 

  𝑅2 0.9126 0.9347 0.9061 0.8694 0.9224 

SVM     MSE 1.9404 2.1270 2.9807 3.6799 4.5431 

 MAE 2.9488 4.1296 5.0418 6.2244 7.9800 

 RMSE 1.3930 1.4584 1.7265 1.9183 2.1314 

  𝑅2 0.9041 0.8305 0.9164 0.9237 0.9039 

Classical RVM     MSE 0.5156 1.4561 2.5820 3.1877 3.9354 

 MAE 2.2480 3.9856 4.8214 5.9523 7.6312 

 RMSE 0.7181 1.2067 1.6069 1.7854 1.9838 

  𝑅2 0.9930 0.9287 0.8866 0.9388 0.9378 

TRVM     MSE 0.8174 1.0361 1.7075 2.1080 2.6025 

 MAE 2.4096 3.3568 4.0352 4.9817 6.3868 

 RMSE 0.9041 1.0179 1.3067 1.4519 1.6132 

  𝑅2 0.8959 0.9362 0.9208 0.9612 0.9459 

RRVM     MSE 0.6289 0.9580 1.4346 1.7711 2.1865 

 MAE 2.5381 2.9485 3.3294 4.1104 5.2698 

 RMSE 0.7930 0.9788 1.1977 1.3308 1.4787 

  𝑅2 0.8711 0.9634 0.9886 0.9802 0.9708 

The best performance for each percentage of outliers is given in bold. 

 

The simulation results are presented in Tables 1 to 

3, with different sample size 𝑁 =100,150,300 and 

400, respectively. Each table has five sections 

represent the percentages of outliers. From Tables 1 

to 4, we can summarize the effects of the main 

simulation factors on MSE, MAE, RMSE and 𝑅2 

values for all methods  as follows: 
 

 As 𝑁 increases, the values of MSE, MAE and 

RMSE are decreases in all situations. 

 As percentages of outliers increases, the 

values of MSE, MAE and RMSE are increases 

in all situations. 
 

The MSE, MAE, RMSE and 𝑅2 comparison of 

six methods is listed in Tables 1 to 3. When the 

training sample set excludes outliers, the MSE, 

MAE and RMSE of RRVM is very close to that of 

TRVM but is worse than that of classical RVM. We 

can conclude that in the absence of outliers classical 

RVM method is more efficient than other methods, 

because it has minimum MSE, MAE, RMSE and 

higher values of 𝑅2. When outliers are added, the 

approximation performance of classical RVM 

deteriorates drastically, while TRVM and RRVM 

can still get good results. With the increase of 

outlier number, RRVM can obtain better result than 

classical RVM and TRVM, which demonstrates that 

RRVM can effectively resist the impact of outliers 

and has good robustness. 
 

The results show that as the contamination 

percentage increases, the predictive performances of 

the classifiers get worse and worse, while the 

RRVM clearly shows its robustness. In addition, it 

is shown that the RRVM gives a sparse solution. 

Furthermore, it is confirmed from Tables 1-2 that 

the RRVM is competitive with other methods in 

terms of the computation time since it takes 

relatively a short time to optimize the model 

parameters. From Table 3, it is clearly shown that 

the generalization performances of the RRVM are 

consistently better than other methods even if the 

training data set is contaminated by the outliers. 
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Table 2:  Generalization Performance of Classification Methods for 𝑁 = 150 

Method Measure 
Percentages of Outliers 

0% 10% 20% 30% 40% 

1-NN MSE 0.9491 1.3478 1.5319 1.8912 2.3348 

 MAE 0.8591 1.1276 1.3756 1.6983 2.1773 

 RMSE 0.9742 1.1610 1.2377 1.3752 1.5280 

  𝑅2 0.8925 0.8616 0.8904 0.8817 0.8753 

𝑘-NN MSE 0.3847 0.9066 1.0235 1.2635 1.5599 

 MAE 0.8393 1.0408 1.2962 1.6002 2.0516 

 RMSE 0.6202 0.9521 1.0117 1.1241 1.2490 

  𝑅2 0.9015 0.9234 0.8952 0.8589 0.9112 

SVM     MSE 0.6209 0.6806 0.9538 1.1776 1.4538 

 MAE 0.7372 1.0324 1.2604 1.5561 1.9950 

 RMSE 0.7880 0.8250 0.9766 1.0852 1.2057 

  𝑅2 0.8932 0.8205 0.9053 0.9125 0.8929 

Classical RVM     MSE 0.1650 0.4659 0.8263 1.0201 1.2593 

 MAE 0.5620 0.9964 1.2053 1.4881 1.9078 

 RMSE 0.4062 0.6826 0.9090 1.0100 1.1222 

  𝑅2 0.9810 0.9175 0.8758 0.9274 0.9265 

TRVM     MSE 0.2616 0.3316 0.5464 0.6746 0.8328 

 MAE 0.6024 0.8392 1.0088 1.2454 1.5967 

 RMSE 0.5114 0.5758 0.7392 0.8213 0.9126 

  𝑅2 0.8851 0.9248 0.9096 0.9496 0.9344 

RRVM     MSE 0.2013 0.3066 0.4591 0.5667 0.6997 

 MAE 0.6345 0.7371 0.8324 1.0276 1.3174 

 RMSE 0.4486 0.5537 0.6775 0.7528 0.8365 

  𝑅2 0.8605 0.9517 0.9766 0.9684 0.9590 

The best performance for each percentage of outliers is given in bold. 

 

Graphically, we illustrate the MSE and RMSE 

values for different methods in all cases with 

different main factors by 3D graphs are shown in 

Figures 5 and 6, when N = 400. Figures 5 and 6 

illustrate the effect of outliers on the decision 

boundaries obtained from the SVM, Classical RVM, 

TRVM and the RRVM. Note that the SVM does not 

provide such probabilistic information. From the 

figures, it can be observed that the SVM and 

Classical RVM are not robust to the outliers, i.e. the 

decision boundaries are distorted by a few outliers. 

In contrast to them, the TRVM and RRVM is more 

insensitive to outliers since it reduces the effect of 

outliers by giving a small weight to them. In terms 

of the sparsity, the RRVM preserves the sparsity, 

i.e. the number of non-zero coefficient is small 

enough, although the training data set contains 

outliers, see Abonazel [34] for more details to 3D 

graphs using R software. 
 

 

 

 

7 Conclusions 
 

In this paper, we propose the robust RVM based 

on an ANFIS and weighting scheme, which is 

insensitive to outliers and simultaneously maintains 

the advantages of the original RVM. Given a prior 

distribution of weights, weight values are 

determined in a probabilistic way and computed 

automatically during training. Our theoretical result 

indicates that the influences of outliers are bounded 

through the probabilistic weights. Also, a guideline 

for determining hyperparameters governing a prior 

is discussed. For comparison, five other methods are 

also implemented in the experiment, to verify the 

robustness of the proposed method RRVM 

compared to other classification algorithms. The 

simulation results showed that, based on MSE, 

MAE, RMSE and R2criteria, the proposed RRVM 

give better performance than other methods when 

the data contain outliers. While when the dataset 

does not contain outliers, the results showed that the 

classical RVM is more efficient than other methods. 
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Table 3:  Generalization Performance of Classification Methods for 𝑁 = 300 

Method Measure 
Percentages of Outliers 

0% 10% 20% 30% 40% 

1-NN MSE 0.3037 0.4313 0.4902 0.6052 0.7471 

 MAE 0.2148 0.2819 0.3439 0.4246 0.5443 

 RMSE 0.5511 0.6567 0.7001 0.7779 0.8644 

  𝑅2 0.8817 0.9051 0.9268 0.8710 0.8647 

 𝑘-NN MSE 0.1231 0.2901 0.3275 0.4043 0.4992 

 MAE 0.2098 0.2602 0.3241 0.4001 0.5129 

 RMSE 0.3509 0.5386 0.5723 0.6359 0.7065 

  𝑅2 0.8906 0.9122 0.9402 0.8485 0.9002 

SVM     MSE 0.1987 0.2178 0.3052 0.3768 0.4652 

 MAE 0.1843 0.2581 0.3151 0.3890 0.4987 

 RMSE 0.4458 0.4667 0.5525 0.6139 0.6821 

  𝑅2 0.9203 0.8939 0.9419 0.9137 0.9179 

Classical RVM     MSE 0.0528 0.1491 0.2644 0.3264 0.4030 

 MAE 0.1405 0.2491 0.3013 0.3720 0.4769 

 RMSE 0.2298 0.3861 0.5142 0.5713 0.6348 

  𝑅2 0.9691 0.9064 0.9469 0.9162 0.9153 

TRVM     MSE 0.0837 0.1061 0.1749 0.2159 0.2665 

 MAE 0.1506 0.2098 0.2522 0.3114 0.3992 

 RMSE 0.2893 0.3257 0.4182 0.4646 0.5162 

  𝑅2 0.9394 0.9368 0.9525 0.9381 0.9231 

RRVM     MSE 0.0644 0.0981 0.1469 0.1814 0.2239 

 MAE 0.1586 0.1843 0.2081 0.2569 0.3294 

 RMSE 0.2538 0.3132 0.3833 0.4259 0.4732 

  𝑅2 0.9398 0.9402 0.9648 0.9567 0.9474 

The best performance for each percentage of outliers is given in bold. 
 

Fig. 5 The MSE values for all methods with different percentages of outliers when 𝑁 = 400 
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Fig. 6 The RMSE values for all methods with different percentages of outliers when 𝑁 = 400 
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