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Abstract: - Gravity-driven flow through an inclined channel over a semi-infinite porous layer is 
considered in order to obtain a modification to the usual Beavers and Joseph slip condition that is 
suitable for this type of flow. Expressions for the velocity, shear stress, volumetric flow rates, and 
pressure distribution across the channel are obtained together with an expression for the interfacial 
velocity. In the absence of values for the slip parameter when the flow is over a Forchheimer porous 
layer, this work provides a relationship between the slip parameters of the Darcy and Forchheimer 
layers. Expressions for the interfacial velocities in both cases are obtained. This original work is 
intended to provide baseline analysis and a benchmark with which more sophisticated types of flow, 
over porous layers in an inclined domain can be compared. 
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1. Introduction 

The study of fluid flow over porous layers is of 
considerable importance in many practical 
applications that include lubrication theory, 
design of cooling systems, and oil recovery, [1], 
[2]. Conditions at the interface between a fluid 
layer in free space and a fluid layer in a porous 
medium influence heat and mass transfer across 

layers, [3]. While the no-slip velocity condition 
at the interface was implemented prior to 1967, 
[4], the experiments of Beavers and Joseph, [5], 
replaced the no-slip condition with a slip 
hypothesis that resulted in what is now known as 
the Beavers and Joseph condition, (BJ 
condition). Beavers and Joseph, [5], attempted to 
explain the increase in mass flux in the channel 
associated with the presence of a permeable 
boundary, as compared to the mass flux in the 
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channel when the no-slip condition is applied at 
an impermeable boundary. Their analysis 
resulted in the empirical slip-flow condition of 
Beavers and Joseph, which ascertains that the 
shear stress at the interface between free space 
and a porous layer is proportional to the 
difference between the interfacial velocity and 
the velocity in the porous medium, [5]. Their slip 
hypothesis agreed well with their experiment of 
flow through a Navier-Stokes channel 
terminated by a semi-infinite Darcy porous 
layer. The constant of proportionality in the BJ 
condition includes what is termed a slip 
parameter, 𝛼, which is a semi-empirical, 
dimensionless slip coefficient that is 
independent of fluid viscosity and is dependent 
on the porous medium properties, Reynolds 
number and flow direction at the interface, (c.f. 
[6] to [10]). 

For over half of a century, the BJ condition has 
received considerable attention in the literature 
and has been modified and adjusted to fit 
different types of porous media. Many excellent 
reviews are available and discuss various types 
of conditions that have been proposed to handle 
permeability discontinuity at the interface 
between a porous layer and free space (c.f. [11] 
to [18]). Ehrhardt, [16], provided an elegant 
account of the available interfacial conditions, 
including the jump condition of Ochoa-Tapia 
and Whitaker, [19]. 

Models of flow through porous media may be 
divided into two groups, one is compatible in 
differential order with the Navier-Stokes 
equations, such as the Brinkman equation, and a 
group that is of lower differential order than the 
Navier-Stokes equations, such as Darcy’s 
equation and the Forchheimer equation. In the 
flow over a porous layer of finite thickness, 
Rudraiah, [2], suggested that flow in the porous 
layer should be governed by an equation 
compatible with the Navier-Stokes equations, 

namely Brinkman’s equation. Neale and Nader, 
[12], proposed the use of velocity and shear 
stress continuity at the interface with the porous 
layer when using Brinkman’s equation. They 
obtained a solution of flow over a thick porous 
that is the same as the solution obtained using 
Darcy’s equation with BJ condition when 
choosing the slip parameter  /eff , where 

  is the base fluid viscosity and eff  is the 

effective viscosity. It is worth noting here that 

eff  is a semi-empirical quantity, not unlike 𝛼. 

The case of flow through a channel bounded by 
a Brinkman layer of constant permeability 
results in permeability discontinuity at the 
interface. This has been remedied by Nield and 
Kuznetsov, [15] with the introduction of a 
transition layer between a constant permeability 
layer and the free-space channel. In the flow 
through a channel over a porous layer of infinite 
depth, the flow through which is governed by an 
equation of lower differential order than Navier-
Stokes equations, Rudraiah, [2], suggested the 
use of the BJ condition. This adds to the already 
established understanding that in the flow 
through a channel over a Forchheimer porous 
layer the use of the Beavers and Joseph condition 
is appropriate and justified, [11], [19]. 

However, this raises some important questions 
with regard to the appropriate value(s) of the 
coefficient 𝛼 when the Forchheimer layer is 
used. For flow over a Darcy layer, Nield, [11], 
discussed that 𝛼 ranges from 0.01 to 5. In the 
experiments of Beavers and Joseph, values of 𝛼 
used were 0.78, 1.45, and 4.0 for Foametal with 
average pore sizes of 0.016, 0.034, and 0.045 
inches, respectively, and 0.1 for Aloxite with 
average pore size of 0.013 or 0.027 inches.  

The semi-empirical nature of the BJ slip 
parameter and its flow-direction dependence, 
combined with the absence of parametric its 
values for different types of porous media and 
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their governing equations, raise the following 
questions which motivate this current work: 

(i) If the flow is through a Forchheimer 
porous layer what values does the slip 
parameter take, and how are its 
values determined?  

(ii) Some important flows include flow 
through composite porous layers, 
where one layer is underlain by 
another. If the flow is through a 
porous layer underlain by either a 
Darcy layer or a Forchheimer layer, 
and the slip hypothesis is assumed to 
be valid, how are the values of the 
slip parameter determined?  

(iii) A third question of equal important 
stems from the fact that the slip 
parameter is flow direction-
dependent, and in the Beavers and 
Joseph experiment, they considered 
flow through a horizontal channel 
underlain by a porous layer under a 
common driving pressure gradient. 
What is the form of the slip 
hypothesis, and what are the values 
of slip parameter when the flow is 
down an incline and driven by 
gravity? 

The first two of the above questions have 
received some attention, and partial answers 
were provided in [20] and [21]. Abu Zaytoon and 
Hamdan, [20], considered flow through a 
Navier-Stokes channel underlain by a 
Forchheimer porous layer and derived a 
relationship between the slip parameter in the 
Beavers and Joseph experiment and the slip 
parameter associated with the slip hypothesis for 
flow over a Forchheimer porous layer.  

Silva-Zea et.al., [21], considered flow through 
a Brinkman porous layer underlain by a Darcy 
porous layer and a Forchheimer porous layer, 
and derived expressions for values of their 

associated slip parameters in terms of the 
Beavers and Joseph slip parameter. 

Providing a partial answer to the third question, 
above, is the scope of the current work in which 
we consider flow through a free-space channel 
inclined at an angle to the horizontal, over an 
inclined porous layer of semi-infinite extent. The 
porous layers considered are a Darcy layer and a 
Forchheimer layer, and the flow in each 
configuration is driven only by the action of 
gravity. The governing equations in each case 
are solved and expressions for the velocity, shear 
stress, volumetric flow rates, pressure 
distributions in the channel and porous layers, 
and velocities at the interfaces are obtained. 
Furthermore, a relationship between slip 
parameters associated with the Darcy and the 
Forchheimer layers is derived. Numerical values 
for the slip velocities and slip parameters are 
obtained and analyzed. 

In addition to attempting to shed some light on 
the effects of flow direction on the slip 
parameter, this work is intended to provide a 
baseline analysis and some bench mark with 
which more real-life flow problems can be 
compared. As an example, in recent 
developments of flow through porous media, 
considerable attention has been devoted to the 
flow of fluids with pressure-dependent 
viscosities, due to the importance of this type of 
fluid flow in enhanced oil recovery and carbon 
sequestration, [22], [23]. An important flow 
configuration that is in use is the flow down an 
inclined plane, which has been popular in the 
study of lubrication mechanisms, the mixing of 
fluid layers, and waves down an incline, [24]. 
Importance of this flow configuration in the 
current work is that it provides for a vehicle to 
study the effects of flow direction on the BJ slip 
parameter. This might be an important 
methodology from a cost-effective vantage point 
as experiments to approximate slip parameters 
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could be costly, and some elegant theoretical 
methods of estimation are  complicated and 
potentially time-consuming, [25]. With the 
availability of more data on the slip parameter 
for Darcy layers, experiments and/or techniques 
presented in [25] can estimate the most accurate 
value(s) for flow down an incline. Our proposed 
relations can then be used to estimate the 
corresponding slip parameter(s) for the 
Forchheimer layer. 

We believe that this work provides some 
comparative data that could be of importance in 
further studies of flow of fluids with pressure-
dependent viscosities through and over porous 
layers, among other more sophisticated flow. 

2. Previous Results of Flow over Porous 

Layers  

In their original work, Beavers and Joseph, [5], 
considered flow induced by a pressure gradient 
through a horizontal, straight channel of width h 

over a Darcy porous layer of semi-infinite extent, 
shown in Fig. 1. The Darcy velocity, 𝑢𝐷, is 
constant in the porous layer and the velocity 
profile in the channel is parabolic in the absence 
of the porous layer. The slip velocity, 𝑢𝑠, is 
envisaged to result due to the influence of the 
“slip” condition at the interface, as illustrated in 
Fig. 1. 

Theoretical analysis and solutions to the 
governing equations of flow through a Navier-
Stokes channel over a Darcy layer, and results of 
the work accomplished in [20] and [21], are 
summarized in what follows. 

 

Fig. 1. Schematic Sketch for Beavers 

and Joseph Condition 

Result 1: In the study of Navier-Stokes flow 
through a horizontal channel bounded by two 
solid, impermeable parallel plates at 𝑦 = 0 and 
𝑦 = ℎ, where no-slip conditions apply, 
governing equations reduce to 

𝑑2𝑢

𝑑𝑦2 =
1

𝜇

𝑑𝑝

𝑑𝑥
                                 (1) 

where 𝑑𝑝

𝑑𝑥
< 0 is the driving pressure gradient, 

𝑢(𝑦) is the velocity in the channel, and 𝜇 is the 
viscosity of the fluid. 

 Solution to equation (1) satisfying 𝑢(0) =

𝑢(ℎ) = 0 gives the following velocity profile 
across the channel: 

𝑢 =
1

2𝜇

𝑑𝑝

𝑑𝑥
[𝑦2 − ℎ𝑦]                          (2) 

Result 2: In the study of Navier-Stokes flow 
through a channel underlain by a semi-infinite 
Darcy layer where the channel is bounded by 
solid walls and described by {(𝑥, 𝑦)|0 ≤ 𝑦 ≤

ℎ; −∞ < 𝑥 < +∞}, while the semi-infinite 
Darcy layer is described by {(𝑥, 𝑦)|−∞ < 𝑦 ≤

0; −∞ < 𝑥 < +∞}, flow in the channel is 
governed by equation (1) and the flow in the 
Darcy layer is governed by Darcy’s equation.  
Darcy’s equation is written in the form: 
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𝑢𝑑 = −
𝑘

𝜇

𝑑𝑝

𝑑𝑥
                (3) 

wherein 𝑑𝑝

𝑑𝑥
< 0 is the common driving pressure 

gradient, 𝑢(𝑦) is the velocity in the channel, 𝑢𝑑 
is the seepage velocity in the porous layer, and 𝑘 
is the constant permeability in the porous layer. 

Equations (1) and (3) have been solved subject 
to the following conditions: 

a) No-slip condition on the solid wall, 𝑦 = ℎ, 
namely  

𝑢(ℎ) = 0                                 (4)                                                       

b) Beavers and Joseph condition at the 
interface, namely 

𝑑𝑢

𝑑𝑦
=

𝛼1

√𝑘
(𝑢𝑖1 − 𝑢𝑑) 𝑎𝑡 𝑦 = 0              (5) 

where 𝑢𝑖1 = 𝑢(0+) is the fluid velocity at the 
interface (referred to as the interfacial velocity), 
and 𝛼1 is referred to as the slip conefficient. 

Solution to system (1), (3), (4) and (5) yields the 
following velocity profile across the channel: 

𝑢 =
1

2𝜇

𝑑𝑝

𝑑𝑥
[𝑦2 − ℎ2] +

𝛼1

√𝑘
(𝑢𝑖1 − 𝑢𝑑)[𝑦 − ℎ] 

     (6) 

where 𝑢𝑑 is given by (3), and the  velocity at the 
interface, 𝑦 = 0, is determined as: 

𝑢𝑖1 = −
𝑘𝜎

2𝜇
[

𝜎+2𝛼1

1+𝛼1𝜎
]

𝑑𝑝

𝑑𝑥
                 (7) 

wherein 

𝜎 =
ℎ

√𝑘
                                                               (8) 

Result 3: In their recent work, Abu Zaytoon and 
Hamdan, [20], modified the BJ condition and 
adjusted the values of its slip parameter to handle 
situations in which the Darcy layer is replaced by 

a Forchheimer layer. Corresponding forms of the 
BJ condition have also been derived for flow 
through composite porous layers, [21]. When the 
porous layer is of the type where Forchheimer’s 
equation is valid, Abu Zaytoon & Hamdan, [20], 
provided the following problem formulation and 
solution. Equation (3) is replaced by 

𝜇

𝑘
𝑢𝑓1 +

𝑑𝑝

𝑑𝑥
+

𝜌𝐶𝑓

√𝑘
𝑢𝑓1

2 = 0                 (9) 

where 𝑢𝑓 is the tangential velocity component in 
the Forchheimer porous layer, 𝜌 is the fluid 
density, and 𝐶𝑓 is the Forchheimer drag 
coefficient. Equations (1) and (7) have been 
solved subject to conditions (3) and the 
following modified form of condition (4): 

𝑑𝑢

𝑑𝑦
=

𝛽1

√𝑘
(𝑢𝑏1 − 𝑢𝑓1) 𝑎𝑡 𝑦 = 0           (10) 

where 𝑢𝑏1 is the velocity at the interface between 
the channel and the Forchheimer porous layer, 
and 𝛽1 is the slip parameter associated with 
Forchheimer’s porous interface. Solutions to (1) 
and (8), subject to conditions (4) and (9) are as 
follows. 

Velocity distribution across the channel is given 
by: 

𝑢(𝑦) =
1

2𝜇

𝑑𝑝

𝑑𝑥
[𝑦2 − ℎ2] 

+
𝛽1

√𝑘
(𝑢𝑏1 − 𝑢𝑓1)[𝑦 − ℎ];  0 < 𝑦 < ℎ             (11) 

and the velocity distribution in the Forchheimer 
porous layer is given by: 

𝑢𝑓1 = −
𝜔1𝑝𝑥

𝜇
;   𝑦 < 0                                      (12) 

wherein 

𝜔1 =
𝜇

2𝜌𝐶𝑓√𝑘𝑝𝑥

[𝜇 − √𝜇2 − 4𝜌𝑘√𝑘 𝐶𝑓𝑝𝑥] 
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          (13) 

Velocity at the interface between the channel and 
porous layer has been calculated as 

𝑢𝑏1 = −
𝑘

2𝜇
[

𝜎2+2𝛽1𝜎𝜔1

1+𝛽1𝜎
] 𝑝𝑥                       (14) 

The following relationship between slip 
parameters 𝛼1 and 𝛽1 has been derived, [20], 
when the interfacial velocities are the same, 
namely 𝑢𝑖1 = 𝑢𝑏1: 

𝛽1 =
𝛼1[𝜎2−2]

[𝜎2+2𝛼1𝜎(1−𝜔1)−2𝜔1]
                               (15) 

3. Current Problem Formulation and 

Solution 

Previous work and results are valid for 
unidirectional flow in a horizontal channel, over 
a porous layer, with the flow being driven by a 
common pressure gradient, 𝑝𝑥. The objective of 
the current work is to extend and modify the BJ 
condition to the case when flow is gravity-
driven. To this end, we consider flow through an 
inclined channel over a semi-infinite porous 
layer and derive expressions for the interfacial 
velocity and the pressure distribution. Two types 
of porous media are considered. The first is one 
where Darcy’s equation is valid and the second 
is where the Forchheimer equation is valid. This 
flow configuration represents a model that is 
used in the important problem of flow of a fluid 
with pressure-dependent viscosity, where the 
pressure distribution is a function of the normal 
physical variable. 

We consider the steady flow of a viscous, 
incompressible fluid through a channel of depth 
ℎ underlain by a semi-infinite porous layer 
inclined at an angle 𝜗 to the horizontal, as shown 
in Fig. 2.  

    

 

Fig. 2. Representative  Sketch for Flow Down an 

Incline 

The channel is bounded at 𝑦 = ℎ by a solid, 
impermeable wall, on which the no-slip 
condition is imposed. The pressure gradient is to 
zero in the x-direction, the flow is assumed to be 
driven down the incline by gravity. Flow in the 
free-space channel if governed by the continuity 
and Navier-Stokes equations, which reduce to 
the following for the configuration at hand: 

𝑑2𝑢

𝑑𝑦2 = −
𝜌𝑔

𝜇
𝑠𝑖𝑛𝜗                           (16) 

−
𝑑𝑝

𝑑𝑦
− 𝜌𝑔𝑐𝑜𝑠𝜗 = 0                                        (17) 

where 𝑢 = 𝑢(𝑦) is the tangential flow velocity 
down the incline, 𝑝 = 𝑝(𝑦) is the fluid pressure 
and 𝑔 is the gravitational acceleration. We will 
provide the following three case solutions in the 
analysis below, in Subsections 3.1, 3.2, and 3.3, 
respectively. 

Case 1: Navier-Stokes flow through an inclined 
channel spanning the flow domain {(𝑥, 𝑦)|0 <

𝑦 < ℎ; −∞ < 𝑥 < +∞}.  

Case 2: Navier-Stokes flow through an inclined 
channel of height ℎ over a semi-infinite Darcy 
porous layer with an interface located at 𝑦 = 0. 
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Case 3: Navier-Stokes flow through an inclined 
channel of height ℎ over a semi-infinite 
Forchheimer porous layer with an interface 
located at 𝑦 = 0. 

3.1. Navier-Stokes Flow in an Inclined 

Channel 

Flow in the channel is governed by equations 
(16) and (17), subject to the following conditions 
on velocity and pressure, respectively 

𝑢(0) = 𝑢(ℎ) = 0                                         (18) 

𝑝(ℎ) = 𝑝0                                                       (19) 

where 𝑝0 is a constant, specified pressure that 
could be chosen as atmospheric pressure, [23]. 
Solutions to equations (16) and (17), satisfying 
conditions (18) and (19), are given, respectively, 
by: 

𝑢 =
𝜌𝑔

2𝜇
𝑠𝑖𝑛𝜗[ℎ𝑦 − 𝑦2]                                    (20) 

𝑝(𝑦) =  𝑝0 + 𝜌𝑔𝑐𝑜𝑠𝜗 (ℎ − 𝑦);  0 ≤ 𝑦 ≤ ℎ. (21)  

Solution (20) gives the velocity distribution 
across the channel and illustrates its dependence 
of the angle of inclination, 𝜗. Solution (21) gives 
the pressure distribution across the channel and 
illustrates its dependence on the angle of 
inclination, 𝜗, and on the pressure distribution at 
the upper and lower channel boundaries, with the 
pressure being 𝑝0 at the upper channel wall, and 
𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗 at the lower channel wall. 

3.2. Navier-Stokes Flow over an Inclined 

Darcy Layer 

In this case, flow in the channel is governed by 
equations (16) and (17), and the flow in the 
porous layer is governed by the equation of 
continuity and Darcy’s equation, which reduce 
to the following forms for the configuration at 
hand: 

𝜌𝑔𝑠𝑖𝑛𝜗 −
𝜇

𝑘
𝑢𝑑 = 0                                          (22) 

−
𝑑𝑝𝑑

𝑑𝑦
− 𝜌𝑔𝑐𝑜𝑠𝜗 = 0                                      (23) 

where 𝑢𝑑 is the tangential Darcy seepage 
velocity component, and 𝑝𝑑 = 𝑝𝑑(𝑦) is the 
interstitial pressure. It is assumed that viscosities 
of the fluids in the channel and in the Darcy layer 
are equal and that the fluid densities are equal as 
well in order to avoid the occurrence of a free 
surface, or a curvilinear interface, between the 
fluid layers. The interface between the two 
domains is thus assumed to be sharp and is 
located at 𝑦 = 0. At the interface of the two 
domains the following conditions hold: 

𝑑𝑢

𝑑𝑦
(0) =

𝛼2

√𝑘
(𝑢𝑖2 − 𝑢𝑑)                                   (24) 

𝑝𝑑(0) = 𝑝(0) = 𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠                      (25) 

where 𝑢𝑖2 = 𝑢(0+) is the fluid velocity at the 
interface, and 𝛼2 is the slip parameter associated 
with the flow over an inclined Darcy layer. On 
the upper solid wall bounding the channel, 
velocity vanishes, namely 𝑢(ℎ) = 0. Condition 
(24) is the well-known Bevers and Joseph slip 
condition, [5]. 

Darcy velocity profile is obtained algebraically 
from equation (22) as: 

𝑢𝑑 =
𝜌𝑔𝑘

𝜇
𝑠𝑖𝑛𝜗                                       (26) 

Velocity distribution in the channel is obtained 
by solving equation (1) for 𝑢(𝑦). General 
solution to (1) is given by: 

𝑢 = −
𝜌𝑔

2𝜇
𝑠𝑖𝑛𝜗  𝑦2 + 𝑐1𝑦 + 𝑐2                        (27) 

where 𝑐1 and 𝑐2 are arbitrary constants that can 
be determined using conditions (24) together 
with 𝑢(ℎ) = 0. Values of these constants 
𝑐1 and 𝑐2 are thus given by: 
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𝑐1 =
𝛼2

√𝑘
(𝑢𝑖2 − 𝑢𝑑)                                        (28) 

𝑐2 =
𝜌𝑔ℎ2

2𝜇
𝑠𝑖𝑛𝜗  −

ℎ𝛼2

√𝑘
(𝑢𝑖2 − 𝑢𝑑)                  (29) 

Using (28) and (29) in (27), we obtain 

𝑢 =
𝜌𝑔

2𝜇
𝑠𝑖𝑛𝜗  (ℎ2 − 𝑦2)  

+
𝛼2

√𝑘
(𝑢𝑖2 − 𝑢𝑑)(𝑦 − ℎ)           (30) 

Using 𝑢𝑖2 = 𝑢(0+) in (29), and solving for 𝑢𝑖2, 
we obtain the following expression for the 
velocity at the interface 

𝑢𝑖2 =  𝜌𝑔𝑠𝑖𝑛𝜗
𝑘

2𝜇
[

𝜎2+2𝛼2𝜎

(1+𝛼2𝜎)
]                            (31) 

Using (26) and (31) in (30), we obtain the 
following velocity distribution in the channel: 

𝑢(𝑦) =  
𝜌𝑔𝑠𝑖𝑛𝜗 

2𝜇
[(ℎ2 − 𝑦2)  

   + 𝛼2(𝜎2−2)

(1+𝛼2𝜎)
(𝑦 − ℎ)]              (32) 

Pressure distribution in the channel is as given 
by (21), and pressure distribution in the Darcy 
porous layer, satisfying condition (25), takes the 
form 

𝑝𝑑(𝑦) = 𝑝0 + 𝜌𝑔𝑐𝑜𝑠𝜗 (ℎ − 𝑦);   𝑦 ≤ 0         (33) 

3.3. Navier-Stokes Flow over an Inclined 

Forchheimer Layer 

In this case, flow in the channel is governed by 
equations (16) and (17), and the flow in the 
porous layer is governed by the equation of 
continuity and Forchheimer’s equation, which 
reduce to the following forms for the 
configuration at hand: 

−
𝜇

𝑘
𝑢𝑓 −

𝜌𝐶𝑓

√𝑘
𝑢𝑓|𝑢𝑓| + 𝜌𝑔𝑠𝑖𝑛𝜗 = 0                (34) 

−
𝑑𝑝𝑓

𝑑𝑦
− 𝜌𝑔𝑐𝑜𝑠𝜗 = 0                                      (35) 

where 𝑢𝑓 and 𝑝𝑓 are the tangential velocity and 
pressure in the Forchheimer layer, respectively. 

Pressure distribution in the channel is as given 
by (21), and pressure distribution in the 
Forchheimer porous layer, satisfying the 
condition 

𝑝𝑓(0) = 𝑝(0) = 𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗                    (36) 

takes the form 

𝑝𝑓(𝑦) = 𝑝0 + 𝜌𝑔𝑐𝑜𝑠𝜗 (ℎ − 𝑦);   𝑦 ≤ 0         (37) 

Algebraic solution to (34) renders the following 
constant Forchheimer velocity profile across the 
layer, where the positive root is chosen in order 
to obtain a positive velocity: 

𝑢𝑓 =
−1

2𝜌𝐶𝑓√𝑘
[𝜇 − √𝜇2 + 4𝐶𝑓𝑘√𝑘𝜌2𝑔𝑠𝑖𝑛𝜗]   

               (38) 

Velocity distribution in the channel is obtained 
by solving equation (16) for 𝑢(𝑦) subject to the 
no-slip condition, 𝑢(ℎ) = 0, and the following 
modified interfacial condition for the 
Forchheimer layer: 

𝑑𝑢

𝑑𝑦
(0) =

𝛽2

√𝑘
(𝑢𝑏2 − 𝑢𝑓)                                  (39) 

where 𝛽2 is the slip parameter associated with 
the flow over a Forchheimer porous layer, and 
𝑢𝑏2 is the corresponding interfacial velocity. 

Velocity distribution in the channel, equation 
(27), thus takes the form 

𝑢 =
𝜌𝑔

2𝜇
𝑠𝑖𝑛𝜗(ℎ2 −  𝑦2)  

+
𝛽2

√𝑘
[𝑢𝑏2 − 𝑢𝑓](𝑦 − ℎ)          (40) 

where 𝑢𝑓 is given by (38) and velocity at the 
interface is given by 
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𝑢𝑏2 =
𝜌𝑔𝑠𝑖𝑛𝜗

2𝜇
[

ℎ2

(1+𝛽2𝜎)
+

2𝑘𝛽2𝜎𝜔2

1+𝛽2𝜎
]           (41) 

wherein 

𝜔2 =
𝜇

𝜌𝑔𝑘𝑠𝑖𝑛𝜗
𝑢𝑓                                              (42) 

4. Expressions for Slip Velocity, Shear 

Stress and Volumetric Flow Rate 

In this section we provide expressions for the slip 
velocities when the flow is over a Darcy and a 
Forchheimer porous layers, in addition of shear 
stresses and volumetric flow rates for the three 
cases of flow through the channel, discussed in 
Section 3, above. Expressions for the the amount 
of increase in flow rate due to the presence of a 
porous boundary, relative to a solid boundary, 
are also obtained.  

All expressions derived are exact, with the only 
source of uncertainty being the slip parameters’ 
estimates, which are carried through the 
expressions by virtue of the interfacial velocities 
containing the slip parameters. 

4.1. Expressions for slip velocities 

In the flow through a horizontal channel over a 
Darcy porous layer, an expression for the slip 
velocity is given by: 

𝑈𝑠𝑑1 = 𝑢𝑖1 − 𝑢𝑑 =
𝑘

𝜇

𝑑𝑝

𝑑𝑥
[1 −

𝜎

2
(

𝜎+2𝛼1

1+𝛼1𝜎
)]        (43) 

The corresponding expression for slip velocity 
when the channel is inclined is given by: 

𝑈𝑠𝑑2=𝑢𝑖2 − 𝑢𝑑 =
𝜌𝑔𝑘𝑠𝑖𝑛𝜗(𝜎2−2)

2𝜇(1+𝛼2𝜎)
                      (44) 

When the flow is through a horizontal channel 
over a Forchheimer porous layer, the slip 
velocity is given by: 

𝑈𝑠𝑓1 = 𝑢𝑏1 − 𝑢𝑓 = {
𝜔1

𝜇
−

𝑘

2𝜇
[

𝜎2+2𝛽1𝜎𝜔1

1+𝛽1𝜎
]} 𝑝𝑥          

                                                                      (45)       

The corresponding expression for slip velocity 
when the channel is inclined is given by: 

𝑈𝑠𝑓2=𝑢𝑏2 − 𝑢𝑓2 =
𝜌𝑔𝑠𝑖𝑛𝜗

2𝜇
[

ℎ2−2𝑘𝜔2

(1+𝛽2𝜎)
]               (46) 

4.2. Expressions for volumetric flow rate, 

shear stress and  

In their original work, Beavers and Joseph, [5], 
provided an expression for the relative increase 
in mass flux in the flow over a porous layer, as 
compared to the mass flow rate in a channel. In 
this section, we provide expressions for the 
volumetric flow rates ∫ 𝑢𝑑𝑦

ℎ

0
 and their absolute 

changes for all flow configurations considered. 
Volumetric flow rates and shear stresses across 
the channel are obtained as follows. 

For flow through a horizontal channel with solid, 
impermeable boundaries, volumetric flow rate, 
𝑄𝑛1, and shear stress, 𝜏𝑛1, are obtained, 
respectively, from equation (2) as: 

𝑄𝑛1 = ∫ 𝑢𝑑𝑦
ℎ

0
= −

ℎ3

12𝜇

𝑑𝑝

𝑑𝑥
                              (47) 

𝜏𝑛1 = 𝜇
𝑑𝑢

𝑑𝑦
= (𝑦 −

ℎ

2
)

𝑑𝑝

𝑑𝑥
                                (48) 

For flow through an inclined channel bounded by 
solid, impermeable walls, volumertic flowrate, 
𝑄𝑛2, and shear stress, 𝜏𝑛2, across the channel are 
obtained, respectively, from (20) as 

𝑄𝑛2 = ∫ 𝑢𝑑𝑦
ℎ

0
=

𝜌𝑔ℎ3

12𝜇
𝑠𝑖𝑛𝜗                            (49) 

𝜏𝑛2 = 𝜇
𝑑𝑢

𝑑𝑦
=

𝜌𝑔

2
𝑠𝑖𝑛𝜗[ℎ − 2𝑦]                       (50) 

For flow through a horizontal channel over a 
Darcy layer, volumetric flow rate, 𝑄𝑑1, and shear 
stress, 𝜏𝑑1, across the channel are obtained, 
respectively, from (6) as follows: 
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𝑄𝑑1 = ∫ 𝑢𝑑𝑦
ℎ

0
= −

ℎ3

3𝜇

𝑑𝑝

𝑑𝑥
  

−
𝛼1√𝑘

𝜇

𝑑𝑝

𝑑𝑥
[1 −

𝜎

2
(

𝜎+2𝛼1

1+𝛼1𝜎
)]       (51)     

𝜏𝑑1 = 𝜇
𝑑𝑢

𝑑𝑦
=  

{𝑦 + 𝛼1√𝑘 [1 −
𝜎

2
(

𝜎+2𝛼1

1+𝛼1𝜎
)]}

𝑑𝑝

𝑑𝑥
          (52) 

For flow through a horizontal channel over a 
Forchheimer layer, volumetric flow rate, 𝑄𝑓1, 
and shear stress, 𝜏𝑓1, across the channel are 
obtained, respectively, from (11) as follows: 

𝑄𝑓1 = −
ℎ3

3𝜇

𝑑𝑝

𝑑𝑥
−

𝛽1ℎ2

2√𝑘
{

𝜔1

𝜇
−

𝑘

2𝜇
[

𝜎2+2𝛽1𝜎𝜔1

1+𝛽1𝜎
]} 𝑝𝑥     

                                                                      (53)  

𝜏𝑓1 = 𝜇
𝑑𝑢

𝑑𝑦
= 𝑦

𝑑𝑝

𝑑𝑥
   

       + 𝛽1

√𝑘
{𝜔1 −

𝑘

2
[

𝜎2+2𝛽1𝜎𝜔1

1+𝛽1𝜎
]} 𝑝𝑥      (54) 

For flow through an inclined channel over a 
Darcy layer, volumetric flow rate, 𝑄𝑑2, and shear 
stress, 𝜏𝑑2, across the channel are obtained, 
respectively, from (32) as follows: 

𝑄𝑑2 = ∫ 𝑢𝑑𝑦
ℎ

0
=

𝜌𝑔𝑠𝑖𝑛𝜗 

2𝜇
[

2

3
ℎ3 −

ℎ2

2

𝛼2(𝜎2−2)

(1+𝛼2𝜎)
  (55) 

𝜏𝑑2 = 𝜇
𝑑𝑢

𝑑𝑦
=

𝜌𝑔𝑠𝑖𝑛𝜗 

2
[

𝛼2(𝜎2−2)

(1+𝛼2𝜎)
− 2𝑦)]            (56) 

For flow through an inclined channel over a 
Forchheimer layer, volumetric flow rate, 𝑄𝑓2, 
and shear stress, 𝜏𝑓2, across the channel are 
obtained, respectively, from (40) as follows: 

𝑄𝑓2 = ∫ 𝑢𝑑𝑦 =
𝜌𝑔ℎ3

3𝜇
𝑠𝑖𝑛𝜗

ℎ

0
   

   − 𝜌𝑔𝑠𝑖𝑛𝜗ℎ𝜎𝛽2

4𝜇
[

ℎ2−2𝑘𝜔2

(1+𝛽2𝜎)
]          (57)                 

𝜏𝑓2 = 𝜇
𝑑𝑢

𝑑𝑦
= −𝑦

𝜌𝑔

2
𝑠𝑖𝑛𝜗 + 𝜌𝑔𝑠𝑖𝑛𝜗𝛽2

2√𝑘
[

ℎ2−2𝑘𝜔2

(1+𝛽2𝜎)
]  

                                                                      (58) 

4.3. Expressions for volumetric flow rate 

increase due to a permeable boundary  

The following change (amount of increase) in 
volumetric flow rate when the flow is through a 
horizontal channel over a Darcy porous layer, 
relative to volumetric flow rate through a 
horizontal channel bounded by solid wall, is 
obtained from equations (47) and (51) as: 

𝑄𝑑1 − 𝑄𝑛1 = −
ℎ3

4𝜇

𝑑𝑝

𝑑𝑥
  

             − 𝛼1√𝑘

𝜇
[1 −

𝜎

2
(

𝜎+2𝛼1

1+𝛼1𝜎
)]

𝑑𝑝

𝑑𝑥
     (59) 

and for an inclined channel, the increase in 
volumetric flow rate is obtained from (49) and 
(55) as: 

𝑄𝑑2 − 𝑄𝑛2 = 𝜌𝑔𝑠𝑖𝑛𝜗ℎ2 

4𝜇
[ℎ −

𝛼2(𝜎2−2)

(1+𝛼2𝜎)
]             (60) 

The corresponding increase in volumetric flow 
rate when the Darcy layer is replaced by a 
Forchheimer layer is obtained from (47) and (53) 
for a horizontal channel as: 

𝑄𝑓1 − 𝑄𝑛1 = −
ℎ3

4𝜇

𝑑𝑝

𝑑𝑥
 

     − 𝛽1ℎ2

2√𝑘
{

𝜔1

𝜇
−

𝑘

2𝜇
[

𝜎2+2𝛽1𝜎𝜔1

1+𝛽1𝜎
]}

𝑑𝑝

𝑑𝑥
    (61) 

and from (48) and (56), for an inclined channel, 
as: 

𝑄𝑓2 − 𝑄𝑛2 =
𝜌𝑔ℎ𝑠𝑖𝑛𝜗

4𝜇
[ℎ2 − 𝜎𝛽2 [

ℎ2−2𝑘𝜔2

(1+𝛽2𝜎)
]    (62) 

 

5. Results and Analysis 

5.1. Relationship between angle of inclination 

and pressure gradient 
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In the flow through a horizontal channel over a 
Darcy layer, equation (3) gives Darcy velocity as 
𝑢𝑑 = −

𝑘

𝜇

𝑑𝑝

𝑑𝑥
. When the flow is through an 

inclined channel over a Darcy layer, equation 

(26) gives Darcy velocity as 𝑢𝑑 =
𝜌𝑔𝑘

𝜇
𝑠𝑖𝑛𝜗. If 

we assume that the Darcy velocities are equal, 
we must have 𝜌𝑔𝑠𝑖𝑛𝜗 = −

𝑑𝑝

𝑑𝑥
.  

For a given fluid density and with the knowledge 
of g, this condition gives us the angle of 
inclination that produces the same Darcy 
velocity for a give pressure gradient as 

𝜗 = 𝑠𝑖𝑛−1 (−
𝑑𝑝

𝑑𝑥

𝜌𝑔
)                                       (63) 

Equation (63) is also valid for the case of flow 
over a Forchheimer porous layer, as can be seen 
by comparing equations (9) and (34). 
Furthermore, for a given angle of inclination, we 
can choose 𝜌𝑔 that correspond to a given 
pressure gradient, as shown in Table 1.  

 

 

Table 1. Values of 𝜌𝑔 for different pressure 
gradients and angles of inclination 

 

In the computations to follow, we will use the 
following ranges of parameters:  

𝐶𝑓 = 0.55, ℎ = 1,
𝜇

𝜌
=

0.0005097

0.05097
= 0.01, 𝑔 =

9.81.  

5.2. Pressure at the interface 

Equations (33) and (37) give the pressure 
distributions in the Darcy and Forchheimer 
porous layers, respectively. For the same fluid 
density and gravitational acceleration, both 
distributions depend in the same way on the 
angle of inclination, 𝜗, on the channel width, h, 
and on the pressure 𝑝0 at the upper channel wall. 
At the interface between the channel and porous 
layers, equations (25) and (36) give the same 
value of pressure, namely 𝑝0 + 𝜌𝑔ℎ𝑐𝑜𝑠𝜗, 
regardless of the layer being a Darcy or a 
Forchheimer porous layer.  

For different angles of inclination and a unit 
channel width, Table 2 gives  pressure at the 
interface and shows a decrease in pressure with 
increasing angle of inclination, for a given 𝑝0. 
For a given angle of inclination, pressure at the 
interface increases with increasing 𝑝0. 

 

 

Table 2. Pressure at the interface for 
different 𝑝0 and 𝜗. 

 

5.3. Relationship between slip parameters 

when flow is down an incline. 
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Equations (31) and (41) are expressions for the 
interfacial velocities, 𝑢𝑖2 and 𝑢𝑓2, in the case of 
flow over a Darcy layer and over a Forchheimer 
layer, respectively. In order to relate the slip 
parameters appearing in the BJ condition, 
equations (24) and (39), for the respective layers, 
we assume equality of the interfacial velocities 
𝑢𝑖2 and 𝑢𝑓2 and derive the following relationship 
between slip parameters 𝛼2 and 𝛽2: 

𝛽2 =
𝛼2[𝜎2−2]

𝜎2+2𝛼2𝜎[1−𝜔2]−2𝜔2
                                 (64) 

where 𝜔2 =
𝜇

𝜌𝑔𝑘𝑠𝑖𝑛𝜗
𝑢𝑓, as given by (42). 

This is the same form of relationship between 𝛽1 
and 𝛼1 for the case of flow through a horizontal 
channel over a Darcy and a Forchheimer layer, 
given by equation (15), with the difference being 
in the values of 𝜔1 and 𝜔2, given by (14) and 
(43), respectively. 

Values of the constant Darcy’s and 
Forchheimer’s velocities in the porous layers, 
and values of 𝜔2, are given in Table 3 to 
illustrate their dependence on permeability and 
angle of inclination. For a given permeability, 
Table 3 shows that increasing the angle of 
inclination is accompanied with an expected 
increase, due to greater gravity influence, in both 
the Darcy and Forchheimer velocities.  

It also shows that increasing permeability, for a 
given angle of inclination, results in an increase 
in the Darcy and Forchheimer velocities, as one 
would expect for flow through porous layers. 
However, in all cases, and for the same 
parameters, Darcy velocity is greater in value 
than the Forchheimer velocity. This might be due 
to the presence of a quadratic inertial term in the 
Forchheimer equation that tends to slow down 
the flow.  

 

Table 3. Values of Darcy velocity, 
Forchheimer velocity and 𝜔2 for different 

𝑘 and 𝜗 

In the experiment of Beavers and Joseph, [5], 
values used for the slip parameter in the case of 
flow through a horizontal channel over a Darcy 
layer were 0.78, 1.45, and 4.0 for Foametal 
having average pore sizes of 0.016, 0.034, and 
0.045 inches, respectively, and 0.1 for Aloxite 
with average pore size of 0.013 or 0.027 inches. 
This values will be used in this work for 
illustration.  

 

Table 4.  Values of 𝛽2 corresponding to 𝛼2 
for different 𝑘 and 𝜗 

Using equation (64), Table 4 provides the 
corresponding values for 𝛽2 for various values of 
𝛽2, 𝜗, and 𝑘. In all cases considered, values of 𝛽2 
are less than the corresponding values of 𝛼2. For 
a given permeability, a reduction in the angle of 
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inclination results in an increase in the values of 
𝛽2, thus indicating that for the case of flow due 
to gravity over a Forchheimer porous layer, the 
slip parameter is dependent on the angle of 
inclination. For a given angle of inclination, a 
decrease in the permeability of the Forchheimer 
layer results in an increase in the value of 𝛽2 
until, ultimately, 𝛽2 = 𝛼2. 

 

 

5.4. Velocities at the interface 

In deriving relationship (42) between 𝛽2 and 𝛼2, 
we assumed that the velocities at the interface 
𝑢𝑖2 and 𝑢𝑏2 are equal. Table 5 gives a listing of 
the equal quantities 𝜇𝑢𝑖2

𝜌𝑔
=

𝜇𝑢𝑏2

𝜌𝑔
 for different 

angles of inclination, different permeabilities 
and the selected values of 𝛼2. Calculations are 
carried out using equations (31) and (41), with 
the values of 𝛽2 listed in Table 4. We note that 
Table 5 lists the velocities at the interface 
multiplied by the factor 𝜇

𝜌𝑔
 due to the fact that all 

quantities considered in this work are 
dimensional and we are trying whenever 
possible to avoid using specific values of  𝜇

𝜌𝑔
. 

Based on Table 5, the following observations are 
established. With increasing 𝛼2, hence 
increasing 𝛽2, values of velocities at the interface 
increase for all angles of inclination and all 
permeabilities. The effect of increasing angle of 
inclination, for a given permeability and given 
slip parameters, is an increase in the velocities at 
the interface. Decreasing permeability, however, 
for a given angle of inclination and slip 
parameters, results in decreasing the velocities at  

 

Table 5. Values of product of 𝜇

𝜌𝑔
  and velocity at 

the interface 𝒖𝒊𝟐  or 𝒖𝒃𝟐 

5.5. Velocity distribution in the free-space 

channel 

Fig. 3 illustrates typical effects of slip 
parameters on the velocity profile across the 
free-space channel. In the absence of a 
porous interface, it is clear from equation 
(20) that the velocity profile is parabolic, 
with 𝑢(0) = 𝑢(ℎ = 1) = 0, and a maximum 
velocity reached in the middle of channel at 
𝑦 = 0.5. 

When a porous interface is present between 
the channel and the Forchheimer layer, Fig. 

3 illustrates the effect of the porous boundary 
on 𝑈 =

2𝜇

𝜌𝑔𝑠𝑖𝑛𝜗
 𝑢(𝑦). As the velocity at the 

interface increases with decreasing 𝛽2, the 
amount of slip increases and causes a loss in 
the originally parabolic channel velocity 
profile. This behaviour is shown in Fig. 3 for 
permeability 𝑘 = 0.001. 
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Fig. 3. Channel velocity profile 𝑢(𝑦) for 

k=0.001, 𝜔2 = 0.6450418  and different 

values of 𝛽2  

 

6.  Conclusion 
 

In this work we considered flow through an 
inclined channel underlain by a Darcy and a 
Forchheimer porous layers. Beavers and Joseph 

condition was applied both cases in order to 
estimate the values of slip parameter when a 
Forchheimer layer is used. Solutions were 
obtained for the governing equations and an 
expression relating the slip parameter in a 
Forchheimer layer to that in a Darcy layer under 
the assumption of equal interfacial velocities. 
Expressions were also derived for the pressure 
distributions, slip velocities, and the increase in 
volumetric flow rates when the no-slip condition 
is replaced by a slip hypothesis. The main 
conclusions of this work are as follows: 

1- In the flow down an inclined channel as 
compared to flow under a constant pressure 
gradient, the inclination angle that produces 
equal velocity to that of flow through a 
porous layer under a pressure gradient is 
given by equation (63). 

2- Slip parameters, 𝛼2 and 𝛽2, in the flow over 
a porous layer down an incline are related by 
equation (64). 

3- As permeability decreases, 𝛽2 approaches 
𝛼2. 

4- For a given 𝛼2, the value of 𝛽2 depends on 
medium and flow parameters, and on 
permeability and angle of inclination. 
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