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Abstract: An attempt has been made to investigate the instability of the plane interface between two 
viscoelastic superposed conducting fluids in the presence of suspended particles and variable horizontal 
magnetic field through porous medium is studied. The cases of two fluids of uniform densities, viscosities, 
magnetic fields, and suspended particles number densities separated by a horizontal boundary; and of 
exponentially varying density, viscosity, suspended particles number density, and magnetic field are 
considered. It is found that the stability criterion is independent of the effects of viscoelasticity, medium 
porosity, and suspended particles but is dependent on the orientation and magnitude of the magnetic field. The 
magnetic field succeeds in stabilizing a certain range of wavenumbers which were unstable in the absence of 
the magnetic field. The system is found to be stable for potentially stable configuration/stratification. The 
growth rates are found to increase (for certain wavenumbers) and decrease (for other wavenumbers) with the 
increase in kinematic viscosity, suspended particles number density, magnetic field, medium permeability and 
stress relaxation time. 
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1 Introduction 

When two fluids of different densities are superposed 
one over the other (or accelerated towards each 
other), the instability of the plane interface between 
the two fluids, when it occurs, is called Rayleigh-
Taylor instability. In general, it is derived from the 
character of the equilibrium of an incompressible 
stratified heterogeneous fluid. Mention may be made 
of two important special cases: (a) two fluids of 
different densities superposed one over the other; (b) 
a fluid with continuous density stratification. Hide 
[1] has treated the character of the equilibrium of a 
viscous, incompressible, rotating fluid of variable 
density and found that rotation stabilizes the 
potentially unstable arrangement for certain wave-
number range. He has carried the directions of 
angular velocity vector and gravity vector (in the 
direction of the vertical) to be inclined. In another 
study, Hide [2] has studied the case of a viscous, 
incompressible, electrically conducting fluid of 

variable density in the presence of a vertical 
magnetic field and found that magnetic field 
considerably stabilizes the configuration and it is 
possible to have oscillatory motions in the presence 
of magnetic field even if the configuration is 
thoroughly unstable (density wise). Chandrasekhar 
[3] has given a detailed account of the instability of 
the plane interface between two incompressible and 
viscous fluids of different densities when the lighter 
is accelerated into the heavier. The influence of 
viscosity on the stability of the plane interface 
separating two electrically conducting, 
incompressible superposed fluids of uniform 
densities, when the whole system is immersed in a 
uniform horizontal magnetic field, has been studied 
by Bhatia [4]. He has carried out the stability analysis 
for two fluids of high viscosities and different 
uniform densities. A good account of stability 
problems has also been given by Joseph and Renardy 
[5] in their study of two-fluid dynamics. Hoshoudy 
and El-Ansary [6] have studied the effect of viscosity 
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and homogeneous horizontal magnetic field on 
Rayleigh-Taylor instability of a heavy fluid 
supported by a lighter one.  

In geophysical situations, more often than not, the 
fluid is not pure but may instead be permeated with 
suspended (or dust) particles. The effect of 
suspended particles on the stability of superposed 
fluids might be of industrial and chemical 
engineering importance. Further, motivation for this 
study is the fact that knowledge concerning fluid-
particle mixtures is not commensurate with their 
industrial and scientific importance. Scanlon and 
Segel [7] have considered the effect of suspended 
particles on the onset of Be′nard convection and 
found that the critical Rayleigh number was reduced 
solely because the heat capacity of the pure gas was 
supplemented by that of the particles. The effect of 
suspended particles was thus found to destabilize 
the layer. Palaniswamy and Purushotham [8] have 
studied the stability of shear flow of stratified fluids 
with fine dust and found the effect of fine dust to 
increase the region of instability. Alloui et al. [9] 
have studied the onset of double-diffusive 
convection in a horizontal Brinkman cavity and 
analysis made on the linear stability of the quiescent 
state within a horizontal porous cavity subject to 
vertical gradients of temperature and solute. 
Recently spacecraft observations have confirmed 
that the dust particles play an important role in the 
dynamics of atmosphere as well as in the diurnal 
and surface variations in the temperature of the 
Martian weather. It is, therefore, of interest to study 
the presence of suspended particles in astrophysical 
situations. The medium has been considered to be 
non-porous in all the above studies. 

The flow through porous media is of considerable 
interest for petroleum engineers, for geophysical 
fluid dynamicists and has importance in chemical 
technology and industry. An example in the 
geophysical context is the recovery of crude oil from 
the pores of reservoir rocks. Among the applications 
in engineering disciplines one can find the food 
processing industry, chemical processing industry, 
solidification and centrifugal casting of metals. Such 
flows has shown their great importance in petroleum 
engineering to study the movement of natural gas, oil 
and water through the oil reservoirs; in chemical 
engineering for filtration and purification processes 
and in the field of agriculture engineering to study 
the underground water resources, seepage of water in 
river beds. The problem of Rayleigh-Taylor 
instability in a porous medium is of importance in 
geophysics, soil sciences, ground water hydrology 

and astrophysics. The study of Rayleigh-Taylor 
instability of fluids saturated porous media has 
diverse practical applications, including that related 
to the materials processing technology, in particular, 
the melting and solidification of binary alloys. The 
development of geothermal power resources has 
increased general interest in the properties of 
convection in porous media. The scientific 
importance of the field has also increase because 
hydrothermal circulation is the dominant heat-
transfer mechanism in young oceanic crust (Lister, 
[10]). Generally it is accepted that comets consists of 
a dusty ‘snowball’ of a mixture of frozen gases 
which in the process of their journey changes from 
solid to gas and vice-versa. The physical properties 
of comets, meteorites and interplanetary dust 
strongly suggest the importance of porosity in the 
astrophysical context (McDonnel, [11]).    

Many common materials such as paints, polymer’s, 
plastics and more exotic one such as silicic magma, 
saturated soils and the Earth’s lithosphere behaves as 
viscoelastic fluids. With the growing importance of 
non-Newtonian fluids in geophysical fluid dynamics, 
chemical technology and petroleum industry, the 
investigations on such fluids are desirable. The 
stability of a horizontal layer of Maxwell’s 
viscoelastic fluid heated from below has been 
investigated by Vest and Arpaci [12]. The nature of 
instability and some factors may have different 
effects on viscoelastic fluids as compared to the 
Newtonian fluids. For example, Bhatia and Steiner 
[13] have considered the effect of a uniform rotation 
on the thermal instability of a Maxwell fluid and 
have found that rotation has a destabilizing effect in 
contrast to the stabilizing effect on Newtonian fluid. 
Bhatia and Steiner [14] have also considered the 
thermal instability of a Maxwell fluid in 
hydromagnetics and have found that the magnetic 
field has a stabilizing effect on viscoelastic fluid as in 
the case of Newtonian fluid. Kumar and Singh [15] 
studied the superposed Maxwellian viscoelastic 
fluids through porous media in hydromagnetics. 
Kumar et al. [16] also studied the instability of two 
rotating Maxwellian viscoelastic superposed fluids 
with variable magnetic field in porous medium. 
Kumar and Mohan [17] considered the thermosolutal 
convection in a heterogeneous Maxwellian fluid 
layer heated and soluted from below through porous 
medium. The triply diffusive convection in a 
Maxwell viscoelastic fluid in the presence of uniform 
vertical magnetic field through porous medium has 
been considered by Sharma et al. [18]. Kumar [19] 
has studied the transport of vorticity in a magnetic 
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Maxwellian viscoelastic fluid in the presence of 
suspended magnetic particles.  

Keeping in mind the importance in chemical 
technology, biomechanics, paper and pulp 
technology, oil recovery and various importance 
stated above of porous media, suspended particles 
and magnetic field, the present paper attempts to 
study the effects of suspended particles and variable 
horizontal magnetic field on the Rayleigh-Taylor 
instability of Maxwellian viscoelastic fluids in 
porous medium.  

 

 

2 Formulation of the Problem and 

Perturbation Equations 

Let Γ𝑖𝑗  , 𝜏𝑖𝑗  , 𝑒𝑖𝑗  , 𝛿𝑖𝑗  , 𝑝, 𝑢𝑖 , 𝑥𝑖  , 𝜇 and𝜆 denote, 
respectively, the stress tensor, shear stress tensor, rate 
of strain tensor, Kronecker delta, scalar pressure, 
velocity, position vector, viscosity, and stress 
relaxation time. Then the Maxwellian viscoelastic 
fluid is described by the constitutive relations 

Γ𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜏𝑖𝑗

(1 + 𝜆
𝑑

𝑑𝑡
) 𝜏𝑖𝑗 = 2𝜇𝑒𝑖𝑗

𝑒𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
}
 
 

 
 

  ,                            (1) 

where  

𝑑

𝑑𝑡
=
𝜕

𝜕𝑡
+ 𝑢𝑗

𝜕

𝜕𝑥𝑗
 

is the “convective derivative”. 

Consider a static state in which an incompressible 
and infinitely (electrically) conducting Maxwellian 
viscoelastic fluid permeated with suspended particles 
is arranged in horizontal strata in porous medium and 
the pressure 𝑝 and density 𝜌 are functions of the 
vertical coordinate 𝑧 only. The system is acted on by 
gravity force 𝑔⃗(0,0,−𝑔) and variable horizontal 
magnetic field 𝐻⃗⃗⃗(𝐻(𝑧), 0,0). The character of the 
equilibrium of this initial static state is determined, as 
usual, by supposing that the system is slightly 
disturbed and then by following its further evolution. 

Let 𝑢⃗⃗(𝑢, 𝑣, 𝑤), ℎ⃗⃗(ℎ𝑥 , ℎ𝑦, ℎ𝑧), 𝛿𝜌, and 𝛿𝑝 denote, 
respectively, the perturbations in fluid velocity 
(0,0,0), magnetic field 𝐻⃗⃗⃗, density 𝜌, and pressure 
𝑝; 𝑣⃗(𝑥̅, 𝑡) and 𝑁(𝑥̅, 𝑡) denote the velocity and the 
number density of the particles respectively. 𝐾 =

6𝜋𝜌𝜈𝜂, where 𝜂 is the particle radius, is the Stokes 
drag coefficient, 𝑣⃗ = (𝑙, 𝑟, 𝑠) and 𝑥̅ = (𝑥, 𝑦, 𝑧). Then 
the linearized perturbation equations of Maxwellian 
viscoelastic fluid through porous medium in the 
presence of variable magnetic field, using (1) and 
Darcy’s law, are 

𝜌

𝜀
(1 + 𝜆

𝜕

𝜕𝑡
)
𝜕𝑢⃗⃗

𝜕𝑡
= (1 + 𝜆

𝜕

𝜕𝑡
) [−∇𝛿𝑝 + 𝑔𝛿𝜌

+
𝜇𝑒
4𝜋
{(∇ × ℎ⃗⃗) × 𝐻⃗⃗⃗ + (∇ × 𝐻⃗⃗⃗) × ℎ⃗⃗}

+
𝐾𝑁

𝜀
(𝑣⃗ − 𝑢⃗⃗)]

−
𝜇

𝑘1
𝑢⃗⃗  ,                                (2) 

∇. 𝑢⃗⃗ = 0    ,                                                       (3) 

𝜀
𝜕ℎ⃗⃗

𝜕𝑡
= ∇ × (𝑢⃗⃗ × 𝐻⃗⃗⃗)    ,                                 (4) 

∇. ℎ⃗⃗ = 0  ,                                                          (5) 

𝜀
𝜕

𝜕𝑡
𝛿𝜌 = −𝑤

𝑑𝜌

𝑑𝑧
  .                                        (6) 

Here 𝜇, 𝜀, 𝑘1 , 𝜇𝑒 , 𝑁 , and 𝑔 stand for fluid viscosity, 
medium porosity, medium permeability, magnetic 
permeability, number density of particles, and 
acceleration due to gravity, respectively. Assuming 
uniform particles size, spherical shape, and small 
relative velocities between the fluid and particles, the 
presence of particles adds an extra force term in the 
equations of motion (2), proportional to the velocity 
difference between particles and fluid. 

Since the force exerted by the fluid on the particles is 
equal and opposite to that exerted by the particles on 
the fluid, there must be an extra force term, equal in 
magnitude but opposite in sign, in the equations of 
motion for the particles. The buoyancy force on the 
particles is neglected. Interparticle reactions are also 
ignored, for we assume that distances between the 
particles are quite large compared with their 
diameters. If 𝑚𝑁 is the mass of particles per unit 
volume, the linearized perturbed equations of motion 
and continuity for the particles, under the above 
assumptions are 

(
𝑚

𝐾

𝜕

𝜕𝑡
+ 1) 𝑣⃗ = 𝑢⃗⃗  ,                                       (7) 

𝜕𝑀

𝜕𝑡
+ ∇. 𝑣⃗ = 0  ,                                              (8) 

where 𝑀 = 𝜀𝑁 𝑁0⁄ ; and 𝑁0 , 𝑁 stand for initial 
uniform number density and perturbation in number 
density, respectively. Equation (6) ensures that the 
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density of each particle remains unchanged as we 
follow it with its motion. 

Analyzing the disturbances into normal modes, we 
seek solutions whose dependence on 𝑥, 𝑦 and 𝑡 is 
given by 

𝑒𝑥𝑝(𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑦𝑦 + 𝑛𝑡)  ,                            (9) 

where 𝑘𝑥 , 𝑘𝑦 are horizontal wave numbers; 𝑘2 =
𝑘𝑥
2 + 𝑘𝑦

2 ; and 𝑛 is a complex constant. 

For perturbation of the form (9), equations (2) – (7), 
after eliminating 𝑣⃗ , give 

(1 + 𝜆𝑛) [
𝜌

𝜀
(𝜏𝑛 + 1) +

𝑚𝑁

𝜀
] 𝑛𝑢 + (1 + 𝜏𝑛)

𝜇

𝑘1
𝑢

= (1 + 𝜆𝑛)(1 + 𝜏𝑛) [−𝑖𝑘𝑥𝛿𝑝

+
𝜇𝑒
4𝜋
ℎ𝑧(𝐷𝐻)]   ,                 (10) 

(1 + 𝜆𝑛) [
𝜌

𝜀
(𝜏𝑛 + 1) +

𝑚𝑁

𝜀
] 𝑛𝑣 + (1 + 𝜏𝑛)

𝜇

𝑘1
𝑣

= (1 + 𝜆𝑛)(1 + 𝜏𝑛) [−𝑖𝑘𝑦𝛿𝑝

+
𝜇𝑒
4𝜋
𝐻(𝑖𝑘𝑥ℎ𝑦 − 𝑖𝑘𝑦ℎ𝑥)] , (11) 

(1 + 𝜆𝑛) [
𝜌

𝜀
(𝜏𝑛 + 1) +

𝑚𝑁

𝜀
] 𝑛𝑤 + (1 + 𝜏𝑛)

𝜇

𝑘1
𝑤 = 

(1 + 𝜆𝑛)(1 + 𝜏𝑛) [−𝐷𝛿𝑝

+
𝜇𝑒
4𝜋
𝐻 (𝑖𝑘𝑥ℎ𝑧 − 𝐷ℎ𝑥 − ℎ𝑥

𝐷𝐻

𝐻
)

− 𝑔𝛿𝜌] , (12) 

𝑖𝑘𝑥𝑢 + 𝑖𝑘𝑦𝑣 + 𝐷𝑤 = 0  ,                          (13) 

𝜀𝑛ℎ𝑥 = 𝑖𝑘𝑥𝐻𝑢 − 𝑤(𝐷𝐻)   ,                       (14) 

𝜀𝑛ℎ𝑦 = 𝑖𝑘𝑥𝐻𝑣   ,                                         (15) 

𝜀𝑛ℎ𝑧 = 𝑖𝑘𝑥𝐻𝑤   ,                                         (16) 

𝑖𝑘𝑥ℎ𝑥 + 𝑖𝑘𝑦ℎ𝑦 +𝐷ℎ𝑧 = 0   ,                    (17) 

𝜀𝑛(𝛿𝜌) = −𝑤(𝐷𝜌)     ,                                (18) 

where 𝜏 = 𝑚 𝐾⁄ , and 𝐷 = 𝑑 𝑑𝑧⁄  . 

Multiplying equations (10) and (11) by −𝑖𝑘𝑥 , −𝑖𝑘𝑦 , 
respectively, and adding, using equations (13) – (18) 
in it, and finally eliminating 𝛿𝑝 between the resulting 
equation and equation (12), we obtain 

(1 + 𝜆𝑛)(1 + 𝜏𝑛)
𝑛

𝜀
[𝐷(𝜌𝐷𝑤) − 𝑘2𝜌𝑤]

+ (1 + 𝜆𝑛)
𝑛

𝜀
[𝐷(𝑚𝑁𝐷𝑤)

− 𝑘2𝑚𝑁𝑤] +
(1 + 𝜏𝑛)

𝑘1
 

[𝐷(𝜇𝐷𝑤) − 𝜇𝑘2𝑤] +
𝑔𝑘2

𝜀𝑛
(1 + 𝜆𝑛) 

(1 + 𝜏𝑛)(𝐷𝜌)𝑤 − (1 + 𝜆𝑛) 

(1 + 𝜏𝑛)
𝜇𝑒𝑘𝑥

2

4𝜋𝜀𝑛
[𝑘2𝐻2𝑤 − 𝐷(𝐻2𝐷𝑤)]

= 0  .                                    (19) 

 

 

3 Special Cases 

Case I: Two Uniform Maxwellian Viscoelastic 

Fluids Separated by a Horizontal Boundary 

Consider the case of two uniform Maxwellian 
viscoelastic fluids of densities 𝜌1 and 𝜌2 , viscosities 
𝜇1 and 𝜇2 , uniform suspended particles densities 𝑁1 
and 𝑁2 , and uniform magnetic fields 𝐻1 and 𝐻2 , 
separated by a horizontal boundary at 𝑧 = 0. The 
subscripts 1 and 2 distinguishes the lower and upper 
fluids, respectively. Then in each region of constant  , 
constant 𝜇 , constant 𝑚𝑁 , and constant 𝐻 , equation 
(19) reduces to 

(𝐷2 − 𝑘2)𝑤 = 0   .                                      (20) 
Since 𝑤 must vanish both when 𝑧 → ∞ (in the upper 
fluids), and 𝑧 → −∞ (in the lower fluid), the general 
solution of equation (20) can be written as 

𝑤1 = 𝐴𝑒
𝑘𝑧(𝑧 < 0)  ,                                (21) 

𝑤2 = 𝐴𝑒
−𝑘𝑧(𝑧 > 0)    ,                          (22) 

where the same constant 𝐴 has been chosen to ensure 
the continuity of 𝑤 at 𝑧 = 0. 

Integrating equation (19) across the interface       𝑧 =
0, we obtain the boundary condition 

(1 + 𝜆𝑛)(1 + 𝜏𝑛)
𝑛

𝜀
[𝜌2𝐷𝑤2 − 𝜌1𝐷𝑤1]𝑧=0

+ (1 + 𝜆𝑛)
𝑚𝑛

𝜀
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[𝑁2𝐷𝑤2 −𝑁1𝐷𝑤1]𝑧=0

+
(1 + 𝜏𝑛)

𝑘1
[𝜇2𝐷𝑤2 − 𝜇1𝐷𝑤1]𝑧=0

+
𝑔𝑘2

𝜀𝑛
(1 + 𝜆𝑛)(1 + 𝜏𝑛)(𝜌2

− 𝜌1)𝑤0 + (1 + 𝜆𝑛)(1 + 𝜏𝑛) 

𝑘𝑥
2𝑉𝐴

2

𝜀𝑛
[𝜌2𝐷𝑤2 − 𝜌1𝐷𝑤1]𝑧=0 = 0  ,                  (23) 

where 𝑤0 is the common value of 𝑤 at 𝑧 = 0.  For 
the sake of simplicity, we have considered that the 
Alfv’en velocities of the two fluids are the same, so 
that 

𝑉𝐴
2 =

𝜇𝑒𝐻1
2

4𝜋𝜌1
=
𝜇𝑒𝐻2

2

4𝜋𝜌2
 . 

Applying the condition (23) to the solutions (21) and 
(22), we obtain 

[𝜆𝜏(𝜌2 + 𝜌1)]𝑛
4

+ [(𝜆 + 𝜏)(𝜌2 + 𝜌1)
+ 𝑚𝜆(𝑁1 +𝑁2)]𝑛

3

+ [(𝜌2 + 𝜌1) + 𝑚(𝑁1 +𝑁2)

+
𝜀𝜏(𝜇1 + 𝜇2)

𝑘1
+ 𝜆𝜏{−𝑔𝑘(𝜌2 − 𝜌1)

+ 𝑘𝑥
2𝑉𝐴

2(𝜌2 + 𝜌1)}] 𝑛
2

+ [
𝜀

𝑘1
(𝜇2 + 𝜇1)

+ (𝜆 + 𝜏){−𝑔𝑘(𝜌2 − 𝜌1)

+ 𝑘𝑥
2𝑉𝐴

2(𝜌2 + 𝜌1)}] 𝑛

+ [−𝑔𝑘(𝜌2 − 𝜌1)
+ 𝑘𝑥

2𝑉𝐴
2(𝜌2 + 𝜌1)] = 0 . (24) 

Theorem 1: For the potentially stable configuration, 
the system is always stable. 

Proof: For the potentially stable configuration 
(𝜌2 < 𝜌1), all the coefficients of equation (24) are 
positive, and so all the roots of the equation (24) are 
either real and negative, or there are complex roots 
(which occur in pairs) with negative real parts. The 
system is therefore stable in each case. The 
potentially stable configuration, therefore, remains 
stable whether the fluid is viscoelastic (Maxwellian) 
and permeated with suspended particles in porous 
medium in hydromagnetics or not. 

Theorem 2: For the unstable configuration, the 
system is stable or unstable according as 𝑘𝑥2𝑉𝐴2 is 
greater than or smaller than 𝑔𝑘(𝛼2 − 𝛼1) and the 

magnetic field succeeds in stabilizing a certain range 
of wavenumbers.  

Proof: For the potentially unstable configuration 
(𝜌2 > 𝜌1), if 

𝑘𝑥
2𝑉𝐴

2(𝜌2 + 𝜌1) > 𝑔𝑘(𝜌2 − 𝜌1)   ,            (25) 

that is, if 

𝑘𝑥
2𝑉𝐴

2 > 𝑔𝑘(𝛼2 − 𝛼1)   ,                              (26) 

where 

𝛼1,2 =
𝜌1,2

𝜌1 + 𝜌2
   .  

Equation (24) does not admit any change of sign and 
has no positive root. Therefore, the system is stable. 

However, if 

𝑘𝑥
2𝑉𝐴

2 < 𝑔𝑘(𝛼2 − 𝛼1)   ,                              (27) 

the constant term in equation (24) is negative, so 
there is at least one change of sign in equation (24). 
Equation (24) allows at least one positive root of 𝑛, 
meaning thereby instability of the system. The 
stability criterion (25) is independent of the effects of 
viscoelasticity, medium porosity, and suspended 
particles. 

Thus for the unstable case, the system is stable or 
unstable according as 𝑘𝑥2𝑉𝐴2 is greater than or smaller 
than 𝑔𝑘(𝛼2 − 𝛼1). The magnetic field thus stabilizes 
a certain wavenumber range 𝑘 > 𝑘∗, where 

𝑘∗ =
𝑔(𝛼2 − 𝛼1)

𝑉𝐴
2 𝑠𝑒𝑐2𝜃  ,                          (28) 

for the unstable configuration even in the presence of 
suspended particles, and porous medium effects. The 
critical wavenumber 𝑘∗, above which the system is 
stabilized, is dependent on the magnitude of the 
magnetic field and fluid densities as well as the 
orientation 𝜃 of the magnetic field. Here 𝜃 is the 
angle between 𝑘⃗⃗ and 𝐻⃗⃗⃗; that is, 𝑘𝑥 = 𝑘 cos 𝜃 . 

Case II: Case of Exponentially Varying 

Stratifications 

Assume the stratifications in fluid density, fluid 
viscosity, suspended particles number density, and 
magnetic field of the form 

𝜌 = 𝜌0𝑒
𝛽𝑧 , 𝜇 = 𝜇0𝑒

𝛽𝑧 , 𝑁 = 𝑁0𝑒
𝛽𝑧 , 𝐻2

= 𝐻0
2𝑒𝛽𝑧  ,                       (29)  

where 𝜌0 , 𝜇0 , 𝑁0 , 𝐻0, and 𝛽 are constants. Equations 
(29) imply that: 
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Kinematic viscosity 𝜈 (= 𝜇

𝜌
=

𝜇0

𝜌0
= 𝜈0), 

𝑁

𝜌
(=

𝑁0

𝜌0
),     

and      Alfve’n velocity 𝑉𝐴 (= √(
𝜇𝑒𝐻

2

4𝜋𝜌
) = √(

𝜇𝑒𝐻0
2

4𝜋𝜌0
)) 

are constant everywhere. 

Substituting (29) in equation (19), and neglecting the 
effect of heterogeneity on inertia, we obtain 

(𝐷2 − 𝑘2)𝑤 +
𝑔𝛽𝑘2 𝑛2⁄

[1 +
ℎ

𝜏𝑛+1
+
𝑘𝑥
2𝑉𝐴

2

𝑛2
+

𝜈0

𝑘1(1+𝜆𝑛)
𝑛

𝜀

]
𝑤

= 0 ,                                                                  (30) 

 

where ℎ = 𝑚𝑁0 𝜌0⁄  . 

Consider the case of two free boundaries which 
although somewhat artificial except for stellar 
atmosphere, where it is the most appropriate (Spiegel 
[20]), provides analytical solutions. The boundary 
conditions in this case are 

𝑤 = 𝐷2𝑤 = 0    𝑎𝑡 𝑧 = 0 𝑎𝑛𝑑 𝑧 = 𝑑.     (31) 

The appropriate solution of (30) satisfying (31) is 

𝑤 = 𝐴 sin (
𝑚𝜋𝑧

𝑑
)  ,                                    (32)  

where 𝑚 is an integer. 

Substituting (32) in (30), we obtain the dispersion 
relation 

𝑛4 +
1

𝜆𝜏
[(𝜆 + 𝜏) + 𝜆ℎ]𝑛3

+
1

𝜆𝜏
[1 + ℎ +

𝜀𝜈0
𝑘1
𝜏 + (𝑘𝑥

2𝑉𝐴
2 −

𝑔𝛽𝑘2

𝐿
)𝜆𝜏] 𝑛2

+
1

𝜆𝜏
[
𝜀𝜈0
𝑘1

+ (𝜆 + 𝜏) {𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
}]𝑛

+
1

𝜆𝜏
[𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
]

= 0,                                                             (33) 

where 𝐿 = 𝑚2𝜋2

𝑑2
+ 𝑘2. 

Theorem 3: System is stable for stable 
stratifications. 

Proof: For 𝛽 < 0 (stable stratifications), equation 
(33) does not allow any positive root of 𝑛 and so the 
system is stable.  

Theorem 4: System is stable or unstable for unstable 
stratifications. Magnetic field succeeds in stabilizing 

a certain range of wavenumbers which were unstable 
in the absence of the magnetic field.   

Proof: For 𝛽 > 0 (unstable stratifications), the 
system is stable or unstable according as 

𝑘𝑥
2𝑉𝐴

2 ≷
𝑔𝛽𝑘2

𝐿
  .                                         (34) 

In the absence of magnetic field, the system is 
unstable for 𝛽 > 0. However, the system can be 
completely stabilized by a large magnetic field, as 
can be seen from equation (33), if 

𝑉𝐴
2 >

𝑔𝛽𝑘2

𝑘𝑥
2𝐿

  .                                                (35) 

The magnetic field, therefore, succeeds in stabilizing 
a wavenumber range 

𝑘2 >
𝑔𝛽

𝑉𝐴
2 𝑠𝑒𝑐

2𝜃 −
𝑚2𝜋2

𝑑2
  ,                        (36) 

in which the wavenumbers were unstable in the 
absence of a magnetic field. The viscoelasticity, 
suspended particles, and medium porosity do not 
have any qualitative effect on the nature of stability 
or instability. 

Theorem 5: The growth rates increase (for certain 
wavenumbers) and decrease (for other wavenumbers) 
with the increase in kinematic viscosity, suspended 
particles number density, magnetic field. Medium 
permeability and stress relaxation time. 

Proof: If 

𝛽 > 0 𝑎𝑛𝑑 𝑘𝑥
2𝑉𝐴

2 <
𝑔𝛽𝑘2

𝐿
  , 

the equation (33) has one positive root. Let 𝑛0 denote 
the positive root of equation (33). Then 

𝑛0
4 +

1

𝜆𝜏
[(𝜆 + 𝜏) + 𝜆ℎ]𝑛0

3

+
1

𝜆𝜏
[1 + ℎ +

𝜀𝜈0
𝑘1

𝜏

+ (𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
)𝜆𝜏] 𝑛0

2

+
1

𝜆𝜏
[
𝜀𝜈0
𝑘1

+ (𝜆 + 𝜏) {𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
}] 𝑛0

+
1

𝜆𝜏
[𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
]

= 0,                                     (37) 
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To find the role of viscosity, magnetic field, 
suspended particles number density, medium 
permeability, and stress relaxation time on the 
growth rate of unstable modes, we examine 
the nature of 
𝑑𝑛0 𝑑𝜈0 , 𝑑𝑛0 𝑑𝑉𝐴  ,   𝑑𝑛0 𝑑ℎ⁄  ,   𝑑𝑛0 𝑑𝑘1 ,⁄⁄⁄  and 
𝑑𝑛0 𝑑𝜆⁄  . Equation (37) yields 

𝑑𝑛0
𝑑𝜈0

= −
𝜀𝑛0
𝐸𝑘1𝜆𝜏

(1 + 𝜏𝑛0),                        (38) 

where 

𝐸 = 4𝑛0
3 +

3

𝜆𝜏
[(𝜆 + 𝜏) + 𝜆ℎ] 𝑛0

2

+
2

𝜆𝜏
[1 + ℎ +

𝜀𝜈0
𝑘1

𝜏

+ (𝑘𝑥
2𝑉𝐴

2 −
𝑔𝛽𝑘2

𝐿
)𝜆𝜏] 𝑛𝑜

+
1

𝜆𝜏
[
𝜀𝜈0
𝑘1

+ (𝜆 + 𝜏) {𝑘𝑥
2𝑉𝐴

2

−
𝑔𝛽𝑘2

𝐿
}].                          (39) 

It is evident from (38) and (39) that 𝑑𝑛0 𝑑𝜈0⁄  may be 
positive or negative. A similar result holds for 
𝑑𝑛0 𝑑𝑉𝐴  ,   𝑑𝑛0 𝑑ℎ⁄   ,   𝑑𝑛0 𝑑𝑘1⁄  ,⁄  and 𝑑𝑛0 𝑑𝜆⁄  . 

The growth rates, therefore, both decrease (for 
certain wavenumbers) and increase (for other 
wavenumbers) with the increase in kinematic 
viscosity, magnetic field, suspended particles number 
density, medium permeability, and stress relaxation 
time. 

 

 

4 Conclusions 

A detailed account of stability of superposed 
Newtonian fluids under varying assumptions of 
hydrodynamics and hydromagnetics, was given by 
Chandrasekhar [3]. The Rayleigh-Taylor instability 
of Maxwellian fluids in the presence of suspended 
particles and variable horizontal magnetic field in a 
porous medium is considered in the present paper. 
The motivation for the present study is due to the fact 
that many common materials such as paints, 
polymers, plastics, and more exotic ones such as 
silicic magma, saturated soils, and the Earth’s 
lithosphere, behave as viscoelastic fluids, and the 
importance of a variable magnetic field, suspended 

particles and porous medium in chemical engineering 
and geophysics. The main results of the present study 
are: 

(i) The dispersion relation studying the 
effect of variable horizontal magnetic 
field, suspended particles, viscosity, 
viscoelasticity on the stability of fluids 
separated by horizontal boundary and 
stratified (exponentially varying density, 
viscosity, suspended particles number 
density, magnetic field) fluid in porous 
medium has been obtained. 

(ii) For stable configuration, the system is 
found to be stable whereas for the 
unstable case, the system is stable or 
unstable according as 𝑘𝑥2𝑉𝐴2 is greater 
than or less than 𝑔𝑘(𝛼2 − 𝛼1). 

(iii) For stable stratification, the system is 
found to be stable for disturbances of all 
wave-numbers.  

(iv) For unstable stratification, the system is 
stable or unstable according as 𝑘𝑥2𝑉𝐴2 is 
greater than or less than (𝑔𝛽𝑘2 𝐿⁄ )’ 

(v) The magnetic field stabilizes unstable 
stratification for small wave-length 
perturbations 𝑘2 >

𝑔𝛽

𝑉𝐴
2 𝑠𝑒𝑐

2𝜃 −
𝑚2𝜋2

𝑑2
 

which were instable in its absence.  
(vi) The stability criterion is independent of 

the effects of viscoelasticity, medium 
porosity, and suspended particles but is 
dependent on the orientation and 
magnitude of the magnetic field. 

(vii) It is also found that the growth rates 
increase (for certain wavenumbers) and 
decrease (for other wavenumbers) with 
the increase in kinematic viscosity, 
suspended particles number density, 
magnetic field, medium permeability, 
and stress relaxation time. 
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