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Abstract:  The thermal convection of a plasma in porous medium is investigated to include 
simultaneously the effect of rotation and the finiteness of the ion Larmor radius (FLR) in the presence 
of a vertical magnetic field. Following linear stability theory and normal mode analysis method, the 
dispersion relation is obtained. It is found that the presence of a uniform rotation, finite Larmor radius 
and magnetic field introduces oscillatory modes in the system which were, otherwise, non-existent in 
their absence. When the instability sets in as stationary convection, finite Larmor radius, rotation, 
medium permeability and magnetic field are found to have stabilizing (or destabilizing) effects under 
certain conditions. In the absence of rotation, finite Larmor radius has stabilizing effect on the thermal 
instability of the system whereas the medium permeability and the magnetic field may have 
stabilizing or destabilizing effect under certain conditions. The conditions  

𝜅 < [𝜀 + (1 − 𝜀)
𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜂  𝑎𝑛𝑑 𝜅 <

𝜀2 [𝜀 + (1 − 𝜀)
𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜈

𝑃2 [𝜀𝑃{√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2
− 2𝑄1]

 

are the sufficient conditions for non-existence of overstability, the violation of which does not 
necessary involve an occurrence of overstability.    
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1 Introduction 
The theoretical and experimental results on 
thermal convection in a fluid layer, under 
varying assumptions of hydrodynamics and 
hydromagnetics, have been discussed in a 
treatise by Chandrasekhar [1]. The effects of 
the finiteness of the ion Larmor radius which 
exhibits itself in the form of ‘magnetic 
viscosity’ in the fluid equations have been 
studied by many authors (Jukes [2]; 
Vandakurov [3]). Sharma and Prakash [4] 
have studied the effect of finite Larmor radius 
on the thermal instability of a plasma. 
Melchior and Popowich [5] have considered 
the finite Larmor radius effect on the Kelvin-
Helmholtz instability in a fully ionized plasma 
while that on Rayleigh-Taylor instability has 
been studied by Singh and Hans [6]. The effect 

of finite Larmor radius on the thermal 
instability of a plasma in the presence of a 
vertical magnetic field has been studied by 
Sharma [7]. Bhatia and Chhonkar [8] 
investigated the simultaneous effects of 
rotation and finite Larmor radius on the 
Rayleigh-Taylor instability of two viscous 
fluids.  

        The study of the breakdown of the 
stability of a layer of fluid subject to a vertical 
temperature gradient in porous medium and 
the possibility of convective flow is of 
considerable interest in recent years. The study 
of onset of convection in a porous medium has 
attracted considerable interest because of its 
natural occurrence and of its intrinsic 
importance in many industrial problems, 
particularly in petroleum-exploration, 
chemical and nuclear industries. The 
derivation of the basic equations of a layer of 
fluid heated from below in porous medium, 
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using Boussinesq approximation, has been 
given by Joseph [9]. The study of a layer of 
fluid heated from below in porous media is 
motivated both theoretically and by its 
practical applications in engineering 
disciplines. Among the applications in 
engineering disciplines one can find the food 
process industry, chemical process industry, 
solidification and centrifugal casting of metals. 
The development of geothermal power 
resources has increased general interest in the 
properties of convection in porous medium. 
Lapwood [10] has studied the stability of 
convective flow in a porous medium using 
Rayleigh’s procedure. The Rayleigh instability 
of a thermal boundary layer in flow through a 
porous medium has been considered by 
Wooding [11]. 

        The properties of ionized space and 
laboratory magnetic fluids (plasmas) have 
been intensively investigated theoretically and 
experimentally in the past sixty years. One of 
the key aspects studied in this context is the 
stability of plasma structures. Usually, 
instabilities can be divided into two categories: 
macro- and micro-instabilities. Macro-
instabilities occur with low frequencies 
compared to the plasma and cyclotron 
frequency and they are studied within the 
framework of magnetohydrodynamics (MHD). 
Physicists have understood the behaviour of 
macro-instabilities and they showed how to 
avoid the most destructive of them, but small-
scale gradient driven micro-instabilities are 
still a serious obstacle for having a stable 
plasma for a large range of parameters. Micro-
instabilities are described by models which 
include, e.g. finite Larmor radius (FLR) and 
collisionless dissipative effects in plasmas. 
Time and length scales of micro-instabilities 
are comparable to the turbulent length scales 
and the length scales of transport coefficients. 
In general, the FLR effect is neglected. 
However, when the Larmor radius becomes 
comparable to the hydromagnetic length of the 
problem (e.g. wavelength) or the gyration 
frequency of ions in the magnetic field is of 
the same order as the wave frequency, 
finiteness of the Larmor radius must be taken 
into account. Strictly speaking, the space and 
time scale for the breakdown of 
hydromagnetics are on the respective scales of 
ion gyration about the field, and the ion 
Larmor frequency. In the present paper, we 

explore the effect of FLR on the thermal 
instability of a plasma in porous medium. 
Finite Larmor radius effect on plasma 
instabilities has been the subject of many 
investigations. In many astrophysical plasma 
situations such as in solar corona, interstellar 
and interplanetary plasmas the assumption of 
zero Larmor radius is not valid. Roberts and 
Taylor [12] and Rosenbluth et al. [13] have 
shown the stabilizing influence of finite ion 
Larmor radius (FLR) effects on plasma 
instabilities. Hernegger [14] investigated the 
stabilizing effect of FLR on thermal instability 
and showed that thermal criterion is changed 
by FLR for wave propagation perpendicular to 
the magnetic field. Sharma [15] investigated 
the stabilizing effect of FLR on thermal 
instability of rotating plasma. Ariel [16] 
discussed the stabilizing effect of FLR on 
thermal instability of conducting plasma layer 
of finite thickness surrounded by a non-
conducting matter. Vaghela and Chhajlani [17] 
studied the stabilizing effect of FLR on 
magneto-thermal stability of resistive plasma 
through a porous medium with thermal 
conduction. Bhatia and Chhonkar [18] 
investigated the stabilizing effect of FLR on 
the instability of a rotating layer of self-
gravitating plasma incorporating the effects of 
viscosity and Hall current. Vyas and Chhajlani 
[19] pointed out the stabilizing effect of FLR 
on the thermal instability of magnetized 
rotating plasma incorporating the effects of 
viscosity, finite electrical conductivity, 
porosity and thermal conductivity.  Kaothekar 
and Chhajlani [20] investigated the problem of 
Jeans instability of self-gravitating rotating 
radiative plasma with finite Larmor radius 
corrections. Thus FLR effect is an important 
factor in the discussion of thermal convection 
and other hydromagnetic instabilities. Keeping 
these in mind, an attempt is made to study the 
effects of finite Larmor radius and rotation on 
the thermal convection of incompressible 
plasma in porous medium in the present paper. 

 

 

2 Formulation of the Problem and 
   Perturbation Equations 
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Consider an infinite, horizontal, 
incompressible, viscous and electrically 
conducting plasma layer of depth d bounded 
by the planes 𝑧 = 0 and 𝑧 = 𝑑 in an isotropic 
and homogeneous medium of porosity 𝜀 and 
medium permeability 𝑘1. This layer is heated 
from below such that a steady temperature 
gradient 𝛽(= |𝑑𝑇

𝑑𝑧⁄ |) is maintained. 
Temperatures and densities at the bottom 
surface 𝑧 = 0 are 𝑇0 and 𝜌0 and at the upper 
surface 𝑧 = 𝑑 are 𝑇1 and 𝜌1 respectively. The 
system is acted on by a uniform vertical 
magnetic field 𝐻⃗⃗ (0, 0, 𝐻), a uniform rotation 
Ω⃗⃗ (0,  0,  Ω) and gravity field 𝑔 (0, 0, −𝑔). Let  
𝜌, 𝑇, 𝛼, 𝜅, 𝑔, 𝜇𝑒, 𝜇, 𝜈 (=

𝜇

𝜌0
) , 𝜂 and 𝑃 denote, 

respectively, the density, temperature, 
coefficient of thermal expansion, thermal 
diffusivity, gravitational acceleration, 
magnetic permeability, viscosity, kinematic 
viscosity, electrical resistivity and stress tensor 
taking into account the finite Larmor radius 
effect. When the plasma flows through a 
porous medium, the gross effect is represented 
by Darcy’s law. As a result, the resistance term 
−(

𝜇

𝑘1
)𝑞  replaces the usual viscous term, here 

𝑞  stands for the filter velocity of the plasma. 
Then the equations expressing the 
conservation of momentum, mass and heat are 

1

𝜀
[
𝜕𝑞 

𝜕𝑡
+

1

𝜀
(𝑞.⃗⃗⃗   ∇)𝑞 ]

= −
1

𝜌0
∇(𝑃 −

1

2𝜀2 |Ω⃗⃗ × 𝑞 |
2
) + 𝑔 (1 +

𝛿𝜌

𝜌0
)

+
𝜇𝑒

4𝜋𝜌0
(∇ × H⃗⃗ ) × 𝐻⃗⃗ −

𝜈

𝑘1
𝑞 

+
2

𝜀
(𝑞 × Ω⃗⃗ ) ,                                                (1) 

                       ∇. 𝑞 = 0,                               (2) 

                    
𝜕𝑇

𝜕𝑡
+ (𝑞 . ∇)𝑇 = 𝜅∇2𝑇 ,            (3)  

where = 𝜀 + (1 − 𝜀)
𝜌𝑠𝐶𝑠

𝜌0𝐶
 ; 𝜌0,  𝐶 are the 

density and heat capacity of the plasma and 
𝜌𝑠,  𝐶𝑠 are the density and the heat capacity of 
the solid (porous) material respectively. 

The equation of the state is 

𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇0)],  where the suffix zero 
refers to the values at the reference level 𝑧 =
0. 

The Maxwell’s equations yield 

𝜀
𝑑𝐻⃗⃗ 

𝑑𝑡
= (𝐻⃗⃗ . ∇)𝑞 + 𝜖𝜂∇2𝐻⃗⃗  ,                         (4) 

∇. 𝐻⃗⃗ = 0 ,                                                     (5) 

where 𝑑 𝑑𝑡⁄ = 𝜕 𝜕𝑡⁄ + (1 𝜀⁄ )(𝑞 . ∇) stands for 
the convective derivative.  

For the magnetic field along the 𝑧 −axis, the 
stress tensor 𝑃 , taking into account the finite 
ion gyration radius (Vandakurov [3]), has the 
components 

𝑃𝑥𝑥 = 𝑝 − 𝜌0𝜈0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 

𝑃𝑥𝑦 = 𝑃𝑦𝑥 = 𝜌0𝜈0 (
𝜕𝑢

𝜕𝑥
−

𝜕𝑣

𝜕𝑦
) , 

𝑃𝑥𝑧 = 𝑃𝑧𝑥 = −2𝜌0𝜈0 (
𝜕𝑣

𝜕𝑧
+

𝜕𝑤

𝜕𝑦
) ,        (6) 

𝑃𝑦𝑦 = 𝑝 + 𝜌0𝜈0 (
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) , 

𝑃𝑦𝑧 = 𝑃𝑧𝑦 = 2𝜌0𝜈0 (
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) ,           

𝑃𝑧𝑧 = 𝑝 , 

where 𝑝 is the scalar part of the pressure and  
𝜌0𝜈0 = 𝑁𝑘∗𝑇 4𝜔𝐻 ,   𝜔𝐻⁄  being the ion-
gyration frequency, 𝑘∗ is Boltzman constant, 
while 𝑁 and 𝑇 are number density and 
temperature of the ions, respectively. 

The steady state solution is 

𝑞 = (0,  0,  0), 𝑇 = 𝑇0 − 𝛽𝑧,    𝜌

= 𝜌0(1 + 𝛼𝛽𝑧),                (7) 

where 𝛽 =
𝑇0−𝑇1

𝑑
 is the magnitude of uniform 

temperature gradient which is maintained and 
is positive as temperature decreases upwards. 

Now we consider a small perturbation on the 
steady state and let 𝛿𝜌, 𝛿𝑃, 𝜃, 𝑞 (𝑢,  𝑣, 𝑤) and 
ℎ⃗ (ℎ𝑥,  ℎ𝑦,  ℎ𝑧) denote, respectively, the 
perturbations in density, stress tensor, 
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temperature, hydromagnetic fluid velocity 
(initially zero) and the magnetic field. The 
change in density 𝛿𝜌, caused by the 
perturbation 𝜃 in temperature, is given by 

𝛿𝜌 = −𝛼𝜌0𝜃 .                                              (8) 

Then the linearized hydromagnetic 
perturbation equations relevant to the problem 
are 

1

𝜀

𝜕𝑞 

𝜕𝑡
= −

1

𝜌0
∇𝛿𝑃 + 𝑔 (

𝛿𝜌

𝜌0
) +

𝜇𝑒

4𝜋𝜌0
(∇ × ℎ⃗ )

× 𝐻⃗⃗ −
𝜈

𝑘1
𝑞 

+
2

𝜀
(𝑞 × Ω⃗⃗ ) ,                  (9) 

∇. 𝑞 = 0 ,                                                    (10) 

𝐸
𝜕𝜃

𝜕𝑡
= 𝛽𝑤 + 𝜅∇2𝜃 ,                               (11) 

𝜀
𝜕ℎ⃗ 

𝜕𝑡
= (𝐻⃗⃗ . ∇)𝑞 + 𝜖𝜂∇2ℎ⃗  ,                        (12) 

∇. ℎ⃗ = 0.                                                    (13) 

Within the framework of the Boussinesq 
approximation, equations (9) – (13) become 

(
𝜕

𝜕𝑡
+

𝜈𝜀

𝑘1
)∇2= 𝜀𝑔𝛼 (

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2)𝜃

+
𝜇𝑒𝐻𝜀

4𝜋𝜌0

𝜕

𝜕𝑧
(∇2ℎ𝑧)

+ 𝜀𝜈0 (∇2 − 3
𝜕2

𝜕𝑧2)
𝜕𝜁

𝜕𝑧
      

− 2Ω
𝜕𝜁

𝜕𝑧
,                     (14) 

(
𝜕

𝜕𝑡
+

𝜈𝜀

𝑘1
) 𝜁

=
𝜇𝑒𝜀𝐻

4𝜋𝜌0

𝜕𝜉

𝜕𝑧
− 𝜀𝜈0 (∇2 − 3

𝜕2

𝜕𝑧2)
𝜕𝑤

𝜕𝑧

+ 2Ω
𝜕𝑤

𝜕𝑧
,                                            (15) 

𝜀
𝜕𝜉

𝜕𝑡
= 𝐻

𝜕𝜁

𝜕𝑧
+ 𝜀𝜂∇2𝜉                        (16) 

[𝐸
𝜕

𝜕𝑡
− 𝜅∇2] 𝜃 = 𝛽𝑤,                         (17) 

𝜀 [
𝜕

𝜕𝑡
− 𝜂∇2] ℎ𝑧 = 𝐻

𝜕𝑤

𝜕𝑧
,                             (18) 

where ∇2= 𝜕2

𝜕𝑥2⁄ + 𝜕2

𝜕𝑦2⁄ + 𝜕2

𝜕𝑧2⁄  

and 𝜁 = 𝜕𝑣
𝜕𝑥⁄ − 𝜕𝑢

𝜕𝑦⁄ ;   𝜉 =
𝜕ℎ𝑦

𝜕𝑥
⁄ −

𝜕ℎ𝑥
𝜕𝑦⁄  

stand for the z-components of vorticity and 
current density, respectively. 

 

3 Dispersion Relation 
Analyzing the disturbances into normal modes, 
we assume that the perturbation quantities are 
of the form 

[𝑤, ℎ𝑧, 𝜁, 𝜉, 𝜃]

= [𝑊(𝑧), 𝐾(𝑧), 𝑍(𝑧), 𝑋(𝑧), Θ(𝑧)]𝑒𝑥𝑝[𝑖𝑘𝑥𝑥

+ 𝑖𝑘𝑦𝑦 + 𝑛𝑡],                                                 (19) 

where 𝑘𝑥  and 𝑘𝑦 are the wave numbers along 
the 𝑥 − and 𝑦 − directions, respectively, 𝑘 =

√𝑘𝑥
2 + 𝑘𝑦

2 is the resultant wave number, and 𝑛 

is, in general, a complex constant.  

Using expression (19), equations (14)-(18) in 
non-dimensional form transform to 

(
𝜎

𝜀
+

1

𝑃𝑙
) (𝐷2 − 𝑎2)𝑊 + (

𝑔𝑑2

𝜈
) 𝑎2𝛼Θ

−
𝜇𝑒𝐻𝑑

4𝜋𝜌0𝜈
(𝐷2 − 𝑎2)𝐷𝐾

+ (
𝜈0𝑑

𝜈
) (2𝐷2 + 𝑎2)𝐷𝑍 +

2Ω𝑑3

𝜈𝜀
𝐷𝑍

= 0,                                                                  (20) 

(
𝜎

𝜀
+

1

𝑃𝑙
)𝑍

= (
𝜇𝑒𝐻𝑑

4𝜋𝜌0𝜈
)𝐷𝑋 + (

𝜈0

𝜈𝑑
) (2𝐷2 + 𝑎2)𝐷𝑊

+
2Ω𝑑

𝜈𝜀
𝐷𝑊,                                                (21) 

[𝐷2 − 𝑎2 − 𝐸𝑝1𝜎]Θ

= −(
𝛽𝑑2

𝜅
)𝑊,                                           (22) 

[𝐷2 − 𝑎2 − 𝑝2𝜎]𝐾 = −(
𝐻𝑑

𝜀𝜂
)𝐷𝑊,           (23) 
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[𝐷2 − 𝑎2 − 𝑝2𝜎]𝑋 = −(
𝐻𝑑

𝜀𝜂
)𝐷𝑍,             (24) 

where we have introduced new coordinates 
(𝑥∗,  𝑦∗,  𝑧∗) = (𝑥 𝑑⁄ ,  

𝑦
𝑑⁄ ,  𝑧 𝑑⁄ ) in the new 

unit of length 𝑑 and 𝐷 = 𝑑
𝑑𝑧∗⁄ . For 

convenience, the asterisks are dropped 
hereafter. Also we have put 𝑎 = 𝑘𝑑  and 𝜎 =
𝑛𝑑2

𝜈⁄ , 𝑝1 = 𝜈
𝜅⁄  is the Prandtl number, 𝑝2 =

𝜈
𝜂⁄  is the magnetic Prandtl number and 𝑃𝑙 =

𝑘1
𝑑2⁄  is the dimensionless medium 

permeability.  

Here we consider the case where both 
boundaries are free as well as perfect 
conductors of heat, while the adjoining 
medium is electrically non-conducting. The 
case of two free boundaries is slightly 
artificial, except in stellar atmospheres 
(Spiegel [21]) and in certain geophysical 
situations where it is most appropriate. 
However, the case of two free boundaries 
allows us to obtain analytical solution without 
affecting the essential features of the problem. 
The appropriate boundary conditions, with 
respect to which equations (20) – (24) must be 
solved, are 

𝑊 = 𝐷2𝑊 = 0,  𝐷𝑍 = 0,Θ = 0, 𝑋 = 0  𝑎𝑡 𝑧
= 0 𝑎𝑛𝑑 1,                                                     (25) 

on a perfectly conducting boundary. 

 The tangential components of the magnetic 
field are continuous in the absence of any 
surface current. Another boundary condition is  

𝐷𝐾 = 0 on the boundaries,                     (26) 

in addition to other boundary conditions given 
by the equation (25). 

Using the above boundary conditions, it can be 
shown that all the even order derivatives of 𝑊 
must vanish for 𝑧 = 0 𝑎𝑛𝑑 1 and hence the 
proper solution of 𝑊 characterizing the lowest 
mode is 

𝑊 = 𝑊0𝑠𝑖𝑛 𝜋𝑧,                                    (27) 

where 𝑊0 is a constant. 

Eliminating 𝑍, 𝐾, 𝑋 𝑎𝑛𝑑  Θ between equations 
(20) - (24) and substituting the proper solution 

(27) in the resultant equation, we obtain the 
dispersion relation 

𝑅1𝑥

= (1 + 𝑥) (
𝑖𝜎1

𝜀
+

1

𝑃
) (1 + 𝑥 + 𝑖𝐸𝑝1𝜎1)

+ 𝑄1

(1 + 𝑥)(1 + 𝑥 + 𝑖𝐸𝑝1𝜎1)

𝜀(1 + 𝑥 + 𝑖𝑝2𝜎1)

+

(1 + 𝑥 + 𝑖𝑝2𝜎1)(1 + 𝑥 + 𝑖𝐸𝑝1𝜎1)

[√𝑈(𝑥 − 2) + √𝑇𝐴1
]
2

[(1 + 𝑥 + 𝑖𝑝2𝜎1) (
𝑖𝜎1

𝜀
+

1

𝑃
) +

𝑄1

𝜀
]

 , (28) 

where 

𝑄 =
𝜇𝑒𝐻

2𝑑2

4𝜋𝜌0𝜈𝜂
, 𝑅 =

𝑔𝛼𝛽𝑑4

𝜈𝜅
 ,   𝑈 =

𝜈0
2

𝜈2
 , 

stand for the Chandrasekhar number, the 
thermal Rayleigh number, a non-dimensional 
number accounting for the finite Larmor 
radius, respectively, and we have also put 

𝑥 =
𝑎2

𝜋2
,  𝑃 = 𝜋2𝑃𝑙 ,  𝑖𝜎1 =

𝜎

𝜋2
,  𝑄1 =

𝑄

𝜋2
,  𝑅1

=
𝑅

𝜋4
  𝑇𝐴 =

4Ω2𝑑4

𝜈2
(𝑇𝑎𝑦𝑙𝑜𝑟 𝑛𝑢𝑚𝑏𝑒𝑟),   𝑇𝐴1

=
𝑇𝐴

𝜀2𝜋4
 𝑎𝑛𝑑 𝑖 = √−1 . 

 

 

4 Important Theorems and 
        Discussion 
Theorem 1: The system is stable or unstable. 

Proof:  Multiplying equation (20) by 𝑊∗, the 
complex conjugate of 𝑊, and using equations 
(21) - (24) together with the boundary 
conditions (25) and (26), we obtain 

(
𝜎

𝜀
+

1

𝑃𝑙
) 𝐼1 −

𝑔𝛼𝜅𝑎2

𝜈𝛽
(𝐼2 + 𝐸𝑝1𝜎

∗𝐼3)

+
𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
(𝐼4 + 𝑝2𝜎

∗𝐼5)

+ 𝑑2 (
𝜎∗

𝜀
+

1

𝑃𝑙
) 𝐼6

+
𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
(𝐼7 + 𝑝2𝜎𝐼8)

= 0 ,                                   (29) 

where 
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𝐼1 = ∫ (|𝐷𝑊|2 + 𝑎2|𝑊|2)
1

0

𝑑𝑧,  

       𝐼2 = ∫ (|𝐷Θ|2 + 𝑎2|Θ|2)𝑑𝑧,
1

0
 

        𝐼3 = ∫ (|Θ|2)𝑑𝑧,
1

0
 

     𝐼4 = ∫ (|𝐷2𝐾|2 + 2𝑎2|𝐷𝐾|2 + 𝑎4|𝐾|2)𝑑𝑧,
1

0

 

𝐼5 = ∫ (|𝐷𝐾|2 + 𝑎2|𝐾|2)𝑑𝑧,   
1

0

 

𝐼6 = ∫ (|𝑍|2)𝑑𝑧,   
1

0

 

𝐼7 = ∫ (|𝐷𝑋|2 + 𝑎2|𝑋|2)𝑑𝑧,
1

0

 

𝐼8 = ∫ (|𝑋|2)𝑑𝑧,                                           (30)
1

0

 

and 𝜎∗ is the complex conjugate of 𝜎. The 
integrals 𝐼1 , ………… . 𝐼8 are all positive 
definite. Putting 𝜎 = 𝜎𝑟 + 𝑖𝜎𝑖 and equating the 
real and imaginary parts of equation (29), we 
obtain 

[
𝐼1
𝜀

+
𝜇𝑒𝜂𝜀𝑝2

4𝜋𝜌0𝜈
(𝐼5 + 𝑑2𝐼8) −

𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐸𝑝1𝐼3

+
𝑑2

𝜀
𝐼6] 𝜎𝑟 = 

−[
1

𝑃𝑙
𝐼1 +

𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
(𝐼4 + 𝑑2𝐼7) −

𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐼2

+
𝑑2

𝑃𝑙
𝐼6] ,                                                        (31) 

and 

[
𝐼1
𝜀

+
𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐸𝑝1𝐼3 −

𝜇𝑒𝜂𝜀𝑝2

4𝜋𝜌0𝜈
(𝐼5 − 𝑑2𝐼8)

−
𝑑2

𝜀
𝐼6] 𝜎𝑖

= 0 .                                     (32) 

It is evident from equation (31) that 𝜎𝑟 may be 
positive or negative i.e. there may be 
instability or stability in the presence of 
rotation, finite Larmor radius and magnetic 
field in porous medium which is also true in 
their absence.   

Theorem 2: The modes may be oscillatory or 
non-oscillatory in contrast to case of no 
magnetic field, and in the absence of rotation, 
finite Larmor radius and magnetic field where 
modes are non-oscillatory. 

Proof: Equation (32) yields that 𝜎𝑖 may be 
zero or non-zero, which means that the modes 
may be non-oscillatory or oscillatory. In the 
absence of rotation, finite Larmor radius and 
magnetic field, equation (32) reduces to  

𝜎𝑖 [
𝐼1
𝜀

+
𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐸𝑝1𝐼3] = 0                    (33) 

and the terms in brackets are positive definite. 
Thus 𝜎𝑖 = 0, which means that oscillatory 
modes are not allowed and the principle of 
exchange of stabilities is satisfied for a porous 
medium in the absence of rotation, finite 
Larmor radius and magnetic field. The 
oscillatory modes are introduced due to the 
presence of rotation, magnetic field and finite 
Larmor radius which were non-existent in their 
absence. 

Theorem 3: The system is stable for 𝑔𝛼𝜅

𝜈𝛽
≤

27𝜋4

4
 and under the condition  𝑔𝛼𝜅

𝜈𝛽
>

27𝜋4

4
 , the 

system becomes unstable. 

Proof: From equation (32), it is clear that 𝜎𝑖 is 
zero when the quantity multiplying it is not 
zero and arbitrary when this quantity is zero. 

If 𝜎𝑖 ≠ 0, then equation (31) gives  

𝐼1
𝜀

+
𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝑝2𝐼8

=
𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
𝑝2𝐼5 +

𝑑2

𝜀
𝐼6

−
𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐸𝑝1𝐼3 

Substituting this in equation (30), we get 

2𝜎𝑟𝐼1
𝜀

+
1

𝑃𝑙
𝐼1 +

𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
𝐼4 + 𝑑2 (

1

𝑃𝑙
) 𝐼6

+
𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝐼7

+
2𝜎𝑟𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝑝2𝐼8

=
𝑔𝛼𝜅𝑎2

𝜈𝛽
𝐼2 .                (34) 
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Equation (34) on using Rayleigh-Ritz 
inequality gives 

(𝜋2 + 𝑎2)3

𝑎2
∫ |𝑊|2 𝑑𝑧

1

0

+
(𝜋2 + 𝑎2)

𝑎2 {
2𝜎𝑟𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝑝2𝐼8 +

𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝐼7

+ 𝑑2 (
1

𝑃𝑙
) 𝐼6 +

𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
𝐼4 +

1

𝑃;
𝐼1 +

2𝜎𝑟

𝜀
𝐼1}

≤
𝑔𝛼𝜅

𝛽𝜈
∫ |𝑊|2 𝑑𝑧   .                                   (35)

1

0

 

Therefore, it follows from equation (35) that 

[
27𝜋4

4
−

𝑔𝛼𝜅

𝜈𝛽
]∫ |𝑊|2  𝑑𝑧

1

0

+
(𝜋2 + 𝑎2)

𝑎2 {
2𝜎𝑟𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝑝2𝐼8

+
𝜇𝑒𝜂𝑑2𝜀

4𝜋𝜌0𝜈
𝐼7 + 𝑑2 (

1

𝑃𝑙
) 𝐼6

+
𝜇𝑒𝜂𝜀

4𝜋𝜌0𝜈
𝐼4 +

1

𝑃;
𝐼1 +

2𝜎𝑟

𝜀
𝐼1}

≤ 0                                        (36) 

since minimum value of (𝜋
2+𝑎2)

3

𝑎2  with respect 

to 𝑎2 is 27𝜋4

4
. 

Now, let 𝜎𝑟 ≥ 0, we necessary have from (36) 
that 

𝑔𝛼𝜅

𝜈𝛽
>

27𝜋4

4
    .                                            (37) 

Hence, if 

𝑔𝛼𝜅

𝜈𝛽
≤

27𝜋4

4
    ,                                          (38) 

then 𝜎𝑟 < 0. Therefore, the system is stable. 
Thus, under condition (38), the system is 
stable and under condition (37) the system 
becomes unstable. 

Theorem 4: For stationary convection case: 

(I) If  𝑥 > 2, both finite Larmor 
radius and rotation have a 
stabilizing effect on the system. 
On the other hand if 𝑥 < 2, finite 
Larmor radius has stabilizing (or 
destabilizing) effect and rotation 

has destabilizing (or stabilizing) 
effect if 

(𝑥 − 2) > (𝑜𝑟 <) 

                                    (
𝑇𝐴1

𝑈
)
1 2⁄

.        
(II) In the presence of finite Larmor 

radius effect and rotation if 

[
1 + 𝑥

𝑃
+

𝑄1

𝜀
]
2

> (𝑜𝑟 <) 

 {√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2

(1 + 𝑥) 

 the medium permeability has a destabilizing 
(or stabilizing) and the magnetic field has a 
stabilizing (or destabilizing) effect on the 
system.   

(III) In the absence of rotation, finite 
Larmor radius always has a 
stabilizing effect on the system 
whereas the medium permeability 
and the magnetic field may have 
stabilizing effect for some wave 
numbers and destabilizing effect 
for other wave numbers given by  
𝑈(𝑥 − 2)2(1 + 𝑥)

≷ (
1 + 𝑥

𝑃
+

𝑄1

𝜀
)
2

. 

Proof: When the instability sets in as 
stationary convection, the marginal state will 
be characterized by 𝜎 = 0. Putting 𝜎 = 0, the 
dispersion relation (28) reduces to 

𝑅1

= (
1 + 𝑥

𝑥
) [

1 + 𝑥

𝑃
+

𝑄1

𝜀
]

+
[𝑈

1
2⁄ (𝑥 − 2) + 𝑇𝐴1

1
2⁄ ]

2
(1 + 𝑥)2

𝑥 [
1+𝑥

𝑃
+

𝑄1

𝜀
]

 ,   (39) 

which expresses the modified Rayleigh 
number 𝑅1 as a function of the dimensionless 
wave number 𝑥 and the parameters 
𝑄1, 𝑈 𝑃 𝑎𝑛𝑑 𝑇𝐴1

. To study the effects of finite 
Larmor radius, rotation, medium permeability 
and magnetic field on 𝑅1, we examine the 
nature of 
𝑑𝑅1 𝑑𝑈⁄  , 𝑑𝑅1 𝑑𝑇𝐴1

,  ⁄ 𝑑𝑅1 𝑑𝑃⁄  𝑎𝑛𝑑 𝑑𝑅1 𝑑𝑄1⁄  
analytically. 

(I) It follows from equation (39), 
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𝑑𝑅1

𝑑𝑈

=
(𝑥 − 2)(1 + 𝑥)2 [(𝑥 − 2) + (

𝑇𝐴1

𝑈
)
1 2⁄

]

𝑥 [
1+𝑥

𝑃
+

𝑄1

𝜀
]

,   (40) 

and 
𝑑𝑅1

𝑑𝑇𝐴1

=

(1 + 𝑥)2 (
𝑈

𝑇𝐴1

)
1 2⁄

[(𝑥 − 2) + (
𝑇𝐴1

𝑈
)
1 2⁄

]

𝑥 [
1+𝑥

𝑃
+

𝑄1

𝜀
]

. (41) 

If  𝑥 > 2 , both finite Larmor radius and 
rotation have a stabilizing effect on the system. 

If < 2 , finite Larmor radius has stabilizing (or 
destabilizing) effect and rotation has 
destabilizing (or stabilizing) effect if 

(𝑥 − 2) > (𝑜𝑟 <) (
𝑇𝐴1

𝑈
)
1 2⁄

.                       (42) 

(II) Also equation (39) yields 

𝑑𝑅1

𝑑𝑃
= −

(1 + 𝑥)

𝑥𝑃2
 

[
 
 
 
 
 (

1+𝑥

𝑃
+

𝑄1

𝜀
)
2
− {√𝑈(𝑥 − 2) + √𝑇𝐴1

}
2

(1 + 𝑥)

(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2

]
 
 
 
 
 

,

                                                                            (43) 

and 

𝑑𝑅1

𝑑𝑄1

= (
1 + 𝑥

𝜀𝑥
)

[
 
 
 
 
 
 
 
 
 (

1+𝑥

𝑃
+

𝑄1

𝜀
)
2
−

{
√𝑈(𝑥 − 2) +

√𝑇𝐴1

}

2

(1 + 𝑥)

(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2

]
 
 
 
 
 
 
 
 
 

  ,   (44) 

In the equations (43) and (44) if  

[
1 + 𝑥

𝑃
+

𝑄1

𝜀
]
2

> {√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2

(1

+ 𝑥),                                    (45) 

then 
𝑑𝑅1

𝑑𝑃
< 0 𝑎𝑛𝑑 

𝑑𝑅1

𝑑𝑄1
> 0, 

which exhibits the destabilizing effect of 
medium permeability and stabilizing effect of 
magnetic field respectively. 

Again if 

[
1 + 𝑥

𝑃
+

𝑄1

𝜀
]
2

< {√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2

(1

+ 𝑥),                                    (46) 

then 
𝑑𝑅1

𝑑𝑃
> 0 𝑎𝑛𝑑 

𝑑𝑅1

𝑑𝑄1
< 0, 

which shows the stabilizing effect of medium 
permeability and destabilizing effect of the 
magnetic field on the thermal instability of a 
plasma in porous media in the light of 
condition (46). 

(III) In the absence of rotation, 

𝑑𝑅1

𝑑𝑈
=

(𝑥 − 2)2(1 + 𝑥)2

𝑥 [
1+𝑥

𝑃
+

𝑄1

𝜀
]

> 0,                    (47) 

𝑑𝑅1

𝑑𝑃

= −
(1 + 𝑥)2

𝑥𝑃2

[
(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2

−𝑈(𝑥 − 2)2(1 + 𝑥)
]

(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2 ,         (48) 

and 

𝑑𝑅1

𝑑𝑄1
= (

1 + 𝑥

𝜀𝑥
)

[
(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2

−𝑈(𝑥 − 2)2(1 + 𝑥)
]

(
1+𝑥

𝑃
+

𝑄1

𝜀
)
2 .     (49) 

Now 
𝑑𝑅1

𝑑𝑃
≷ 0  𝑎𝑛𝑑 

𝑑𝑅1

𝑑𝑄1
≶ 0 

according as 

𝑈(𝑥 − 2)2(1 + 𝑥) ≷ (
1 + 𝑥

𝑃
+

𝑄1

𝜀
)
2

. (50) 

Thus in the absence of rotation, finite Larmor 
radius always has a stabilizing effect on the 
thermal instability of plasma whereas the 
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medium permeability and magnetic field may 
have stabilizing effect for some wave numbers 
and destabilizing effect for other wave 
numbers given by relation (50). 

Theorem 5: The sufficient conditions for the 
non-existence of overstability are 

𝜅 < [𝜀 + (1 − 𝜀)
𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜂  𝑎𝑛𝑑  

𝜅 <
𝜀2 [𝜀 + (1 − 𝜀)

𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜈

𝑃2 [𝜀𝑃{√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2
− 2𝑄1]

. 

Proof: Here we discuss the possibility of 
whether instability may occur as overstability. 
Since for overstability, our interest is to 
determine the critical Rayleigh number for the 
onset of instability via a state of pure 
oscillations, it will suffice to find conditions 
for which equation (28) will admit solutions 
with 𝜎1 real. 

Assuming 𝜎1 to be real and equating the real 
and imaginary parts of equation (28) and 
eliminating 𝑅1 between them, we obtain 

𝐴3𝐶1
3 + 𝐴2𝐶1

2 + 𝐴1𝐶1 + 𝐴0 = 0 ,         (51) 

where  𝐶1 = 𝜎1
2 , 𝑏 = 1 + 𝑥 𝑎𝑛𝑑 

𝐴3 =
𝑏𝑝2

4

𝜀2
(
𝐸𝑝1

𝑃
+

𝑏

𝜀
) ,                           (52) 

 𝐴0 =
𝑏6

𝜀𝑃2 + [(
𝐸𝑝1

𝑃3 +
2𝑄1

𝜀2𝑃
) −

{
√𝑈(𝑏−3)−√𝑇𝐴1

𝜀
}
2

] 𝑏5 + [
𝑄1

2

𝜀3 +
𝑄1

𝜀𝑃2
(3𝐸𝑝1 −

𝑝2) + {√𝑈(𝑏 − 3) + √𝑇𝐴1
}
2 𝐸𝑝1

𝑃
] 𝑏4 +

[
𝑄1

2

𝜀2𝑃
(3𝐸𝑝1 − 2𝑝2) + {√𝑈(𝑏 − 3) +

√𝑇𝐴1
}
2
(
𝑝2𝑄1

𝜀
+

𝐸𝑝1𝑄1

𝜀
)] 𝑏3 +

𝑄1
3

𝜀3
(𝐸𝑝1 − 𝑝2)𝑏

2.                                                                                                                                                     
                                                               (53) 

The values of coefficients 𝐴1 𝑎𝑛𝑑 𝐴2  are not 
written here because their expressions are very 
lengthy and also not needed in the discussion 
of overstability. Since 𝜎1 is real for 
overstability, the three values of 𝐶1(= σ1

2) are 
positive. The product of the roots of (51) is 
−𝐴0 𝐴3⁄  and if this is to be positive, then 𝐴0 
must be negative since from (52) 𝐴3 is 
positive. 

It is clear from (53) that 𝐴0 is always positive 
if 

𝐸𝑝1 > 𝑝2 ,      𝑎𝑛𝑑       (
𝐸𝑝1

𝑃3
+

2𝑄1

𝜀2𝑃
)

>
1

𝜀
{√𝑈(𝑏 − 3)

+ √𝑇𝐴1
}
2

                (54) 

which implies that  

𝜅 < [𝜀 + (1 − 𝜀)
𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜂  𝑎𝑛𝑑 𝜅

<
𝜀2 [𝜀 + (1 − 𝜀)

𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜈

𝑃2 [𝜀𝑃{√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2
− 2𝑄1]

. 

                                                             (55) 

The inequalities (55) are, therefore, the 
sufficient conditions for the non-existence of 
overstability, the violation of which does not 
necessarily imply the occurrence of 
overstability. 

5 Conclusions 
The thermal convection of a plasma in porous 
medium in the presence of finite Larmor 
radius effect, rotation and vertical magnetic 
field is considered in the present paper. The 
main conclusions from the analysis of this 
paper are as follows: 

 It is found that rotation, finite Larmor 
radius and uniform magnetic field 
introduce oscillatory modes in the 
system which were non-existent in 
their absence. 

 It is observed that the system is stable 
for 𝑔𝛼𝜅

𝜈𝛽
≤

27𝜋4

4
 and under the condition  

𝑔𝛼𝜅

𝜈𝛽
>

27𝜋4

4
 , the system becomes 

unstable. 
 For the case of stationary convection, 

if  𝑥 > 2, both finite Larmor radius 
and rotation have a stabilizing effect 
on the system. On the other hand if 
𝑥 < 2, finite Larmor radius has 
stabilizing (or destabilizing) effect and 
rotation has destabilizing (or 
stabilizing) effect if 

(𝑥 − 2) > (𝑜𝑟 <) 
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 (
𝑇𝐴1

𝑈
)
1 2⁄

.        
In the presence of finite Larmor 
radius effect and rotation if 

[
1 + 𝑥

𝑃
+

𝑄1

𝜀
]
2

> (𝑜𝑟 <) 

 {√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2

(1 + 𝑥) 

the medium permeability has a destabilizing 
(or stabilizing) and the magnetic field has a 
stabilizing (or destabilizing) effect on the 
system.   

 In the absence of rotation, finite 
Larmor radius always has a stabilizing 
effect on the system whereas the 
medium permeability and the 
magnetic field may have stabilizing 
effect for some wave numbers and 
destabilizing effect for other wave 
numbers given by  

𝑈(𝑥 − 2)2(1 + 𝑥) ≷ 

(
1 + 𝑥

𝑃
+

𝑄1

𝜀
)
2

. 
 

 The case of overstability is also 
considered. The conditions  
 

𝜅 < [𝜀 + (1 − 𝜀)
𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜂  𝑎𝑛𝑑 𝜅

<
𝜀2 [𝜀 + (1 − 𝜀)

𝜌𝑆𝐶𝑆

𝜌0𝐶
] 𝜈

𝑃2 [𝜀𝑃{√𝑈(𝑥 − 2) + √𝑇𝐴1
}
2
− 2𝑄1]

. 

are the sufficient conditions for the non-
existence of overstability, the violation of 
which does not necessarily imply the 
occurrence of overstability. 
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