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Abstract: - The current paper deals with the problem of the simply supported thin rectangular plate subjected to 

the intermediate strip in-plane loading. Based on the strain energy method (Fourier ansatz), the critical 

(minimum value) of buckling stress occurrence was determined in a general form dependent only on the strip 

thickness, strip location, plate width and stress magnitude. Compatible with the classical columns Euler method 
it was found that the plate stability is decreased with the increasing of the plate width due to larger induced 

stresses. Also, strip location relative to the support region was found to influence the buckling (same analogy to 

the Euler buckling theory; consider the strip as a both sides pressed rod). Additionally, the strip width 
parameter increase is likely to cause larger buckling stress. Moreover, expressions that includes both axial and 

transverse loads for different extended cases configurations were also derived and examined based on the strain 

energy method alongside explanation for possible applications (thin aluminum plate welding). In a general 
view, it was found that the cases of combined axial and perpendicular loading action are less stabilized than 

cases where only one kind of loading configuration is participated. Finally, the buckling stress was found to 

agree qualitatively with the cited literature. 

 
Key-Words: - static, buckling; in-plane loading; buckling stress; rectangular plate; strip. 

Received: May 10, 2021. Revised: October 2, 2021. Accepted: October 16, 2021. Published: October 27, 2021. 

 

1 Introduction 
Rectangular plate subjected to an in-plane stress in 

the geometry shape of rectangular strip has a lot of 
importance in the ship industry (side plates [1] and 

stiffened ribs plates [2]), and structural engineering 

(stiffened plates [3], perforated thin plates [4]), 

manufacturing (cold rolling process [5-6]) and 
composite plates (ply and film plates [7-9] FGM 

plates [10-11] and other types of plate involving the 

viscoelastic form [12-13]). The prevailing common 
classical solution of compressed stress due to rib 

influence can be found in classical books of solid & 

structural mechanics [14-17].  
The loading configurations at the plate 

boundaries can be divided into static and dynamic 

loads [19]. In addition, post- or pre- buckling state 

[19] is another way of classification and final 
method to distinguish is the applying loads type and 

way of operation [13, 20-24]. 

The calculations methods to cope with the 
problem diverse from Rayleigh – Ritz methods [10], 

numerical methods [22], exact analytic solutions 

[25] and semi-analytic solution [26-27]. 

 

Specifically, the case of intermediate load in the 

pre-buckling state in the in-plane was investigated 
by [25-29] which based on the direct thin plate 

theory displacement equation. However, the current 

study extent the studies of Xiang et al. [25], Yao et 
al., [26], Mijušković et al. [27] and Wang et al. [28-

29] by developing a general analytic solution to the 

pre –buckling state of the simply supported 

rectangular thin plate subjected to a thick strip that 
is generally located in the plate plane based on the 

strain energy theory. The obtained expression will 

be examined and compared qualitatively to the 
relevant literature references [2, 14, 16, 18, 25]. 

Before beginning with the analytic model, it 

will be mentioned that there are several main plate 

theoretical model in the literature for different 
regimes, like: Kirchhoff-Love [31-33] (simple 

displacement relations, all kinds of thinner plate 

thickness), Ulfyand-Mindlin [34-35] (plate 
thickness to planar dimensions ratio is of the order 

of one tenth), Mindlin–Reissner [36-38] (the 

bending stress is assumed to behave linearly while 
the shear stress is supposed to be quadratic through 

the plate thickness), Reissner–Stein [39] (improved 

Saint-Venant theory for cantilever plates) and von 

Karman [40-44] (general and most veteran model 
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from 1910 describing the large displacements of 

thin flat plate based on nonlinear partial differential 

equation). Moreover, von Karman model for thin 

flat elastic plate subjected to stress is an extension 
of Kirchhoff-Love model and based on differential 

kinematic equations depicting stress-strain 

relationships [40-44]. The solution for the obtained 
non-linear differential equation (large deflection) 

that is based on Airy's function is not easy and 

immediate to solve [44]. There are methods that 
convert the non-linear set of equilibrium [40, 43 - 

44] to energy [40] or guessing appropriate 

displacement function [41] method which is similar 

to what we propose here. However, here we concern 
only partial stress loading region (strip) that act on a 

supported thin flat elastic plate. 

Ulfyand-Mindlin [34 - 35] and Mindlin–
Reissner [36, 38] plates have their own complicated 

assumptions (as noted above) with appropriated 

differential equations relationships between stresses 
and strains. Yet, Brunelle and Robertson [34] (deals 

with different boundary conditions and full stress 

loading on the opposite edges) and Bui et al. [37] 

(only generalized scheme without solving or 
specifying a particular case) have formulated it by 

using energy form which is similar to the current 

study.  
Another dominant model-case which is similar 

to the current study energy formulation has been 

produced by Reissner–Stein [39] for cantilever 

elastic thing plate under torsional and transverse 
moments bending which is different from our model 

(boundary conditions). 

As though, particularly, the current model is 
based on total potential energy function 

minimization formulation that appear (for example) 

Reissner–Stein [39] and also known to be called 
Fourier Ansatz model which is derived from the 

linear theory (i.e. governing energy is functional 

quadratic). Concentrating on thin, flat elastic plate 

under partial loading in order to have simple closed 
analytic solution for future evaluation of 

applications based on (or involved with) pre-

buckling stress (heating, punching, etc.).     
 

 

2 Problem Formulation 
In a general form, consider a simply supported thin 

flat elastic plate (  ) subjected to thick strip loading 
with thickness as appear in Fig. 1. Using Cartesian 

coordinates system as shown in Fig. 1, alongside the 

general equation of strain energy density for plane 

stress ( 0z  ) [2, 14, 18]: 

 

 
Fig. 1: Simply supported plate subjected to a thick 

strip loading 
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, E is the Young modulus 

and   is the Poisson ratio. Additionally, the work 

expression (V ) that is defined only for the strip 

region ( y     ) and controlled by the 

concentrated normalized (outer) pressures/stresses 

xN  in the strip distributed uniformly over the 
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Now, we will assume that the deflection 
parameter can be represented using the following 

function: 
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which fulfils the following simply supported (S-S) 
boundary conditions (B.C.): 
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are dependent on the boundary nAwhile the constants

wconditions. Note that is a scalar function, however, the 

index numbers 1,2,3 are aided to separate three plate 

subdomains (1 – right side, 2 – strip, 3 – left side). 

Hence the stored energy and the virtual work 
reads, are after substituting (3) into expressions (1) 

and (2), as: 

 

 

22
2 2 2 2 2

2 2 2 2

0 0

2 44 4 4
2 4 2

4 4

2 1
2

9
2 1

8 8

a b

mn mn

m n

D w w w w w
U dydx

x y x y x y

Dab m n mn mn
A A

a b ab ab




  

       
        

        

    
            

 



 .    (4) 

In order to simplify, we will assume 1  and 

consider only the bending influence, such as Eq. (4) 

will become: 
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Note that m and n indicate the numbers of half-
waves in each direction. 
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.    (8) 

The critical value of xN will be (for one mnA  term): 
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Alternative method, finding the extreme values of 

xN by differentiating the inequality   along 

constant 0mnA   as 0
mnA
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gives the same value. 

Now, expression (9) will be approximated for the 

first minimal critical buckling load with the 

parameters pair  ,m n  to yield: 
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such as the sinus expression in the denominator will 
be bounded as 
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is not physical (due to the 

negative denominator, b   ). Expressions (9)-(10) 

seem to make sense in the context of  behavior 

since the critical load xN required to buckle the 

plate is diminished with the strip width increase. 

Next step, for 1n  (10) has the minimum value and 

becomes: 
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Now, using some algebra can lead us to the reduced 
relation (11), presented as Euler's formula in the 

form of boundary support:  
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Note that for the case , 0b     (inserted into 

Eq. (9)) we obtain the classical solution [2, 14, 20]: 
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Note that the classical solution (13) is not dependent 
on the plate width length b whereas expressions (9) 

and (10) are dependent on b due to the additional 

strip width . 

Finally, the maximum buckling stress for the 
problem posed by [25, 28-29] including two 

extensions will be presented. Following the previous 

development, three prominent extent problems 

shown in Figs. 2 are solved in Table 1 based on the 
superposition principal. Note that the subdomain 2 

definition in case (c) relates to the whole plate 

without the loads 1N .  

 

 
Fig. 2: (a) Simply supported plate subjected to thin 
intermediate and ended uniaxial loads (taken from 

[25, 28-29]) (b) Rectangular plate subjected to thick 

intermediate and ended uniaxial loads (c)  
Rectangular plate subjected to perpendicular thick 

load and ended uniaxial loads (d) Rectangular plate 

subjected to intermediate perpendicular combined 

with uniaxial thick loads and ended uniaxial loads 

 

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2021.16.23 Jacob Nagler

E-ISSN: 2224-3461 201 Volume 16, 2021



Table 1. Comparison between different load 

configurations vs. maximum buckling stress 

 
 

 

3 Results and Discussion 
In this section the following parameters will be 
substituted into Eqs. (9)-(10) and (13) which are 

represented in Fig 3, as: 

1,  0.5 , 0.3

0 /  3,0 /  3,0 /  3

b a b b

a b b b

   

      
. (14) 

Respectively, the representative parameters in Figs. 
4-7 are as follows: 

1,  0.5 , 0.3

0 /  3,0 /  3,0 /  3

a a b b

b a a a

   

      
. (15) 

Examining Fig. 3(a) teaches that all solutions 

are very close quantitatively and behaves 
qualitatively the same. Also, the approximate 

solution (10) seems to be an average solution 

between the exact solution (9) and the classic (13) 

solution. The buckle loading seems to decrease until 
they reach certain critical value of a/b ratio from 

which they slightly increase but keeps stabilized as 

soon as the plate is more elongated (b parameter is 
reduced or a is increased).  The opposite (minimum 

critical buckling load is decreased) occurs if the 

plate is flattened (fit with the classical columns 
Euler method).  Note that similar phenomenon 

occurs in Figs. 4(a)-7(a). Accordingly, it can be 

assumed approximately that the minimum buckling 

load is varied linearly according with the 

geometrical ratio a/b (Fig. 3(a)) and b/a (Figs. 4(a)-

7(a)), respectively. 

Analyzing the strip width (Δ) influence; one 
might conclude from observing 3(b)-7(b) that the 

required critical loading to buckle the plate is being 

reduced due to the fact that the increase of the strip 
width is accompanied with larger induced stresses 

that accelerating the buckling process. Although it 

was not illustrative presented, the parameters m, n 
has almost no effect on the buckling load for 

(relative to the) high strip width length.  

 

Analyzing the strip location (ξ) appearing in 
Figs. 3(c)-7(c) that expressed in sinus wave of 

maximum loading in reversed direction at the center 

of the plate might be explained by the fact that the 
existing induced stresses are located in further 

distances from the supports locations. Therefore 

when the stresses acting in a further distance relative 
to the supports locations the buckling might be 

occurred sooner which is also adjust to Euler 

compressed column theory. Remark that the jump in 

Figs. 3(c)-7(c) resembles numerically the fact that 
the location of the loading is the same as its width. 

 

One application that can be used here is when 
thin aluminium plate is subjected to heating through 

welding process - by making row of thin welding 

strips with spaces between them as close as possible 

to the supports in order to avoid concentrated 
induced stresses that might cause buckling. 

 

Observing Figs. 4-7 we can see the influence 
(disturbance) of the transverse perpendicular 

loading as appear in 6(a) and 7(a). Generally 

speaking, the cases where both axial and 
perpendicular loading are acting are less stable than 

cases where only one kind of loading configuration 

is participated. Finally, qualitative confirmation 

with literature [2, 14, 16, 18, 25] has been achieved.  
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Fig. 3: Stability criteria (critical load) for simply 

supported plates under intermediate load vs. (a) 

different geometrical ratio (a/b) values (b) different 

delta ( ) width length values (c) different  

distance values. 

 

 

 

 

Fig. 4: Stability criteria for simply supported plates 

under intermediate load N2 and end load N1 vs. (a) 

different geometrical ratio (a/b) values (b) different 

delta ( ) width length values (c) different  

distance values. 
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Fig. 5: Stability criteria for simply supported plates 

under intermediate load N2 and end load N1 vs. (a) 

different geometrical ratio (a/b) values (b) different 

delta ( ) width length values (c) different  

distance values. 

 

 
 

 
 

 
Fig. 6: Stability criteria for simply supported plates 

under intermediate load N2 and end load N1 vs. (a) 

different geometrical ratio (a/b) values (b) different 

delta ( ) width length values (c) different  

distance values. 
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Fig. 7: Stability criteria for simply supported plates 

under intermediate load N2 and end load N1 vs. (a) 

different geometrical ratio (a/b) values (b) different 

delta ( ) width length values (c) different  

distance values. 

 

 

4 Conclusion 
Current study presents generalized static analytic 
solution for the critical buckling load of the simply 

supported rectangular plate subjected to the 

intermediate strip in-plane loading, based on the 

strain energy method. The expression was found to 

be dependent only on the strip thickness, strip 
location, plate width and stress magnitude. The 

developed solutions were found to agree 

quantitatively and qualitatively with the classical 
solution. 

Compatible with the classical columns Euler 

method it was found that the plate stability is 
decreased with the increasing of the plate width. 

Accordingly, it can be assumed approximately that 

the minimum buckling load is linearly proportional 

to the geometrical ratio between plate length and 
plate width (a/b). 

Moreover, the strip width (Δ) parameter 

analysis has shown that increase is likely to cause 
buckling stress development due to the fact that the 

increase of the strip width is accompanied with 

larger induced stresses that accelerating the buckling 
process. In addition, strip location (ξ) was found to 

be of importance due to the fact that the stresses 

acting in a further distance relative to the supports 

locations might accelerating the buckling process 
which is compatible with the Euler compressed 

column theory. 

Additionally, expressions that includes both 
axial and transverse loads for different extended 

cases configurations were also derived and 

examined based on the strain energy method 

alongside explanation for possible applications (thin 
aluminum plate welding). In general view, it was 

found that the cases of combined axial and 

perpendicular loading action are less stabilized than 
cases where only one kind of loading configuration 

is participated.   

 Finally, comparison to literature references 
shows good qualitative agreement. Further studies 

in the field might include the dynamic case (with 

simulation performance) of plates and shells. Also, 

combination of out of plane load might contribute 
for the whole comprehension. 
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