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Abstract In this study, a numerical prediction of temperature profiles in a thin wire exposed to 
convective, radiative and temperature-dependent thermal conductivity is carried out using a finite-
difference linearization approach. The procedure involves a numerical solution of a one-dimensional 
nonlinear unsteady heat transfer equation with specified boundary and initial conditions. The resulting 
system of nonlinear equations is solved with the Newton-Raphson’s technique. However unlike the 
traditional approach involving an initial discretization in space then in time, a different numerical 
paradigm involving an Euler scheme temporal discretization is applied followed by a spatial 
discretization.  Appropriate numerical technique involving partial derivatives are devised to handle a 
squared gradient nonlinear term which plays a key role in the formulation of the Jacobian matrix. Tests on 
the numerical results obtained herein confirm the validity of the formulation. 
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 1 Introduction 

Non-linearity in heat transfer problems occurs 
when thermo-physical parameters are 
temperature –dependent or when boundary 
conditions are nonlinear. Examples of this occur 
frequently in practice for example in 
groundwater flow, heat exchangers, 
environmental pollution, fin design, biological 
systems etc. Although the method of separation 
of variables has wide applicability, it is limited 
to linear problems. The resulting nonlinear 
differential equations describing such systems 
are usually computed iteratively until a certain 
error tolerance value is satisfied. However for 
strongly nonlinear problems, the iterative 
process can diverge and cause numerical 
instability. Many researchers have been able to 
deal with this problem satisfactorily by 
manipulating the Jacobian matrix encountered in 
the Newton-Raphson (NR) method [1-7]. This 

approach has been facilitated by the advent of 
the latest generation of high speed computers. 
The thin wire under consideration is assumed to 
be of uniform cross-section and is long enough 
so that temperature variation is only relevant in 
the axial direction. Hence heat transfer process 
is one-dimensional.  The thermal conductivity is 
temperature-dependent and can be modelled by 
power law or linear dependency on temperature 
[8-11]. 
In this work, we shall consider the effects 
radiation as well as convection and nonlinear 
conduction in the overall heat transfer process. 
Radiation for example is a huge contributor to 
nonlinearity and its impact on the temperature is 
quite considerable especially in the performance 
of heat exchangers at high temperatures [12]. 
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2. Numerical Formulation 
 
Consider a heat transfer problem of a 1D 
conductive-convective-radiative thin metal with 
a fin profile area pA , length  L, perimeter P. 

The rod has a fixed base temperature bT  and 
extends into the surrounding fluid of 
temperature 

aT  . At the fin surface, heat loss 
occurs by convection and radiation. The energy 
balance for the longitudinal hotwire is given by: 
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where k is thermal conductivity, h is the heat 
convection transfer coefficient, , vc  are the 
density and volumetric heat capacity,   is the 
Stefan-Boltzmann constant, X and t are the 
spatial and temporal variables, and T is the 
temperature. It is assumed that the metal is 
homogeneous and isotropic, convection heat 
coefficient between the thin metal and the 
environment is  constant and uniform over the 
entire surface of the solid. Heat dissipated from 
the surface obeys the Stefan-Boltzmann law. 
The thermal conductivity k is dependent on the 
local temperature. Other thermo-physical 
parameters such as the heat transfer coefficient,  
h and surface emissivity r   are assumed to be 
constant. The boundary and initial conditions 
can be specified as: 
 
     ,0 , , 2b LT t T T t L T a    

 
Initially the metal is kept at the ambient 
temperature: 
   0, 2aT X T b   

 
 To facilitate computation, the following 
dimensionless parameters are introduced: 
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where 2M  is the thermo-geometric parameter, 

ak  is the thermal conductivity of the rod at 
ambient temperature.  

Equation (1) together with the boundary 
conditions are given as : 
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where 

     0 exp 3D b     

The boundary and initial conditions can also be 
rewritten as: 
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Equation (5) is a two-point nonlinear boundary 
value problem (TPBVP) and is solved iteratively 
by the NR method. For the numerical 
implementation we adopt the method described 
in [13] with some modifications. Unlike the 
traditional approach where the governing 
differential equation is first discretized in space,  
to yield an initial-value (Cauchy) problem 
involving a system of first order ordinary 
differential equations (ODEs); the equation is 
first discretized in time to obtain a sequence of 
TPBVPs. In order to facilitate stability, an 
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implicit scheme is utilized for the temporal 
discretization. The finite difference method is 
employed for the spatial discretization. 
Complete discretization of the temporal and 
spatial components of equation (5) yields an 
approximate discrete equation, which is applied 
to each node of the problem ID domain to yield 
a system of algebraic equation. This allows the 
application a modified  NR iteration technique. 

Equation (5) is simply written as : 
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 In accordance to the time discretization, the 
values of     1, , ,n nx x      are given as:: 

 

 1 1

,n n

n n

x

x

 

  




  

The spatial gradient is n nv x     

The NR iteration scheme for the computation of  
a nonlinear system of equation is defined as: 
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Equation (9) is a matrix equation and its 
manipulation can be made clearer if it is put in 
the form: 
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where 
nG  can ‘loosely’ be described as the 

right hand side (RHS)  column vector of known 
quantities and houses the boundary and initial 
condition ( first guess). It is defined in [12 ] as: 
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where  , , , 1,, ,n i n i n i n if f v     

The first and last entries should reflect the 
boundary conditions at both ends of the problem 
domain 
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The Jacobian matrix is defined as: 
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It is  expressed at the grid points as: 
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The Jacobian matrix is easily computed and is 
found to be tridiagonal because each  i J  

only depends on the grids at 1, , 1i i i   . 
Hence the nonzero elements of the Jacobian 
matrix for rows 2,3…N-1(the first and the last 
rows are apriorily determined by the boundary 
conditions) are computed as: 

 

, 1
1

2

1 1

1 13

i
i i

i

i i

G
L

f f v
h a

v v





 





 


 


    
  

    

  

 

,

21 13

i
i i

i

i i

G
L

f f v
h b

v v





 


 


    
  

    

 

 

, 1
1

2

1 1

1 13

i
i i

i

i i

G
L

f f v
h c

v v





 





 


 


    
  

    

 

1,1 , 1N NL L    for Dirichlet boundary 
condition specifications 

 The various components of the partial 
derivatives are defined as: 
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3. Results and Discussion 

In the foregoing work, we have obtained 
physically realistic results to confirm the 
efficacy of our numerical technique. Equation 
(3) is solved for  N = 51 mesh-points, M = 41 
temporal grids, 00.5, 0.1   ,  with 
integration range 0 20  , for time, and 
1 3x   for space, time step 0.25  , and 
spatial step h = 0.05. 

0.5, 0.5rM   Iteration is carried out until 
the difference between current and previous 
results satisfy a predetermined error tolerance; 

1k k

n n      where for this study .0001  . 

The results for the nonlinear diffusion heat 
transfer case are shown in Figs. 1a, 1b and 1c. 
Fig. 1a is consistent with the physics of heat 
transfer.  

 

 

Fig. 1a : Temperature field : Nonlinear Diffusion 

It can be seen that higher temperatures move 
from the higher to the cooler end and tend to 
‘smother’ the effects of the lower temperature 
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imposed on the right hand side (RHS) boundary. 
The temperature bar at the right end of the figure 
confirms the extent to which this happens. The 
domain of the cooler temperatures is confined to 
the right end of the rod.  The 3D plot of the 
temperature profile shown in Fig. 1b confirms 
the observation in Fig. 1a. A close look reveals  

 

 

Fig.1b:3D Temperature field : Nonlinear 
Diffusion 

that a sudden profile change (a profile separation 
almost) happens around x = 1.5 where the 
temperature profiles from the cooler end return 
to the x axis instead of progressing to the hotter 
end . Further progress to the hotter end would 
have been a contradiction to the law of 
conservation of energy. Fig. 1c shows that the 
temperature profiles become more linear as  time 
increases. 

 

Fig. 1c: Transient Temperature field: Nonlinear 
Diffusion 

 This is not surprising because the whole system 
tends to steady state. 

Figs. 2a, 2b and 2c show the influence of 
convection and nonlinear diffusion in the heat 
transfer process. Starting from Fig. 2a , 

 

Temperature field: Nonlinear Diffusion and 
Convection 

 it is interesting to observe how the  influence of 
the colder end on the temperature profiles seems 
to have changed especially in the vicinity of the 
RHS boundary. This is  as a result of cooling by 
convective heat transfer. In comparison with the 
previous case, colder temperature profiles are 
observable near the right boundary.  Most of this 
change happens within the 1.6 2.8x   as 
confirmed by Fig.2b.  
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Fig. 2b : 3D Temperature profile for Nonlinear 
Diffusion and Convection 

 

 

 Fig. 2c shows that unlike Fig. 1c,  there is little  

 

 

Fig.2c: Transient Temperature Profiles for 
Nonlinear Diffusion and Convection 

change in dimensionless temperature with time 
especially for 5, 10   . In addition, the 
temperatures are much less than previously as 
heat is convected away from the surface. 

The effects of Nonlinear diffusion and radiation 
heat loss can be observed in Figs. 3a, 3b and 3c.   

 

Fig. 3a Temperature field for Nonlinear 
Diffusion and Radiation 

 

 

 

More heat transfer activities can now be seen to 
be happening at the left and right end 
boundaries. As the influence of the colder 
dimensionless temperature profiles are felt more 
at the RHS boundary, higher temperatures 
profiles are confined to the left boundary in 
accordance with conservation of energy. This 
balance is very mush shown in figure 3b where  

 

 

Fig. 3b: 3D Temperature Profile for Nonlinear 
Diffusion and Radiation 

it is further demonstrated that   the region of fast 
transitions is positioned within 1.8 2.7x  . 
This is in total agreement with Fig.3a.  
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Fig. 3c: Transient Temperature field for 
Nonlinear Diffusion and Radiation 

Fig. 3c  illustrates a significant influence of 
radiation cooling in the overall heat transfer 
process. As can be observed,  there is an overall 
cooling effect on the surface of the rod despite 
the time change. The cooling effect is 
significantly lower than in the previous cases 
considered.  Figs. 4a, 4b and 4c illustrate 
nonlinear conduction, radiation and convection 
effects on the overall heat transfer activity. Fig. 
4a demonstrates the importance of considering 
both convection and radiation in the energy 
equation. 

 

Fig. 4a: Temperature field for Nonlinear 
Diffusion, Convection and Radiation 

 The hotter temperature profiles can be seen to 
be moving more uniformly towards the cooler 
end. There are no profile singularities closer to 
the cooler end as was the case in previous 
considerations. This is  confirmed in  Fig. 4b 
below. 

 

 Fig. 4b: Scalar Profile for Diffusion, 
Convection and Radiation.  

Fig. 4c shows that a combination of heat transfer 
rates resulting from nonlinear conduction, 
radiation and convection produce lower surface 
temperatures than in the previous cases. 

 

 

Fig.4c: Transient Temperature field for 
Nonlinear Diffusion, Convection and Radiation 

4 Conclusion 

In the work reported herein, heat transfer 
computations involving temperature-dependent 
thermal conductivity as well as convection and 
nonlinear radiation effects have been carried out 
using an FD modified NR approach. The results 
are physically plausible and amply demonstrate 
the impact of convection and radiation on the 
overall heat transfer process. Of these two 
(convection and radiation), radiation effects are 
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more significant.  It has previously been 
demonstrated that for temperature distribution in 
a metal cooled by convection and radiation, the 
heat loss due to radiation, contributes to 15-20 
percent of the total loss [14,15]. Hence it plays a 
significant role in improving the thermal 
performance of heat loss components such as 
fins and more importantly in devices with low 
heat transfer coefficients. We hasten to comment 
that for this particular problem the non-
dimensionless temperature profiles in the region 
1.3 2.7x  needs further study in terms of 
relating it to the influence of  radiation 
parameter r thermogeometric parameter M, 

conduction parameters 0 ,   .  A look at the 
profiles within this region, suggests that certain 
combinations of these parameters may lead to 
physically unrealistic results and numerical 
instability which may significantly affect design.  
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