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Abstract: The stability of a two-phase interface is a crucial occurrence that involves the design of many 
engineering applications. It correlates the spatial and droplet size-distributions of many fluid spraying 
applications and has a great effect on the estimations of the critical heat flux of systems that involves 
phase change or evaporation. However, the existing hydrodynamic models are only able to predict the 
stability of a plane fluid sheet, surrounded by an infinite pool of liquid. The case of a thin sheet of 
liquid surrounding a vapor sheet and enclosed between two walls has not been studied yet. The 
present paper solves this problem using a linearized stability analysis. Velocity potentials satisfying 
these conditions are introduced and a complete analysis is presented. 
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1 Introduction 

There are numerous theoretical and experimental 
studies of fluid flow instability over the past few 
decades since the work of Shea and Hagerty [1] 
because of its prevalence in fluid and heat transfer 
analysis and stability. The stability of fluid flow in 
between non-porous medium channel finds many 
important applications in geothermal and 
geophysical engineering such as underground 
disposal of nuclear wastes, spreading of chemical 
pollutants in water-saturated soil and many other 
applications.    Shea and Hagerty studied the 
stability of a liquid sheet surrounded by air. They 
used a potential flow model for their analysis. 
They assumed a potential function for the different 
flow regimes and employed a sinusoidal waveform 
for the initial disturbance. Further, the wave 
formation at the film surface considerably 
improves mass and heat transfer rates and play a 
vital role in the process equipment, such as falling 
film in absorption columns condensers, and 
evaporators, [2,3]. The stability of fluid flow 
between tow parallel walls of unknown surface 
condition was studied by Chamkha [4].  The study 
analysed the flow characteristics and thermal and 
electrical properties of the fluid flow.  It showed 
that if any velocity profile is unstable for a 
particular value of Reynold’s number, it will be 

unstable at a lower value of the Reynold’s number 
for the two-dimensional disturbances. The linear 
flow stability of a contaminated fluid with a 
monolayer flow down a slippery non-porous 
inclined channel was studied by Bhat and Samanta 
[5]. Bhat and Samanta used Orr-Sommerfeld 
equation for analysis with Chebyshev spectral 
collection method to obtain numerical solutions.   
Salem 6] analysed the flow of two plane non-
Darcy fluid flow in narrow rectangular cavity 
using Keller-box solution.   

The present work attempts to explore the stability 
of two-phase flow between layers non-porous 
surfaces. The stability of vapor layers contained by 
a liquid pool is an important phenomenon that 
affects the design of many engineering devices. 
This situation can arise in many practical 
applications, for example, the flow between 
parallel plates with internal heat generation such as 
steam generators, or if boiling occurs in the narrow 
gaps of heat exchangers. It is desirable to study the 
parameters influencing critical heat flux and the 
vapor removal mechanism from the heating 
surface. However, the existing hydrodynamic 
models are only able to predict the stability of a 
plane fluid sheet surrounded by an infinite pool of 
liquid. Many hydrodynamic models have been 
developed to explain this phenomenon. The 
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criterion for stable film boiling on a horizontal 
surface facing upward can be developed from 
Taylor instability. The stability of an interface of 
waveform between two fluids of different densities 
depends on the balance of surface tension energy 
and the sum of the kinetic and potential energies of 
the wave. This process is called Taylor's instability 
wavelength. In this process, the length of the wave 
grows fast and thus predominates during the 
collapse of an infinite plane horizontal interface. 

When two immiscible fluids flow relative to each 
other along with the interface of separation, there is 
a maximum relative velocity above which a small 
disturbance of the interface will amplify and grow 
and thereby distort the flow. This phenomenon is 
known as the Helmholtz instability. 

This paper solves a similar problem that includes the 
addition of a solid boundary surrounding the outer 
fluid. The instabilities are observed at the interface 
of the fluid sheet as the vapor layer starts building at 
the surface. The objective of this work is to find an 
expression for the growth rate of these instabilities. 
Figures are plotted for the growth rate versus 
frequency for different sheet velocities. The so1ut 
ion used a linearized stability model where squares 
of the velocities and their products are ignored. 
Velocity potentials satisfying these conditions are 
introduced and a complete analysis is presented. 

2 Problem Formulation 
 
The idealized system to be treated is shown in 
Figure 1.  The inner fluid will be considered the 
vapor phase and the other fluid will be the liquid 
phase (this can be reversed easily).  The width of the 
inner fluid sheet is “2 a” and the plates are a 
distance “b” from the centerline of the inner fluid.  
The density of the vapor phase is V and that for the 
liquid phase is 𝜌𝐿1

and 𝜌𝐿2
.  We assume the vapor 

phase to be moving vertically with velocity 𝑉 
through the surrounding liquid phase𝐿1and 𝐿2, 
which moves with velocity 𝑉′.  Following Rayleigh 
(1954) the following assumptions are made: 

1. The velocity of the sheet is great enough so 
that the effect of gravity will be ignored. 

2. Both fluids are inviscid. 
3. The surface tension between the vapor and 

liquid phase is 𝑇. 
4. The surface at 𝑦 = ±𝑎  (at the interface) is 

disturbed by a small disturbance of amplitude 𝐻 and 
frequency 𝜔 but out of arbitrary phase to each other. 

5. Flow is in steady-state conditions 

6. Nonlinear terms such as the squares and 
products of the variables are ignored through the 
derivation of equations (a linearized theory is used). 

 

h1 h2

L
2

L
1

v’ v’

X

Y

-b  b
-a a

V

L

 

Fig. 1: Idealized fluid-sheet System 

Based on the above assumptions, an incompressible 
inviscid flow between two parallel planes is 
assumed: 𝑉 = 𝛻𝛷  and  𝛻2𝛷 = 0, where 𝛷 is  the 
velocity potential function. 
 

3 Problem Solution 
 
Let  us perturb the interface by a small wave of 
amplitude 𝐻.  The equations of the disturbed 
surfaces (the interface) are assumed to be 

ℎ1 = 𝐻𝑒𝑖𝑤𝑡+𝑖𝑛𝑥 , 𝑦 = 𝑎  (1a) 
and 

ℎ2 = 𝐻𝑒𝑖𝑤𝑡+𝑖𝑛𝑥+𝑖𝜑, 𝑦 = −𝑎 (1b) 
where phase angle 𝜑 is introduced to treat both 
symmetrical and anti-symmetrical waves at the 
same time. 
The boundary conditions are as follow: 

1. The velocity of the fluid normal to the 
boundary is zero, i.e. 

𝐷

𝐷𝑡
[ℎ1 − 𝑦] = 0, 𝑦 = 𝑎      (2a) 

and 
𝐷

𝐷𝑡
[ℎ2 − 𝑦] = 0, 𝑦 = −𝑎      (2b) 
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2. the y-direction velocity at the wall is zero, 
i.e. 

𝜕𝛷𝐿1

𝜕𝑦
= 0, 𝑦 = 𝑏    (3a) 

and 
𝜕𝛷𝐿2

𝜕𝑦
= 0, 𝑦 = −𝑏    (3b) 

the velocity potentials that satisfy the Laplace 
equation (𝛻2𝛷 = 0) as well as the boundary 
conditions as presented above, are given as follow, 
for the region −𝑎 ≤ 𝑦 ≤ 𝑎, 
𝛷𝑉 = (𝐴 𝑐𝑜𝑠ℎ( 𝑛𝑦) + 𝐵 𝑠𝑖𝑛ℎ( 𝑛𝑦))𝑒𝑖𝑤𝑡+𝑖𝑛𝑥 + 𝑉𝑥 

(4a) 
where 

𝐴 =
𝑖(

𝑤

𝑛
+𝑉)(1−𝑒𝑖𝜑)

2 𝑠𝑖𝑛ℎ(𝑛𝑎)
𝐻     (4b) 

and 

𝐵 =
𝑖(

𝑤

𝑛
+𝑉)(1+𝑒𝑖𝜑)

2 𝑐𝑜𝑠ℎ(𝑛𝑎)
𝐻      (4c) 

and the potential function for the surrounding fluid 
in the region  𝑎 ≤ 𝑦 ≤ 𝑏  

𝛷𝐿1
= 𝐶1

𝑐𝑜𝑠ℎ(𝑛(𝑦−𝑏))

𝑠𝑖𝑛ℎ(𝑛(𝑏−𝑎))
𝑒𝑖𝑤𝑡+𝑖𝑛𝑥 + 𝑉 ′𝑥   (5a) 

where 
𝐶1 = −𝑖𝐻(𝑉 ′ +

𝑤

𝑛
)     (5b) 

the velocity potential for the surrounding fluid in the 
region  −𝑏 ≤ 𝑦 ≤ −𝑎 

𝛷𝐿2
= 𝐶2

𝑐𝑜𝑠ℎ(𝑛(𝑦+𝑏))

𝑠𝑖𝑛ℎ(𝑛(𝑏−𝑎))
𝑒𝑖𝑤𝑡+𝑖𝑛𝑥 + 𝑉 ′𝑥    (6a) 

where 
𝐶2 = −𝑖𝐻(𝑉 ′ +

𝑤

𝑛
)𝑒𝑖𝜑    (6b) 

The velocity potential functions presented above 
satifies all the required conditions, the Laplace 
equation and the boundary conditions at the solid 
and the liquid-vapor interfaces. 
 
 

3.1 Pressure and Surface-Tension Forces 
 

The stability of the sheet depends on the growth rate 
of the disturbance at the liquid-vapor interface. The 
relationship between the surface tension and the 
pressure force acting at the surface of the sheet will 
determine the velocity of the vapor that will trigger 
the collapse of the sheet as in Helmholtz instability. 
The non-steady form of Bernoull’s equation is given 
as 

𝑉2

2
+

𝑃𝑎𝑣𝑒

𝜌
=

𝜕𝛷

𝜕𝑡
+

𝑞2

2
+

𝑃

𝜌
      (7a) 

Then 
𝛥𝑃 = 𝜌 (

𝑉2

2
−

𝜕𝛷

𝜕𝑡
−

𝑞2

2
)     (7b) 

Solving for the excess pressure by subsituting the 
velocity potentials into the equation above for the 
region −𝑎 ≤ 𝑦 ≤ 𝑎 will yield   

𝑛𝜌𝑉(
𝑤

𝑛
+ 𝑉)2(1 − 𝑒𝑖𝜑) 𝑐𝑜𝑡ℎ𝑛 𝑎 + 𝑛𝜌𝐿(

𝑤

𝑛
+

 𝑉 ′)2(1 − 𝑒𝑖𝜑) 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)) = 𝑛2𝑇(1 − 𝑒𝑖𝜑)    
(8) 

(1 − 𝑒𝑖𝜑) = 0     (8a) 
or 

𝑛𝜌𝑉(
𝑤

𝑛
+ 𝑉)2 𝑐𝑜𝑡ℎ𝑛 𝑎 + 𝑛𝜌𝐿(

𝑤

𝑛
+

𝑉 ′)2 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)) = 𝑛2𝑇     (8b) 
and  

𝑛𝜌𝑉(
𝑤

𝑛
+ 𝑉)2(1 + 𝑒𝑖𝜑) 𝑡𝑎𝑛ℎ𝑛 𝑎 + 𝑛𝜌𝐿(

𝑤

𝑛
+

𝑉 ′)2(1 + 𝑒𝑖𝜑) 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)) = 𝑛2𝑇(1 + 𝑒𝑖𝜑)  
(9)  

(1 + 𝑒𝑖𝜑) = 0     (9a) 
or 

𝑛𝜌𝑉(
𝑤

𝑛
+ 𝑉)2 𝑡𝑎𝑛ℎ𝑛 𝑎 + 𝑛𝜌𝐿(

𝑤

𝑛
+

𝑉 ′)2 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)) = 𝑛2𝑇 (9b) 
Now, equation (9a) will yield 𝜑 = 𝜋 which 
corresponds to a dilatation wave solution while 
equation (8a) will yield  𝜑 = 0 which corresponds 
to a sinusoidal wave solution.    
 
3.2 Analysis of the Sinusoidal and Di-

latational Wave 
 
3.2.1   Sinusoidal Wave 

 
For a sinuous wave 𝜑 = 0, let 𝑉 ′ = 0 and  𝛾 =

𝜌𝑉

𝜌𝐿
. 

Equation (8) with rearrangement gives  
𝜔2[𝛾 𝑡𝑎𝑛ℎ( 𝑛𝑎) + 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)] +

2𝜔𝑛𝑉 𝑡𝑎𝑛ℎ( 𝑛𝑎) + 𝛾𝑛2𝑉2 𝑡𝑎𝑛ℎ( 𝑛𝑎) −
𝑛3𝑇

𝜌𝐿
= 0    

(10) 
Solving equation (10) yields,  

𝜔 = −𝑛𝑉𝛾 𝑡𝑎𝑛ℎ( 𝑛𝑎) 

±
√

𝑛3𝑇

𝜌𝐿
[𝛾 𝑡𝑎𝑛ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))]−𝑛2𝑉2𝛾 𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎)) 𝑡𝑎𝑛ℎ(𝑛𝑎)

𝛾 𝑡𝑎𝑛ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))
    

(11) 
For the particular case of interest, that of a fluid 
being sprayed into gas, the ratio 𝛾 is quite small and 
can be neglected in comparison with  𝑡𝑎𝑛ℎ( 𝑛𝑎) 
over most of the unstable regions. 
The unstable region consists of those waves which 
render the term under the radical negative. The sheet 
is unstable if   

𝑛 <
𝜌𝐿𝑉2 𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))

𝑇
         (12) 

 
From equation (11) the real circular frequency  
𝜔0 = 𝑛𝑉and the upper bound of unstable 
frequencies is therefore  

𝑓𝑐 =
𝜔0

2𝜋
=

𝑛𝑉

2𝜋
=

𝜌𝐿𝑉3 𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))

2𝜋𝑇
      (13) 

 
For frequencies below 𝑓𝑐 the growth rate 𝛽𝑠 is  
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𝛽𝑠 =

√𝛾𝑛2𝑉2 𝑡𝑎𝑛ℎ(𝑛𝑎) 𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))−
𝑛3𝑇

𝜌𝐿
(𝛾 𝑡𝑎𝑛ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎)))

𝛾 𝑡𝑎𝑛ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))

(14) 
 
3.2.2  Dilatational Wave  

 
For a dailational wave 𝜑 = 𝜋,  𝑉 ′ = 0, and 𝛾 =

𝜌𝑉

𝜌𝐿
.  

Now, frequency equation (8b) is reduced to  
𝛾 𝑐𝑜𝑡ℎ𝑛 𝑎 + 𝑐𝑜𝑡ℎ( 𝑛(𝑏 − 𝑎)) +

2𝜔𝑛𝑉𝛾 𝑐𝑜𝑡ℎ( 𝑛𝑎)𝛾𝑛2𝑉2 𝑐𝑜𝑡ℎ( 𝑛𝑎) −
𝑛3𝑇

𝜌𝐿
= 0   

(15) 
 
Assuming  𝛾 << 𝑐𝑜𝑡ℎ( 𝑛𝑎) over most of the 
unstable region  

𝜔 = −𝛾𝑛𝑉 𝑐𝑜𝑡ℎ( 𝑛𝑎) 

±
√

𝑛3𝑇

𝜌𝐿
[𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))]−𝑛2𝑉2𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)𝑐 𝑜𝑡ℎ(𝑛(𝑏−𝑎))

𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))
   

(16) 
This unstable region consists of those wave numbers 
𝑛, which render the second term imaginary. The 
relationship is the same as in equation (12). As in 
the case of the sinuous wave, the upper bound of the 
unstable frequencies is given by equation (13). For 
the frequencies below 𝑓𝑐the growth rate is 𝛽𝑑 is  

𝛽𝑑 =

√𝑛2𝑉2𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))−
𝑛3𝑇

𝜌𝐿
(𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)+𝑐 𝑜𝑡ℎ(𝑛(𝑏−𝑎)))

𝛾 𝑐𝑜𝑡ℎ(𝑛𝑎)+𝑐𝑜𝑡ℎ(𝑛(𝑏−𝑎))
  

(17) 
 
3.3 Representation of Equations 
 

3.3.1  Logarithmic decrement △ For  A 

Sinusoidal Wave 

 
The dominant wave in the unstable region has the 
form 
 

𝑦 = 𝐻𝑒𝛽𝑡+𝑖𝑤𝑡+𝑖𝑛𝑥  (18) 
During one complete cycle, 𝑡 increases by 2𝜋

𝜔
, and 𝑥 

increases by 2𝜋

𝑛
. The ratio of  the amplitude at the 

end of the cycle 𝑦2, to the amplitude at the 
beginning of the cycle 𝑦1 is  

𝑦2

𝑦1
= 𝑒

2𝜋𝛽

𝜔 = 𝑒
𝛽

𝑓 (19) 
The logarithmic decrement △ is defined as the 
natural logarthim of the  ratio of the amplitude in 
successive cycles. Therefore 

△= 𝑙𝑛(
𝑦2

𝑦1
) =

𝛽

𝑓
    (20) 

For the sinuous wave, using equations (13) and (14) 
and defining the dimensionless parameters as  

𝜴 =
𝒇

𝒇𝒄
     (21) 

𝑾 =
𝑽𝟐𝝆𝑳(𝒃−𝒂)

𝑻
     (22) 

Equation (20) reduces to 

△𝑠= √
𝛾 𝑐𝑜𝑡ℎ(𝑊𝛺)−𝛾𝛺

𝑡𝑎𝑛ℎ(𝑊𝛺)+𝛾 𝑐𝑜𝑡ℎ(𝑊𝛺)
      (23) 

whare 𝑊 is Weber’s number. 
 
3.3.2 Logarithmic Decrement △𝒅 For  A Di-

latational Wave 

 
Similarly, using equations (13), (19), (21), and (22), 
the  logarithmic decrement for dalational wave 
reduces to 

△𝐷= 2𝜋√
𝛾 𝑐𝑜𝑡ℎ(𝑊𝛺)−𝛾𝛺

𝑐𝑜𝑡ℎ(𝑊𝛺)
      (24) 

The growth rate 𝛽 could be  plotted as a function of 
frequency 𝑓 for several different sheet velocities for 
both sinusoidal and dilatational waves, and △𝑠 for 
various Weber numbers in the range of interest. 
 

4 Conclusion 
 
As a result of the theoretical work done in this 
paper, the following conclusions can be drawn. An 
expression for the growth rates as well as the 
logarithmic decrement for a sinusoidal and 
dilatational wave were determined, which helped to 
study the stability of plane fluid sheets with 
sidewalls. There are only two kinds of waves that 
are possible at any given frequency. Either the two 
surfaces of the sheet oscillate in phase to produce 
sinusoidal waves, or they oscillate out of phase as in 
a dilatational wave. The frequency, velocity, and 
wavelength are related in the same way for both 
types of waves. This relation is helpful in 
determining the velocity of the sheet. The equation 
is given by 𝑓 =

𝑉

𝜆
. It was, also, observed from the 

reduced functions, that the growth rate 𝛽𝑠 for a 
sinusoidal wave is always greater than that of a 
dilatational wave 𝛽𝐷 for the same given frequency. 
The equation is given by 𝛽𝑠

𝛽𝐷
= 𝑐𝑜𝑡ℎ( 𝑛𝑎). 
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