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1 Introduction 
    Analysis of Poiseuille flow of Polar fluid has received 
considerable attention in the literature in order to better 
understand the behaviour of polar fluids and the effects 
of micro-rotation, and to provide for a measure of the 
effective viscosity. Interest in polar fluids stems from 
the various applications they enjoy, including modeling 
blood flow, analysis of lubrication mechanisms, 
geothermal energy studies and heat transfer, [1,4, 
7,8,10], in addition to more recent applications of micro-
channels in the design of micro-fluidic devices, [9]. 
 
Increasing interest in polar fluid flow through and over 
porous surfaces is witnessed by the large number of 
recent studies which deal with deriving appropriate 
models of flow through porous structures, [11], 
analyzing flow in various porous settings, and modeling 
the boundary layer flow of a polar fluid over a porous 
surface or inside a porous medium. Polar fluid flow 
through porous structures may find applications in a 
number of areas, including the modeling of blood flow 
through synthetic tissues; in lubrication mechanisms 
with porous linings; and in geothermal heat transfer 
studies, to name only a few, [5, 6, 7]. 
 
Less studied, however, is the Poiseuille flow of a polar 
fluid through a porous medium, which is the subject 
matter of this work. The objective is to derive the 
velocity and micro-rotation profiles and compare them 

with the results of Poiseuille flow through free-space in 
order to illustrate the effects of the porous medium 
parameters on the flow. In order to obtain an expression 
for the effective viscosity, we also obtain the velocity 
profile for the plane Poiseuille flow of a Newtonian fluid 
through a porous medium. This work was first presented 
in [7]. 
 

2 Governing Equations 
    Equations governing the unsteady flow of a polar 
fluid through a variable porosity medium are given by 
the following equation of continuity, linear momentum 
and angular momentum equation, [6]: 
 
Conservation of Mass: 

0.q 
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where  G


 is the micro-rotation vector, q


 is the specific 
discharge (that is, vq


 , with v


 being the intrinsic 

averaged velocity), P  is the pressure, t  is the time 
variable,   is the fluid density, F is a porosity function 

that can be identified with 



 for slow flow,   is the 

permeability,   is the porosity,   is the fluid viscosity, 
  is the rotational viscosity, k  is the radius of gyration, 
and  ,,  are gradient viscosities. 
 
If we take the rotational viscosity 0 in (2), we 
recover the momentum equations governing flow of a 
Newtonian fluid through porous media (that is, the 
averaged form of Navier-Stokes equations, as given by 
Du Plessis and Masliyah [2,3]).   
 
Now, consider the steady flow of a polar fluid through a 
porous medium bounded by parallel plates that extend in 
the x-direction and located at y=h and y=-h, as shown in 
Fig. 1.  
 
y=h  
 
Flow Direction 
 
y=-h 
 

Fig. 1: Representative Sketch 
 

Assuming the flow is driven by a constant pressure 
gradient, equations (1), (2), and (3) reduce to the 
following when porosity   is constant: 
 

  u)(  g 2
dx

dp
uF   )(               …(4) 

g  )(  024  ug                                  …(5) 
 
where g is the component of the micro-rotation vector in 
the z-direction, and u  is the velocity component in the 
x-direction, and prime notation denotes ordinary 
differentiation with respect to y. 
 
Boundary conditions are the no-slip and no-spin on solid 
walls, namely 

.0)()(;0)()(  huhuhghg                   …(6) 

Equations (4) and (5) are rendered dimensionless with 
respect to h, and with respect to a characteristic velocity 
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In addition, we define: 
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Using (7) and (8) in (4) and (5) we obtain, respectively: 
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Boundary conditions (6) take the form: 

.0)1()1(;0)1()1(  UUGG                …(11) 
 
Now, differentiating (10), we obtain: 
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Differentiating (13), twice, we obtain: 
 

GG
LN

N
U 







 
 212 22

2

                               …(14) 

and  

.212 22

2
GG

LN

N
U iv 












 
                             …(15) 

 
Using (13) and (15) in (12) we obtain: 
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General solution to (16) is obtained as follows. 
Characteristic equation of (16) takes the form 
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Roots of (17) are given by:  
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General solution to (16) thus takes the form: 
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The following expression is then obtained forU , by 
inserting (23) in (13) and integrating once with respect 
to Y : 
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Now, from (23) and (24) we obtain, respectively 
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Using (25), (26) in (10), we obtain: 

f

A
c 5  .                                                       …(27) 

Employing the boundary conditions (11) in (23) and 
(24), and making use of (27), we obtain: 
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Using (29) and (30) in (23) and (24), we obtain: 
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Now, from equations (32) and (33) we obtain the 
following expressions for g and u , respectively: 
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By comparison, the corresponding solutions to 
Poiseuille flow of a polar fluid in the absence of a 
porous medium are given by [1]: 
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3 Volumetric Flow Rates and  

   Effective Viscosities 

 
(i) The case of polar fluid in free-space: 

 
In the case of plane Poiseuille flow of a polar fluid in 
free-space (that is, in the absence of the porous matrix), 
Cowin [1] obtained the following expression for the 
volumetric flow rate, Q :  
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where  u  is given by (37). 
 
The base plane Poiseuille flow of a Newtonian fluid has 
the following volumetric flow rate: 
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Now, the effective viscosity, eff , for plane Poiseuille 

flow can be defined in terms of Q . Thus, eff is defined 
using (39) as: 
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and the following eff  for polar fluid in Poiseuille flow 
is obtained by using (38) in (40): 
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Now, (41) yields the following ratio of viscosities: 
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The ratio 





eff
  identifies the change in viscosity 

when a polar fluid flows through free-space relative to 
the viscosity of a Newtonian fluid in free-space. This 
reflects the effect of the fluid microstructure on the 
viscosity. 
 

(ii) The case of polar fluid in a porous 

medium: 
Volumetric flow rate for a polar fluid in the porous 

channel is obtained by using (35) in dyuQ
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where 
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We can define the following three types of effective 
viscosities depending on the type of the base flow in 
plane Poiseuille flow in terms of volumetric flow rate, 
Q . 
 
Type 1: When the base flow is that of a Newtonian fluid 
in free-space,  /1 eff identifies the change in 
viscosity when a polar fluid flows through a porous 
medium relative to the viscosity of a Newtonian fluid. 
This reflects the combined effects of the porous medium 
and the fluid microstructure on the viscosity. 
 
This is obtained by substituting Q  from (43) into (40). 
We thus have 
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Type 2: When the base flow is that of a polar fluid in 
free-space,  /2 eff identifies the change in 
viscosity when a polar fluid flows through a porous 
medium relative to the viscosity of a polar fluid in free-
space. This reflects the effect of the porous medium on 
the viscosity. 
This can be obtained by rewriting (38) as 
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and inserting Q  from (43) in (46). We thus have: 
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Type 3: When the base flow is that of a Newtonian fluid 
in a porous medium,  /eff identifies the change 
in viscosity when a polar fluid flows through a porous 
medium relative to the viscosity of a Newtonian fluid in 
the porous medium. This reflects the effect of the fluid 
microstructure on the viscosity. 
Flow of a Newtonian fluid in the plane Poiseuille flow 
described in his work has the following velocity profile, 
obtained by solving (10) with 0N : 
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and the following volumetric flow rate: 
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Writing (49) as 
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and inserting (43) in (50), we obtain 
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The following relationships between the viscosity ratios 
derived above can easily be established: 
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4 Typical Parameter Values 
    Numerical evaluation of viscosity ratios, velocity and 
micro-rotation profiles is predicated upon relationship 
between the polar fluid viscosity parameters, values of 
the porous medium parameters, roots of the 
characteristic equation (given by equation (17)), the 
driving pressure gradients, and the channel depth.  
Material coefficients of the polar fluid are defined as: 
 
  : Relative Rotational Viscosity 

 ,, : Viscosities of the gradient of total rotation 
, : the usual viscosity coefficients, 

and they satisfy the following conditions:  
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The material characteristic length, l, is defined in terms 
of the above viscosities by  
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While the coupling number, N, is defined by 
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The coupling number, N, is a property of the fluid, and is 
a measure of the degree to which a particle is 
constrained to rotate with the average angular velocity of 
the region in which it is embedded, [1]. 
 
Typical values for the porous medium parameter 

*/f  are given in Table 1, and some values of the 
roots of equation (17) are given in Table 2. 
 

  
 

*  

1.0  5.0  9.0  99.0  

710  610  6105
 

6109
 

6109.9 

 
410  310  3105

 
3109

 
3109.9 

 
210  10  50  90  99  
110  1 5  9  9.9  

1 110  5.0  9.0  99.0  

       Table 1: Values of f= */  
  

f  
1.0

2
2 



N

L
 

1.0
5

2 



N

L
 

9.0
5

2 



N

L
 

610
 444.0

99.999

2

1





 
778.2

99.999

2

1





 
001.15
898.999

2

1





 
310

 667.0
622.31

2

1





 
778.2
618.31

2

1





 
903.17
494.26

2

1




 

110

 340.0
619.0

2

1





 
334.0
577.1

2

1





 
021.1
643.4

2

1




 

        Table 2: Roots of Characteristic Equation 
 

 

5 Conclusion 
    In this work, we considered plane Poiseuille flow of a 
polar fluid through a porous structure and derived 
expressions for the velocity and micro-rotation. We 
derived expressions for a number of viscosity ratios that 
arise in the model used. Some typical values of the 
porous parameters and the fluid parameters have also 
been provided. 
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