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1 Introduction
Many materials in which the thermal conductivity
varies with direction are called anisotropic materi
als. To date, relatively few reported results of tem
perature distribution or heat flux fields in anisotropic
solid body have published. Some text books such as
Carslaw and Jaeger [1] and Özisik [2] have devoted
a considerable section of their contents to heat con
duction problems in anisotropic bodies. The exact
analytical solutions of anisotropic heat conduction is
limited to very simple geometries [2] and for compli
cated geometries one has to resort to numerical proce
dures. For steadystate twodimensional anisotropic
heat conduction problem in the case of absence of in
ternal heat generation a Monte Carlo solution is pre
sented by Kowsary and Arabi [3]. For layered com
posite anisotropic bodies the heat conduction prob
lems are solved with linear coordinate transformation
in papers by Poon [4], Poon et al. [5], Ma and Chang
[6], Yan et al. [7] and Hsieh and Ma [11]. Mulhol
land and Gupta studied the heat conduction in a three
dimensional anisotropic body by the use of coordi
nate transformation of the principal axes of conduc
tivity tensor [8]. Clements and Budhi gave solutions
for a class of steadystate heat conduction problems
in anisotropic media by means of the boundary ele
ment method [9]. Xiangzhou developed a partition
matching technique to solve the heat conduction in
a twodimensional anisotropic strip with prescribed
temperature on the boundary [10].

In this paper a method is presented to find some
analytical solutions for steadystate and time de
pendent heat conduction problems in homogeneous
anisotropic bodies. By the proposedmethod the exist

ing solutions of heat conduction equation for isotropic
bodies are employed to find solutions of the cor
responding anisotropic problems. A linear coordi
nate transformation is used to develop the formula
tion. By this formulation some analytical solutions
of heat conduction of anisotropic bodies are found
which are remarkable and useful especially for bench
marking purposes. The present paper is a contribution
to the existing exact benchmark solutions for steady
state and timedependent heat conduction problems in
anisotropic twodimensional solid bodies. The first
kind and the second kind boundary conditions are
considered. Although the presented derivations con
cern to twodimensional case they can easily be gen
eralized to threedimensional heat conduction prob
lems.

2 A brief survey of the
twodimensional heat conduction
problem

2.1 Isotropic body
Suppose in a coordinate system (whose components
are x, y) there is a „twodimensional” solid body oc
cupying a plane domain A with the boundary curve
∂A. The temperature T of the body depends on the
space coordinate x, y and the time coordinate Θ, that
is T = T (x, y,Θ). The heat conduction problem
of this twodimensional isotropic homogeneous body
according to the Fourier’s theory leads to the follow
ing initialboundary value problem [1, 2].
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Figure 1: 2D isotropic homogeneous solid body.

K

(
∂2T

∂x2
+

∂2T

∂y2

)
+R = MC

∂T

∂Θ
,

(x, y) ∈ A, Θ > 0,

(1)

T (x, y, 0) = T0(x, y), (x, y) ∈ A, (2)

T (x, y,Θ) = G(x, y,Θ),

(x, y) ∈ ∂AT , Θ > 0,
(3)

K

(
∂T

∂x
Nx +

∂T

∂y
Ny

)
= Q(x, y,Θ),

(x, y) ∈ ∂AQ, Θ > 0,

(4)

whereK is the thermal conductivity coefficient, G is
the prescribed boundary temperature on ∂AT andQ is
the prescribed heat flux on ∂AQ,R is the internal heat
source in A, M is the mass density, C is the specific
heat, Nx, Ny are the components of the unit normal
vector of the boundary curve ∂A as shown in Fig. 1.
We note that ∂A = ∂AT ∪ ∂AQ and ∂AT ∩ ∂AQ =
{0}. Let

F (x, y) = 0 (5)

be the equation of the boundary curve ∂A. It is evi
dent that

∂F

∂x
dx+

∂F

∂y
dy =

{
∂F

∂x
;
∂F

∂y

}
· {dx; dy} = 0, (6)

where the dot between the two vectors indicates their
scalar product. From Eq. (6) it follows that (Fig. 1)

Nx =
1

N

∂F

∂x
, Ny =

1

N

∂F

∂y

N =

√(
∂F

∂x

)2

+

(
∂F

∂y

)2

.

(7)

By the use of Eq. (7) we can reformulate the boundary
condition (4) as

K

(
∂T

∂x

∂F

∂x
+

∂T

∂y

∂F

∂y

)
= NQ. (8)

η

o ξ

∂aQ

∂aT

{dξ, dη}

n = {nx, ny}a

Figure 2: 2D anisotropic homogeneous solid body.

2.2 Anisotropic body
Suppose in a coordinate system (whose components
are ξ, η) there is a „twodimensional” solid body oc
cupying a plane domain with the boundary curve ∂a.
The temperature t of the anisotropic body depends on
the space coordinate ξ, η and the time coordinate ϑ,
that is t = t(ξ, η, ϑ). The heat conduction problem of
this twodimensional homogeneous anisotropic body
leads to the following initialboundary value problem
[1, 2]

k11
∂2t

∂ξ2
+ 2k12

∂2t

∂ξ∂η
+ k22

∂2t

∂η2
+ r = mc

∂t

∂ϑ
,

(ξ, η) ∈ a, ϑ > 0,

(9)

t(ξ, η, 0) = t0(ξ, η), (ξ, η) ∈ a, (10)

t(ξ, η, ϑ) = g(ξ, η, ϑ),

(ξ, η) ∈ ∂at, ϑ > 0,
(11)

k11
∂t

∂ξ
nξ + k12

(
∂t

∂η
nξ +

∂t

∂ξ
nη

)
+ k22

∂t

∂η
nη =

= q(ξ, η, ϑ), (ξ, η) ∈ ∂aq, ϑ > 0.
(12)

Here k11, k12 = k21, k22 are the conductivity co
efficients that form a second order positive definite
symmetric tensor which is called the thermal conduc
tivity tensor, g is the prescribed boundary tempera
ture defined on ∂at, q is the prescribed boundary heat
flux defined on ∂aq, r is the internal heat source,
m is the mass density, c is the specific heat and nξ,
nη are the components of the unit normal vector of
boundary curve ∂a as shown in Fig. 2. We note that
∂a = ∂at ∪ ∂aq and ∂at ∩ ∂aq = {0}. Let

f(ξ, η) = 0 (13)

be the equation of the boundary curve ∂a then we
have

∂f

∂ξ
dξ +

∂f

∂η
dη ={

∂f

∂ξ
;
∂f

∂η

}
· {dξ; dη} = 0, on ∂a.

(14)
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From Eq. (14) it follows that (Fig. 2)

nξ =
1

n

∂f

∂ξ
, nη =

1

n

∂f

∂η
,

n =

√(
∂f

∂ξ

)2

+

(
∂f

∂η

)2

.

(15)

By the use of Eq. (15) we can reformulate the heat
flux boundary condition as

k11
∂t

∂ξ

∂f

∂ξ
+ k12

(
∂t

∂η

∂f

∂ξ
+

∂t

∂ξ

∂f

∂η

)
+

+k22
∂t

∂η

∂f

∂η
= nq, (ξ, η) ∈ ∂aq, ϑ > 0.

(16)

3 Theory
We introduce the next linear coordinate transforma
tion

x = αξ + βη, y = γξ + δη, Θ = λϑ, (17)

where
ε = αδ − βγ ̸= 0, λ > 0. (18)

The coefficients of above defined linear transforma
tions are unit free.
Theorem 1. Let

f(ξ, η) = F (αξ + βη, γξ + δη) (19)

be. Assuming that the conductivity coefficients of
anisotropic twodimensional body have the form

k11 =
β2 + δ2

(αδ − βγ)2
K, k12 = k21 =

= − αβ + γδ

(αδ − βγ)2
K, k22 =

α2 + γ2

(αδ − βγ)2
K,

(20)

and let

t0(ξ, η) = T0(αξ + βη, γξ + δη), (21)

g(ξ, η, ϑ) = G(αξ + βη, γξ + δη, λϑ), (22)

q(ξ, η, ϑ) = BQ(αξ + βη, γξ + δη, λϑ), (23)

where

B =


k11

(
∂f
∂ξ

)2
+ 2k12

∂f
∂ξ

∂f
∂η + k22

(
∂f
∂η

)2
K

[(
∂f
∂ξ

)2
+
(
∂f
∂η

)2]


1

2

(24)

and
mc =

MC

λ
(25)

be then we have

t(ξ, η, ϑ) = T (αξ + βη, γξ + δη, λϑ). (26)

Proof. The proof of this theorem is based on the fol
lowing equations

∂T

∂x
=

1

αδ − βγ

(
δ
∂t

∂ξ
− γ

∂t

∂η

)
, (27)

∂T

∂y
=

1

αδ − βγ

(
−β

∂t

∂ξ
+ α

∂t

∂η

)
, (28)

∂2T

∂x2
=

1

(αγ − βδ)2

[
δ2

∂2t

∂ξ2
−

−2δγ
∂2t

∂ξ∂η
+ γ2

∂2t

∂η2

]
,

(29)

∂2T

∂y2
=

1

(αγ − βδ)2

[
β2 ∂

2t

∂ξ2
−

−2αβ
∂2t

∂ξ∂η
+ α2 ∂

2t

∂η2

]
,

(30)

K

(
∂T

∂x

∂F

∂x
+

∂T

∂y

∂F

∂y

)
=

=
K

(αδ − βγ)2

[(
β2 + δ2

) ∂f
∂ξ

∂t

∂ξ
−

−(αβ + γδ)

(
∂f

∂ξ

∂t

∂η
+

∂f

∂η

∂t

∂ξ

)
+

+
(
α2 + γ2

) ∂f
∂η

∂t

∂η

]
= k11

∂f

∂ξ

∂t

∂ξ
+

k12

(
∂f

∂ξ

∂t

∂η
+

∂f

∂η

∂f

∂ξ

)
+ k22

∂f

∂η

∂t

∂η
,

(31)

√(
∂F

∂x

)2

+

(
∂F

∂y

)2

=

=

{
1

K

[
k11

(
∂f

∂ξ

)2

+ 2k12
∂f

∂ξ

∂f

∂η
+

+k22

(
∂f

∂η

)2
]} 1

2

,

(32)

∂T

∂Θ
=

1

λ

∂t

∂ϑ
. (33)

Substitution of Eqs. (27–33) into Eqs. (1–4) leads
to the initialboundary value problem formulated by
Eqs. (9–12) under the conditions (19–25) assuming
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that Eq. (26) is valid. From the CauchySchwarz in
equality(

α2 + γ2
) (

β2 + δ2
)
≥ (αβ + γδ)2 (34)

and the definition of k11, k22 and k12 = k21 it follows
that the thermal conductivity coefficients defined by
Eq. (20) satisfy the next inequalities

k11 > 0, k22 > 0, k11k22 − k212 > 0 (35)

with arbitrary real numbers α, β, γ, δ which satisfy
Eq. (18). From Eq. (35) it follows that the thermal
conductivity tensor generated by Eq. (20) is a posi
tive definite symmetric twodimensional second or
der tensor.

4 Examples
4.1 Example 1
The twodimensional steadystate heat conduction
problem for the rectangle whose vertex points P0, P1,
P2, P3 (Fig. 3) is defined by the next equations

K

(
∂2T

∂x2
+

∂2T

∂y2

)
+R = 0,

(x, y) ∈ A, (R = constant),
(36)

T = T0 = constant on P0P3,

T = T1 = constant on P1P2,
(37)

Q = 0 on P0P1 and P3P2. (38)
The corresponding anisotropic heat conduction prob
lem is defined as

k11
∂2t

∂ξ2
+ 2k12

∂2t

∂ξ∂η
+ k22

∂2t

∂η2
+ r = 0,

(x, y) ∈ a, r = R,

(39)

t = t0 = T0 on p0p3, (40)

t = t1 = T1 on p1p2, (41)

q = 0 on p0p1 and p3p2. (42)
In the present problem the anisotropic two
dimensional body is a parallelogram with
vertex points p0(0, 0), p1(δL/ε,−γL/ε),
p2 ((δL−Hβ)/ε, (αH − γL)/ε),
p3(−βH/ε, αH/ε) as shown in Fig. 4. The so
lution of the isotropic boundary value problem
formulated by Eqs. (36–38) is as follows

T (x, y) = T1 +

(
T2 − T1

L
+

RL

2K

)
x− R

2K
x2,

(x, y) ∈ A.
(43)

y

P0 x

A

L

H

P1

P3 P2

Figure 3: Rectangular domain.

η

p0
ξa

p1

p2

p3

Figure 4: Parallelogram shape domain.

According to Theorem 1 the solution of the corre
sponding anisotropic heat conduction problem is

t(ξ, η) = t1 +

(
t2 − t1

L
+

rL

2K

)
(αξ + βη)−

− r

2K
(αξ + βη)2, (ξ, η) ∈ a.

(44)

4.2 Example 2
The twodimensional time dependent problem for an
isotropic body shown in Fig. 5 defined as

K

(
∂2T

∂x2
+

∂2T

∂y2

)
+R = MC

∂T

∂Θ
,

(x, y) ∈ A, (R = constant),
(45)

T = 0, on P0P3 ∪ P1P2, (46)

Q = 0, on P0P1 ∪ P3P2, (47)

T (x, y, 0) = T0 = constant, (x, y) ∈ A. (48)

The solution of this initialboundary value problem
can be written in the form [12]

T (x, y,Θ) =
RL2

K

[
1

2

(
1−

(x
L

)2)
−

− 2

∞∑
n=0

(−1)n

(νnL)3
exp

(
− K

MC
ν2nΘ

)
cos νnx

]
,

(x, y) ∈ A, Θ ≥ 0,
(49)

WSEAS TRANSACTIONS on HEAT and MASS TRANSFER 
DOI: 10.37394/232012.2021.16.15 István Ecsedi, Ákos József Lengyel

E-ISSN: 2224-3461 130 Volume 16, 2021



y

P0

xO

L

H

P1

P3 P2

L

H

Figure 5: Transient heat conduction in isotropic rect
angular domain.

η

p0

ξO

p1

p3

p2

Figure 6: Transient heat conduction in anisotropic
parallelogram domain.

where

νn =
2n+ 1

2L
π, (n = 0, 1, 2 . . .). (50)

The domain of the corresponding anisotropic body is
shown in Fig. 6. The field equation is given by Eq. (9)
with r = R = constant and we have the follow
ing boundary and initial conditions for the anisotropic
heat conduction problem

t = 0 on p0p3 ∪ p1p2, (51)

q = 0 on p0p1 ∪ p3p2, (52)

t(ξ, η, 0) = t0 = T0 = constant, (ξ, η) ∈ a. (53)

The positions of the vertex points of the two
dimensional anisotropic body are as follows (Fig. 6)
p0(−αL−βH,−γL−δH), p1(αL−βH, γL−δH),
p2(αL+βH, γL+δH), p3(−αL+βH,−γL+δH).

y

xO

A

∂A2

∂A1 ρ1

ρ2

Figure 7: Hollow circular domain.
η

ξo

a

∂a2

∂a1

Figure 8: Hollow elliptical domain.

Application of Theorem 1 gives the result

t(ξ, η,Θ) =
rL2

K

[
1

2

(
1−

(
αξ + βη

L

)2
)
−

−2
∞∑
n=0

(−1)n

(νnL)3
exp

(
− K

λmc
νnϑ

)
cos (νn(αξ + βη))

]
,

(ξ, η) ∈ a, ϑ ≥ 0.
(54)

4.3 Example 3
We consider the next twodimensional problem of the
steadystate heat conduction (Fig. 7)

∂2T

∂x2
+

∂2T

∂y2
= 0 in

A =
{
(x, y)|ρ21 ≤ x2 + y2 ≤ ρ22

}
, ρ1 > 0,

(55)

T = T1 on ∂A1 =
{
(x, y)|x2 + y2 = ρ21

}
, (56)

T = T2 on ∂A2 =
{
(x, y)|x2 + y2 = ρ22

}
. (57)
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Here T1 and T2 are constants. The solution of the
boundary value problem formulated by Eqs. (55–57)
is

T (x, y) = T1 + (T2 − T1)
ln x2+y2

ρ2
1

ln ρ2
2

ρ2
1

,

(x, y) ∈ A ∪ ∂A1 ∪ ∂A2.

(58)

The corresponding anisotropic heat conduction prob
lem to the isotropic heat conduction problem formu
lated by Eqs. (55–57) is as follows

k11
∂2t

∂ξ2
+ 2k12

∂2t

∂ξ∂η
+ k22

∂2t

∂η2
= 0 in a, (59)

t = t1 = T1 on ∂a1, (60)

t = t2 = T2 on ∂a2, (61)
where (Fig. 8)

a =
{
(ξ, η)|ρ21 ≤

(
α2 + γ2

)
ξ2+

+2(αβ + γδ)ξη +
(
β2 + δ2

)
η2 ≤ ρ22

}
,

(62)

∂ai =
{
(ξ, η)|

(
α2 + γ2

)
ξ2 + 2(αβ + γδ)ξη+

+
(
β2 + δ2

)
η2 = ρ2i , i = 1, 2

}
.

(63)
Application of Theorem 1 gives

t(ξ, η) = t1+(t2−t1)
ln
[
(αξ+βη)2+(γξ+δη)2

ρ2
1

]
ln
(
ρ2
1

ρ2
2

) . (64)

4.4 Example 4
Steadystate conduction in a sector of a circular ring
(Fig. 9) is prescribed by the next equations

∂2T

∂x2
+

∂2T

∂y2
= 0 in A, (65)

T = T1 = constant on ∂A1 and
T = T2 = constant on ∂A2,

(66)

Q = 0 on ∂A3 ∪ ∂A4. (67)
The solution of this problem is

T (x, y) = T1 +
T2 − T1

ϕ
tan−1 y

x
, 0 ≤ ϕ ≤ π

2
.

(68)
The corresponding steadystate heat conduction prob
lem can be written in the form

k11
∂2t

∂ξ2
+ 2k12

∂2t

∂ξ∂η
+ k22

∂2t

∂η2
= 0 in a, (69)

y

x

ρ1

ρ2

φ

A

∂A3

∂A1

∂A4

∂A2

∂A =
4⋃

i=1

∂Ai

Figure 9: Sector of a circular ring.

η

ξo

∂a3 ∂a1

∂a4∂a2
a

Figure 10: Sector of an elliptical ring.

t = t1 = T1 on ∂a1, t = t2 = T2 on ∂a2, (70)

q = 0 on ∂a3 ∪ ∂a4. (71)

The twodimensional domain a and its boundary con
tour are shown in Fig. 10. The equation of the bound
ary segment ∂ai (i = 1, 2) is(

α2 + γ2
)
ξ2 + 2(αβ + γδ)ξη+

+
(
β2 + δ2

)
η2 = ρ2i , (i = 1, 2)

(72)

and the equation of the boundary segment ∂ai (i =
3, 4) is

η = piξ, (i = 3, 4),

p3 = −γ

δ
, p4 =

α tanϕ− γ

δ − β tanϕ
.

(73)

By the application of Theorem 1 we obtain

t(ξ, η) = t1 +
t2 − t1

ϕ
tan−1 γξ + δη

αξ + βη
. (74)

4.5 Example 5
The transient heat conduction problem for the
isotropic twodimensional domain whose boundary
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y

xO

A1

∂A1

ρ2

Figure 11: Solid circular domain.

η

ξo

a

∂a

Figure 12: Solid elliptical domain.

curve is a circle of radius ρ2 (Fig. 11) is defined by
the equation

K

(
∂2T

∂x2
+

∂2T

∂y2

)
= MC

∂T

∂Θ
,

(x, y) ∈ A, Θ > 0,

(75)

T (x, y, 0) = T0 = constant, (x, y) ∈ A, (76)

T (x, y,Θ) = 0, (x, y) ∈ ∂A1, Θ > 0. (77)

The solution of this initialboundary value problem
[2, 12]

T (x, y,Θ) = 2
T0

ρ2

∞∑
i=1

J0

(
ωi

√
x2 + y2

)
ωiJ1(ωiρ2)

exp
(
− K

MC
ω2
iΘ

)
,

(78)

where J0(z) and J1(z) are Bessel functions of the first
kind and of order zero and one, respectively. Further
more, ωi (i = 1, 2, . . .) is the positive root of the tran
scendent equation

J0(ρ2ω̃) = 0. (79)

The associated transient anisotropic heat conduction
problem is formulated by the following equations in
a ∪ ∂a (Fig. 12)

k11
∂2t

∂ξ2
+ 2k12

∂2t

∂ξ∂η
+ k22

∂2t

∂η2
= mc

∂t

∂ϑ
,

(ξ, η) ∈ a, ϑ > 0.

(80)

t(ξ, η, 0) = t0 = T0 = constant, (ξ, η) ∈ a, (81)

t(ξ, η,Θ) = 0, (ξ, η) ∈ ∂a, ϑ > 0. (82)

Here the equation of the boundary curve ∂a (Fig. 12)
is (

α2 + γ2
)
ξ2 + 2(αβ + γδ)ξη+

+
(
β2 + δ2

)
η2 − ρ22 = 0.

(83)

From Theorem 1 for this case we have

t(ξ, η, ϑ) = 2
t0
ρ2

∞∑
i=1

b

ωiJ1(ωiρ2)
exp

(
− K

mc
ω2
i ϑ

)
,

(84)
where

b = J0
{
ωi

[(
α2 + γ2

)
ξ2+

+2(αβ + γδ)ξη +
(
β2 + δ2

)
η2
]0.5} (85)

5 Relationship for the thermal
resistances

Let us consider a hollow twodimensional body in the
plane Oxy which is bounded by two closed curves
∂A1 ans ∂A2 as shown in Fig. 13. The steadystate
heat conductance in this body is determined by con
stant boundary temperatures according to next equa
tions

T = T1 = constant on ∂A1, (86)

T = T2 = constant on ∂A2. (87)
It is known the heat flow Q12 between the boundary
curves ∂A1 and ∂A2 for isotropic homogeneous body
can be obtained as (T1 > T2)

Q12 = K(T1 − T2)

∫
∂A1

(
∂T̃

∂x
Nx +

∂T̃

∂y
Ny

)
dS =

= K(T1 − T2)

∫
A

(∂T̃

∂x

)2

+

(
∂T̃

∂y

)2
 dA,

(88)
where T̃ = T̃ (x, y) is the solution of the following
boundary value problem
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Figure 13: Hollow twodimensional isotropic body.
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Figure 14: Hollow twodimensional anisotropic body.

∂2T̃

∂x2
+

∂2T̃

∂y2
= 0, (x, y) ∈ A, (89)

T̃ (x, y) = 1, (x, y) ∈ ∂A1,

T̃ (x, y) = 0, (x, y) ∈ ∂A2.
(90)

The thermal resistance of this twodimensional body
is defined as [1]

Ω =
1

K
∫

∂A1

(
∂T̃
∂xNx +

∂T̃
∂yNy

)
ds

=

=
1

K
∫
A

[(
∂T̃
∂x

)2
+
(
∂T̃
∂y

)2]
dA

.
(91)

By the same way we can define the thermal resistance
of the hollow twodimensional anisotropic domain
shown in Fig. 14. At first we consider a steadystate
heat conduction problem defined by the next equa
tions

t = t1 = constant on ∂a1, (92)

t = t2 = constant on ∂a2. (93)

The heat flow q12 from the inner boundary curve ∂a1
to the outer boundary curve ∂a2 (t1 > t2) can be com

puted as

q12 = (t1 − t2)

∫
∂a1

[(
k11

∂t̃

∂ξ
+ k12

∂t̃

∂η

)
nξ+

+

(
k21

∂t̃

∂ξ
+ k22

∂t̃

∂η

)
nη

]
ds =

= (t1 − t2)

∫
a

[
k11

(
∂t̃

∂ξ

)2

+

+2k12
∂t̃

∂ξ

∂t̃

∂η
+ k22

(
∂t̃

∂η

)2
]
da,

(94)

where t̃ = t̃(ξ, η) is the solution of the next boundary
value problem

k11
∂2t̃

∂ξ2
+ 2k12

∂2t̃

∂ξ2
∂2t̃

∂ξ∂η
+ k22

∂2t̃

∂η2
= 0

(ξ, η) ∈ a,

(95)

t̃(ξ, η) = 1, (ξ, η) ∈ ∂a1,

t̃(ξ, η) = 0, (ξ, η) ∈ ∂a2.
(96)

The thermal resistance of the twodimensional hollow
anisotropic body shown in Fig. 14 is defined by the
next equation

ω =
1

W
(97)

where

W =

∫
∂a1

[(
k11

∂t̃

∂ξ
+ k12

∂t̃

∂η

)
nξ+

+

(
k11

∂t̃

∂ξ
+ k12

∂t̃

∂η

)
nξ

]
ds =

=

∫
a

[
k11

(
∂t̃

∂ξ

)2

+ 2k12
∂t̃

∂ξ

∂t̃

∂η
+ k22

(
∂t̃

∂η

)2
]
da.

(98)
Assuming that Eqs. (17–20) are valid, then we have

ω = |ε|Ω. (99)

The validity of Eq. (99) follows from the formulas
of Ω and ω and from Eqs. (27–28). It is evident if
|ε| = 1 then the isotropic hollow twodimensional do
main and the corresponding anisotropic hollow two
dimensional domain have the same thermal resis
tance. The thermal resistance of the isotropic hollow
circular domain shown in Fig. 7 is

Ω =
ln ρ2

ρ1

2πK
. (100)
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In this case the thermal resistance of the correspond
ing anisotropic hollow twodimensional body which
is shown in Fig. 13 can be computed as according to
Eq. (99)

ω = |ε|
ln ρ2

ρ1

2πK
. (101)

6 Determination of the coefficients of
space coordinate transformation in
terms of heat conductivity
coefficients

At first, we define the unitfree thermal conductivity
coefficients by the following equations

k11 =
k11
K

, k22 =
k22
K

, k12 = k21 =
k12
K

.

(102)
The linear coordinate transformation (17) can be con
sidered as a combination of a pure rotation with a
stretching and shrinking which can be described as[

x
y

]
=

[
c1 0
0 c2

] [
cosφ − sinφ
sinφ cosφ

] [
ξ
η

]
,

(103)
that is we have

α = c1 cosφ, β = −c1 sinφ,
γ = c2 sinφ, δ = c2 cosφ,

(104)

ε = c1c2. (105)
From Eqs. (20)1,2,3 and (104) it follows that

k11 =
1

2c21c
2
2

(
c21 + c22 +

(
c22 − c21

)
cos 2φ

)
, (106)

k22 =
1

2c21c
2
2

(
c21 + c22 +

(
c21 − c22

)
cos 2φ

)
, (107)

k12 =
1

2c21c
2
2

(
c21 − c22

)
sin 2φ. (108)

Subtracted Eq. (106) from Eq. (107) we obtain

k22 − k11 =
1

c21c
2
2

(
c21 − c22

)
cos 2φ. (109)

Combination of Eq. (109) with Eq. (108)

tan 2φ =
2k12

k22 − k11
, (110)

that is

φ =
1

2
arctan

(
2k12

k22 − k11

)
. (111)

Next, we will use the following equations to obtain
the expressions of c1 and c2 in terms of k11, k22 and
k12

k11 + k22 =
1

c21
+

1

c22
, (112)

cos 2φ =
1√

1 + tan2 2φ
=

=
k22 − k11√(

k22 − k11
)2

+ 4k
2
12

.
(113)

The combination of Eq. (110) with Eqs. (112–113)
leads to the formulas of c1 and c2

c1 =

√√√√ 2

k11 + k22 +

√(
k22 − k11

)2
+ 4k

2
12

,

(114)

c2 =

√√√√ 2

k11 + k22 −
√(

k22 − k11
)2

+ 4k
2
12

.

(115)

7 Conclusions
Steadystate and time dependent heat conduction
problems in homogeneous anisotropic solid bodies
are studied by using an analytical method. The tem
perature distribution for the considered anisotropic
twodimensional body is derived from the solution
of an isotropic twodimensional body. A linear co
ordinate transformation is used for the spatial and
time coordinates to generate the mapping between the
isotropic and anisotropic heat conduction problems.
Examples illustrate the application of the developed
method. The main result of the paper is a contribution
to the existing exact benchmark solutions for conduc
tion of heat in anisotropic solid bodies.
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