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Abstract: The objective of the present paper is to develop a simple algebraic computational 
procedure for the estimation of the average convection coefficient of a forced fluid flow over an 
annular fin of rectangular profile within the platform of inverse heat conduction problems. The 
data required is the tip temperatures of an annular fin of rectangular profile, which are measured 
in an experimental setup. Based on nonlinear regression analysis, an empirical correlation 
equation is constructed for the dimensionless average tip temperature depending upon the 
dimensionless thermo–geometrical parameter and the radius ratio. When compared against the 
outcome of a direct heat conduction problem, the good quality of the estimated average 
convection coefficient for the annular fin of rectangular profile demonstrates the feasibility of the 
simple algebraic computational procedure. 
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Nomenclature  
 
A                 surface area 

AR            aspect ratio (length  ÷ half–thickness), 
𝐿

𝑡
  

𝐵𝑖𝑡  transverse Biot number, 
ℎ̅𝑡

𝑘
 

h  local convection coefficient  
ℎ̅ average convection coefficient  
Iv (X) modified Bessel function of first kind and order v = 0, 1  
k thermal conductivity 
Kv (X) modified Bessel function of second kind and order v = 0, 1 
L length, 𝑟2   𝑟1 

m  thermo–geometrical parameter, √
ℎ̅

𝑘𝑡
  

mL  dimensionless thermo–geometrical parameter, √
ℎ̅

𝑘𝑡
𝐿  

Q heat transfer rate 
r radial coordinate 
𝑟1 internal radius 
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𝑟2 external radius  

t half–thickness, 


2
 

T temperature 
z transversal coordinate 
Greek symbols 
  thickness, 2t 
η fin efficiency 

θ               dimensionless temperature, 
fb

f

TT
TT




 

Subscripts 
b base  
f fluid  
m   measurement 
t tip  
 

1. Introduction  
 

         Direct heat conduction theory deals 
with the determination of the temperature 
distributions in solid bodies with knowledge 
of the initial condition, boundary conditions, 
heat sources and thermo–physical 
properties, like the thermal conductivity k of 
the solid and the average convection 
coefficient ℎ̅ (Arpaci [1], Poulikakos [2], 
Yener and Kakaç [3]).   

Bergles [4] has advocated that the 
most important passive scheme for heat 
transfer enhancement from hot solid bodies 
to nearby cold fluids consists in the 
incremental surface area of the solid body 
by attaching solid strips, called extended 
surfaces or fins. A variety of geometric 
profiles can be morphed in the form of 
straight fins and annular fins (Kraus et al. 
[5]).  

Focusing on the annular fin of 
rectangular profile, this fin is used in 
numerous industrial applications, such as 
engines, compressors, turbines, heat 
exchangers, electrical equipment, electronic 
components, etc. [5].  The monotonic 
temperature descend in an annular fin of 
rectangular profile obeys a quasi one–

dimensional heat conduction equation, i.e., 
an ordinary differential equation of second 
order with variable coefficients and non–
homogeneous, which is named the modified 
Bessel equation of zero order [1-3]. There 
are two essential quantities that affect 
directly the modified Bessel equation: 1) the 
thermal conductivity of the solid k and 2) the 
average convection coefficient ℎ̅ of the 
forced fluid flow. Traditionally, the 
magnitude of ℎ̅ emerges from the numerical 
integration of the experimentally measured 
local convection coefficients h varying with 
the radial and angular directions r, φ, 
namely  

ℎ̅ =
1

𝐴
∫ ℎ(𝑟, 𝜑) 𝑑𝐴

𝐴

 

where A is the surface area of the annular fin of 
rectangular profile. 

Relying on experimental 
measurements, Krückels and Kottke [6] 
constructed contour plots of the local 
convection coefficient h (r,φ)  of forced air 
flows over the surface of an annular fin of 
rectangular profile. These authors 
demonstrated that h increases from the base 
of the annular fin to twice or trice at the 
edge of the fin (see Figure 1 taken from 
Hausen [7]). They remarked that the radial 
variability of h is a direct response to a thick 
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boundary layer at the base compared to a 
thin boundary layer at the edge.  
               Inverse heat conduction theory 
deals with the estimation of the initial 
condition, boundary conditions, thermo–
physical properties, heat sources, etc. 
knowing the temperatures at certain internal 
locations in a solid body. Several exact 
analytical and approximate numerical 
techniques are recounted by Beck et al. [8], 
Ö iş k and Orlande [9]. 

The primary objective of the 
technical note is to develop a simple  
algebraic computational procedure for the 
estimation of the average convection 
coefficient ℎ̅ of a fluid flow over an annular 
fin of rectangular profile by measuring the 
tip temperatures at three strategic angular 
locations: 1) at the stagnation point 𝜑 = 0°, 
2) at 𝜑 = 90° from the stagnation point and 
3) at φ = 180° from the stagnation point. 
Actually, the idea behind the computational 
procedure is to circumvent the manipulation 
of the intricate measurements of the local 
convection coefficient distributions in two 
dimensions h(r, φ).  

 
2. Formulation of the physical 
problem  
 Figure 2 sketches an annular fin of 
rectangular profile described by three 
dimensions: internal radius 𝑟1, external radius 
𝑟2 and thickness  = 2t, so that the length is  
L = 𝑟2   𝑟1. 

The characterization of annular fins 
of rectangular profile consists in two 
parameters: 1) the radius ratio 

𝑟2

𝑟1 
 is a 

geometric parameter and 2) the transverse 

Biot number 𝐵𝑖𝑡 =
ℎ̅ 𝑡

𝑘
 is a 

thermogeometric parameter. In reference to 
the latter, ℎ̅ is the average convection 
coefficient of the forced fluid flow over the 
annular fin, t is the halfthickness of the 

annular fin and k is the thermal conductivity 
of the solid.   

A literature search reveals that the 
most popular procedures for the 
experimental measurement of the average 
convection coefficient ℎ̅  are thermocouples, 
infrared (IR) thermometry, thermo–chromic 
liquid crystals documented by Han and 
Wright [10], as well as naphthalene 
sublimation technique explained by Souza 
Mendes [11]). 
            From heat conduction theory [35], 
the temperature in straight and annular fins 
descends in the axial direction from the base 
temperature 𝑇𝑏 toward the fluid temperature 
𝑇𝑓, whereas the temperature is practically 
uniform in the crosssection of those fins. 
An indepth analysis of annular fins of 
rectangular profile was developed by Lau and 
Tan [12]. Using the finite difference method, the 
authors compared the quasi one and 
twodimensional heat transfer rates over a wide 
range of geometrical and thermal conditions. 
They concluded that the efficacy of the quasi 
onedimensional heat conduction equation 
carries two major components: 1) the aspect 
ratio (length to halfthickness) 𝐴𝑟 =  

𝐿

𝑡
 is of the 

order of 10 or greater and 2) the transverse Biot 

number satisfies the inequality 𝐵𝑖𝑡 =
ℎ̅ 𝑡

𝑘
≤ 1. 

 Under the assumptions of nearly 
constant thermal conductivity of the solid k 
and average convection coefficient ℎ̅ of the 
forced fluid flow, the quasi one–dimensional 
heat conduction equation in cylindrical 
coordinates found in Arpaci [3] is: 

0 = TT rm  
dr
dTr + 

dr
Tdr     f

2

)(22
2

2 

 in 21 rrr                                          
(1)     

where fT  is the fluid temperature and 𝑚 =

√
ℎ̅

𝑘𝑡
  denotes the thermo–geometrical 

parameter. The thermal conductivity k of 
solids is usually tabulated and graphed in 
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compendiums, while the average convection 
coefficient ℎ̅ must be measured 
experimentally in a case–to–case basis.  
            From the standpoint of thermofluid 
experimentation, Moffat [13] has pointed out 
that the measurements of the average 
convection coefficient ℎ̅ in forced fluid flows 
over solid bodies normally withhold 
uncertainties that range between ±10% and 
±20%.  

The boundary conditions assigned to 
eq. (1) are: prescribed temperature 𝑇𝑏 at the 
fin base 1r  (internal radius of the tube)  
             T = rT     b)( 1                                                                                                                   
(2a) 
and negligible heat loss at the fin tip 2r
(external radius) 

            0  
rd

 rTd


)( 2                                                                                                        

(2b)   
          At this point, it is convenient to switch 
from the dimensional temperature T to the 
dimensionless temperature difference θ =

fb

f

TT
TT




 while retaining the radius r 

dimensional. Correspondingly, eq. (1) 
transforms into the modified Bessel equation 
of zero order (Zwillinger [14]): 

0 = rm  
dr
dr + 

dr
dr     

2


 22

2
2   in 

21 rrr                                       
(3) 

           In the same way, the boundary 
conditions in eqs. (2a) and (2b) are rewritten 
as 
          = r     1)( 1                                                                                                          
(4a)    
and     

     0   
rd

 rd


)( 2                                                                                                               

(4b) 

 
 
3. Exact, analytical method  

 From a historical perspective, the 
exact, analytical solution of eq. (3) subject to 
eqs. (4a) and (4b) was determined originally 
by Harper and Brown [15] in USA and by 
Schmidt [16] in Germany. These efforts 
gave way to the exact, analytical temperature 
distribution in the annular fin of rectangular 
profile (Arpaci [1]): 

))))
)))(

)(
21102110

210210

(mrI(mrK + (mrK(mrI 
(mrI(mr)K  +(mrK (mr)I  =

TT
TrT

 r    
fb

f






                                                     (5)          
where I0 (*) and I1 (*) are the modified Bessel 
function of first kind and order 0 and 1 and 
K0 (*), whereas K1 (*) are the modified Bessel 
function of second kind and order 0 and 1 
(Watson [17]).  

 
3.1. Tip temperatures  

The exact, analytical tip temperature 
𝑇𝑡 in the annular fin of rectangular profile 
comes from the evaluation of eq. (5) at the 
exterior radius 𝑟 = 𝑟2. That is,  

         𝜃𝑡 =
𝑇𝑡 − 𝑇𝑓

𝑇𝑏 − 𝑇𝑓
=

𝐼0(𝑚𝑟2) 𝐾1(𝑚𝑟2) + 𝐾0(𝑚𝑟2) 𝐼1(𝑚𝑟2)

𝐼0(𝑚𝑟1) 𝐾1(𝑚𝑟2) + 𝐾0(𝑚𝑟1) 𝐼1(𝑚𝑟2)
                                            

(6)              

where 𝑇𝑡 = 𝑇(𝑟2) stands for the tip 
temperature. Due to the intricate structure of 
eq. (6), the numerical evaluation of 𝑇𝑡 is 
extremely elaborate and time consuming 
even with modern algebraic symbolic codes, 
like Mathematica, Maple and Matlab (von 
Zur Gathen and Gerhard [18]).  
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Figure 1. Experimental-based contour plots for 
the local convection coefficient h over an 
annular fin of rectangular profile with inner 
diameter D1 = 50 mm and outer diameter D2 = 
120 mm made by Krückels and Kottke [6]. 
The air flow velocity on the left part is 2 m/s and 
on the right part is 10 m/s. The units of h are 
expressed in Kcal/(m2-h-K), namely 16.3 higher 
in W/(m2-K). The figure is taken from Hausen 
[7]. 
 
 
 
 
 
 
 
 

 
 
 
Figure 2. Sketch of an annular fin of rectangular 
profile with length L and thickness   = 2t 
 

 

 
 
 
Figure 3. Location for the tip temperature 
measurements in an annular fin of rectangular 
profile exposed to a forced fluid flow 
 

 
 
 
 
Figure 4. Fin efficiency diagram due to Gardner 
[20].  
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4. Experimental measurement of the 
tip temperatures  

As already mentioned, the central 
idea for undertaking the present study is to 
estimate the average convection coefficient ℎ̅ 
of a forced fluid flow over an annular fin of 
rectangular profile using measurements of 
the tip temperature along the periphery of 
the fin. The strategic locations are indicated 
in Figure 3∶  1)  the stagnation point 𝜑 = 0°, 
2) 𝜑 = 90° from the stagnation point and 3) 
𝜑 = 180°  from the stagnation point. 
Because of symmetry, the tip temperature 
 at 𝜑 = 270° from the stagnation point  
being equal to the tip temperature  at 𝜑 =
90°   from the stagnation point  is not needed. 
The three measured tip temperature set forth 
the average measured tip temperature 

 𝑇̅𝑡,𝑚 =  
1

3
(𝑇𝑡,𝑚,0 + 𝑇𝑡,𝑚,

𝜋

2
 +

 𝑇
𝑡,𝑚,

3𝜋

2
 
)                                                                       

(7) 
 so that the dimensionless average measured 
tip temperature is 

             𝜃̅𝑡,𝑚 =
𝑇̅𝑡,𝑚 − 𝑇𝑓

𝑇𝑏 − 𝑇𝑓
.                                                                                      

(7a) 
 Having secured the magnitude 
𝜃̅𝑡,𝑚, the next step requires the calculation of 
the thermogeometrical parameter m in the 
arguments of the six modified Bessel 
functions. Thereby, from eq. (6) the 
transcendental equation that results is 
        𝜃̅𝑡,𝑚  =
𝐼0(𝑚𝑟2) 𝐾1(𝑚𝑟2) + 𝐾0(𝑚𝑟2) 𝐼1(𝑚𝑟2)

𝐼0(𝑚𝑟1) 𝐾1(𝑚𝑟2) + 𝐾0(𝑚𝑟1) 𝐼1(𝑚𝑟2)
                                                               

(8)    
where the internal radius 𝑟1 and the external 
radius 𝑟2 of the annular fin are known 
quantities and m is the unknown quantity. 
Needless to say, eq. (8) is of strenuous 
convoluted form because between the 
numerator and the denominator it contains 
six modified Bessel functions. Obviously, the 
computation of the root m is extremely 

difficult, even with advanced root finding 
techniques, such as the fixed point iterative 
method, the Newton–Raphson method, the 
bisection method, etc. (Chapra and Canale 
[19]). In view of the impending obstacle, an 
alternate procedure for computing the root m 
in eq. (8) is de rigueur and it will be pursued 
in the following paragraphs. 

In the case of the straight fin of 

rectangular profile, the dimensionless tip 

temperature 
 
𝜃𝑡

 
is expressible with the exact, 

analytical equation (Arpaci [3])) 
 
1

𝜃𝑡
=   cosh 𝑚𝐿                                                                                                      

(9) 

 where 𝑚𝐿 = √
ℎ̅

𝑘𝑡
𝐿 is the  dimensionless 

thermo–geometrical parameter. 
            In the case of the annular fin of 
rectangular profile, the fin efficiency 
diagram devised by Gardner [20] conforms 
to the graphical representation of the two–
valued function of the fin efficiency 𝜂 =

𝑓 (𝑚𝐿,
𝑟2

  𝑟1
).  The function 𝑓(∗) is articulated 

with m inside the closed interval 0 ≤ mL ≤ 5 
on the abscissa and the family of curves 
represented by the radius ratio 𝑟2

𝑟1
 inside the 

closed interval 1 ≤  
𝑟2

𝑟1
≤ 5 as seen in Figure 

4. 
 Inspired in the compact form of eq. 

(9), we applied nonlinear regression analysis 
to the collected data 𝜃̅𝑡 , 𝑚𝐿,

𝑟2

𝑟1
 forming eq. 

(8), which obviously is restricted to the 
closed intervals 0 ≤ mL ≤ 5 and 1 ≤ 𝑟2

𝑟1
≤

5. The goal now is to construct an empirical 
correlation equation for 𝜃̅𝑡  engaging two 
independent variables, one is the hyperbolic 
cosine of mL and the other is the radius ratio 
𝑟2

𝑟1
.  Thereby, the code Table Curve 3D 4.0 
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[21] delivers the empirical correlation 
equation  

 
1

𝜃̅𝑡
= 0.5 [(1 − √

𝑟2

𝑟1
) + (1 + √

𝑟2

𝑟1
)  cosh 𝑚𝐿]                                              

(10) 
 

owning a high correlation coefficient R–
square = 0.9986. As expected, eq. (10) 
collapses into eq. (9) linked to the straight 
fin of rectangular profile identified by the 
limiting radius ratio 

𝑟2

𝑟1
 =  1. 

Isolating the thermo–geometrical 
parameter m in the argument of the 
hyperbolic cosine in eq. (10), the explicit 
algebraic equation that turns out is: 

          𝑚 =
1

𝐿
cosh−1 (

2

𝜃̅𝑡
 + √

𝑟2
𝑟1

 −1

√
𝑟2
𝑟1

 +1
)                                                              

(11) 
Note that this equation contains four 
independent variables; three independent 
variables are the internal radius ratio 𝑟1,  the 
external radius 𝑟2 and the length L, whereas 
the other independent variable is the 
measured dimensionless average tip 
temperature 𝜃̅𝑡 coming from eq. (7a).  
           In retrospect, it is quite obvious that 
manipulation of the compact explicit form of 
𝑚 in eq. (11) involving the inverse of the 
hyperbolic function  cosh−1(∗) is much 
simpler than  manipulation of the root 𝑚 in 
the tangled implicit eq. (8) containing six 
modified Bessel 
functions
 𝐼0(𝑚𝑟1), 𝐾0(𝑚𝑟1), 𝐼0(𝑚𝑟2), 𝐾0(𝑚𝑟2),
𝐼1(𝑚𝑟2) and 𝐾1(𝑚𝑟2). As a direct 
consequence, the evaluation of m in eq. (11) 
is easily manageable with a pencil on a 
back–of–an–envelope using an inexpensive 
pocket–size calculator. 
          Once the thermo–geometrical 

parameter 𝑚 = √
ℎ̅

𝑘𝑡
 is evaluated, the 

estimation of the average convection 
coefficient ℎ̅ is obtainable with the algebraic 
equation 

ℎ̅ = 𝑘𝑡 𝑚2                                                                                                                     
(12) 

in connection to the pair of closed intervals 
0 ≤  mL ≤  5 and 1 ≤  𝑟2

𝑟1
≤  5. 

 
5. Presentation of results  
          Fundamentally, the estimation of 
the average convection coefficient ℎ̅  of a 
forced fluid flow over an annular fin of 
rectangular profile in this study falls under the 
category of an inverse heat conduction 
problem [8,9]. The algebraic procedure 
conducive to the estimation of ℎ̅  will be done 
with a “simulated tip temperature 
measurement” of the three tip temperatures 
using as data an example a direct heat 
conduction problem. 
 
5.1 Example 1.3 on pp. 29−31 of Kraus et 
al. [2]: Radial fin of rectangular profile.  
               A radial fin of rectangular profile has 
outer diameter  𝐷2 = 25 cm, inner diameter 
𝐷1 = 10 cm and thickness  = 0.25 cm. The 
fin is made from a steel with thermal 
conductivity k = 40 W/(m-K). The 
temperature at the fin base is  𝑇𝑏 = 110°C and 
the surrounding fluid has a temperature 𝑇𝑓  = 
35°C with a heat transfer coefficient  ℎ̅ = 40 
W/(m2-K). Determine (a) the fin efficiency η, 
(b) the tip temperature 𝑇𝑡𝑖𝑝 and  (c) the heat 
dissipation Q. 
        1) First, the quantities taken from the 
solution of the example are: 
           (a) the fin efficiency  𝜂 = 0.343  
           (b) the tip temperature  𝑇𝑡  = 48.5 °C 
          (c) the heat dissipation  Q = 84.86 W 
         2) Second, the quantities taken from the 
statement of the example are: 

             (d) the half–thickness t = 0.00125 m 
              (e) the radius ratio  𝑟2

𝑟1
=

0.125

0.05
= 2.5  
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             (f) the length L = 𝑟2 𝑟1 =
12.5 cm  5 cm = 7.5 cm = 0.075 m 
             (g) the dimensionless tip temperature 
𝜃𝑡 =

𝑇𝑡 − 𝑇𝑓

𝑇𝑏 − 𝑇𝑓
=

48.5 − 35

110 − 35
= 0.18 

                
 
 
To commence the analysis with the available 
information, the substitution of the 
geometric quantities 𝑟2

𝑟1
= 2.5, L = 0.075 m, 

along with the “simulated tip temperature 
measurement” 𝜃𝑡 = 0.18 into eq. (11) 
furnishes the thermo–geometrical parameter 

m = √ ℎ̅

𝑘𝑡
 = 2.12 m−1. Thereupon, evaluation 

of eq. (12) supplies the average convection 
coefficient ℎ̅ = 39.95 W/(m2-K) complying 
with the objective of this work. Actually, the 
relative error between the estimated ℎ̅ and 
the given ℎ̅ = 40 W/(m2-K) in the statement 
of the example turns out to be 0.125%, i.e., a 
disparity that is considered legitimate in 
engineering practice. In fact, it should be 
recalled at this point that measurements of 
the average convection coefficient ℎ̅ in 
forced fluid flows over solid bodies 
withhold uncertainties that usually range 
between ±10% and ±20% (Moffat [13]).  

  For completeness, calculation of the heat  Q and the fin efficiency 𝜂  reported in the solution of the example based on  ℎ̅ = 40 W/(m2-K)  are Q = 84.86 W and η = 0.343 W, whereas  using the estimated ℎ̅ = 39.95 W/(m2-K), the computation of the heat 
dissipation and the fin efficiency gives Q = 
84.75 W and  𝜂 = 0.326 . Consequently, the 
relative error for Q amounts to 0.13% and the 
relative error for 𝜂  amounts to 4.96%; both 
numbers are considered insignificant in view 
of the complexity of the inverse heat 
conduction problem under study. 

 
Conclusions  
           The outcome of the theoretical study 
devoted to experimental thermo–fluid 
dynamics has demonstrated that the 
measurement of three tip temperatures in an 
annular fin of rectangular profile is sufficient 
for the estimation of the average convection 

coefficient ℎ̅ over the annular fin with 
reasonable accuracy within the bounds of 
engineering practice. From a conceptual 
standpoint, the proposed algebraic 
computational procedure deals with inverse 
heat conduction theory. Surely, the algebraic 
computational procedure can be easily 
extended to all annular fins of curved profiles 
documented in the handbook on extended 
surface heat transfer (Kraus et al. [2]).  
          It is expected that instructors of heat 
transfer courses as well as thermal design 
engineers will benefit from the outcome of 
the present work.  
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APPENDIX: Two–Dimensional Heat 
Conduction 
 

The analysis of the dimensionless 
temperatures 𝜃(𝑟, 𝑡) in annular fins of 
rectangular profile was done by Lau and Tan 
[12] using the two formulations: 1) the 
approximate quasi one–dimensional heat 
conduction model given by eqs. (3), (4a) and 
(4b) and 2) the exact two–dimensional heat 
conduction model (Arpaci [1]) 

      
𝜕2𝜃

𝜕𝑟2
+

1

𝑟

𝜕𝜃

𝜕𝑟
+

𝜕2𝜃

𝜕𝑧2
= 0                                                                         

(6)                                        
with the imposed boundary conditions 
                   𝜃(𝑟1, 𝑧) = 1                                                                                                         
(7a) 

               
𝜕𝜃(𝑟2,𝑧)

𝜕𝑟
≈ 0                                                                                          

(7b) 

                
𝜕𝜃(𝑟,0)

𝜕𝑧
= 0                                                                                           

(7c) 
                − 𝜕𝜃(𝑟,𝑡)

𝜕𝑧
=  𝐵𝑖𝑡𝜃                                                                                    

(7d)                                                                    

where 𝐵𝑖𝑡 =
ℎ̅ 𝑡

𝑘
  is the transverse Biot 

number.  
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