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Abstract: - A discrete linear stability analysis framework for two-dimensional laminar flows is presented. Using 
two case studies involving analysis of thermal and laminar flows, the stability of flows in the discrete numerical 
sense is addressed. The two-dimensional base flow for various values of the controlling parameter (Reynolds 
number for flow past a square cylinder and Rayleigh number for double-glazing problem) is computed 
numerically by using the lattice Boltzmann method. The governing equations, discretized using the finite-
difference method in two-dimensions and are subsequently written in the form of perturbed equations with two-
dimensional disturbances. These equations are linearized around the base flow and form a set of partial 
differential equations that govern the evolution of the perturbations. The eigenvalues, stability of the base flow 
and the points of bifurcations are determined using normal mode analysis. The eigenvalue spectrum predicts 
that the critical Reynolds number is 52 and the critical Rayleigh number is 61.88×10for the square cylinder and 
double-glazing problem, respectively, The results are consistent with the previous numerical and experimental 
observations. 
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1 Introduction 
The role of hydrodynamic stability in fluid 
mechanics that focuses on the evolution of small 
disturbances with time is of prime importance in 
understanding many natural phenomena, as well as 
in the analysis and design of many engineering 
systems. For example, it is pursued in civil aviation 
to design lifting surfaces with drag reduced by 
passive means. In these circumstances, keeping the 
flow stable over a wing to possibly as large an 
extent is the desired goal. The other application of 
stability is in the selection of kinematics governs the 
motion of self-propelled flapping wings with 
relevance to micro-air vehicles (MAVs) [1]. The 
fundamental ideas of linear stability analysis have 
been described in the classical works of 
Chandrasekhar [2] and Drazen and Reid [3]. The 
primary approach of most studies carried out on 
stability analysis to analytically calculate the critical 
value of flow governing parameter responsible for 
the hydrodynamic instability of simple fluid flow 
problems. This is not limited to Couette and 
Poiseuille flows by reducing the problem to one-
dimension using the Orr-Sommerfeld equation [4]. 
Jackson [5] and Zebib [6] developed tools to 

investigate a broad variety of non-parallel flow 
problems. The model of global stability analysis 
presented by Zebib [6] was modified and extended 
by Kim & Pearstein [7]. The mechanism of the 
thermal convection instability of transition states 
was studied extensively by Busse [8]. Clever and 
Busse [9] examined the stability of two-dimensional 
Rayleigh-Benard convection and had shown that 
this steady flow undergoes a cross-roll instability at 
a low Rayleigh number (Ra = 1708). Winters [10] 
presented an attractive three-variable model 
capturing many aspects of a two-dimensional square 
air-filled cavity with differentially heated sidewalls 
and conducting horizontal surfaces. Their numerical 
model suggested that the onset of the oscillatory 
convection occurs at a Hopf bifurcation in the 
steady-state equations for free convection in the 
Boussinesq approximation. Xin & Le Quéré [11] 
investigated the stability of two-dimensional natural 
convection flows in a differentially heated square 
cavity with conducting horizontal walls for a large 
range of Prandtl numbers with respect to both two- 
and three-dimensional perturbations.  
It is clear that the analytical treatment of 
hydrodynamic instability is worth pursuing only for 
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simple one-dimensional flow problems. A similar 
treatment for determining stability of non-parallel 
laminar fluid flows is inherently challenging and 
sometimes may not be even analytically feasible. In 
contrast, a numerical approach provides a more 
straightforward way to analyze non-parallel fluid 
flow problems, which relatively ease to have the 
transformation of non-linear and higher-order 
differentials using by discretized approximations 
with reasonable accuracy. A numerical method can 
also handle problems with a large number of 
variables and dimensions, which is difficult and 
time-consuming for the analytical methods. Over 
the past four decades, the solution of complex 
hydrodynamic and thermal instability problems has 
also been made possible by improved numerical 
techniques and continuously increasing 
computational capacity. 
In practice, there are two alternatives to study the 
stability of steady flows. The first method consists 
of conducting a direct numerical simulation by 
solving the Navier-Stokes equations, thereafter 
starting near the steady state solution and verifying 
whether the corresponding time-dependent solution 
retracts to the steady state solution [12, 13]. This 
type of computation is relatively expensive due to 
computational cost and time. The second approach 
employs the small perturbation method, wherein the 
flow variables are perturbed about the base state and 
the resulting partial differential equations are 
linearized. Subsequently, the linearized equations 
are used to formulate an eigenvalue problem whose 
solution dictates the stability of the base state.  
Numerical assessment of stability is especially 
challenging for open boundary flows due to large 
domain requirements and necessitating the solution 
of an eigenvalue problem with high degrees of 
freedom. Although iterative methods exist, solution 
to such large eigenvalue problems is not trivial. 
Thus, alternative approaches for detection of 
bifurcation even for the simplest of flows need to be 
developed. In this work, we demonstrate a discrete, 
numerical form of linear stability analysis 
framework for prediction of onset of instability in 
two-dimensional laminar flows by using perturbed 
Navier-Stokes’ equations in the vicinity of base 
flows which will be shown to be applicable for both 
open and confined domain flows. The degrees of 
freedom in the eigenvalue problem are reduced by 
developing the treatment in vorticity-stream 
function formulation. We demonstrate the 
applicability of the proposed method by calculating 
the critical parameters responsible for the onset of 
primary instability in two diverse problems relating 
to (a) laminar, and (b) thermally driven flows by 

developing the eigenvalue equations in the discrete 
sense. A numerical solution of the resulting 
eigenvalue problem is also presented and shown to 
be in good agreement with published results. 
 
 

2 Methodology 
In this section, the formulation of the problem and 
the equations that govern the evolution of the 
disturbance are described. The numerical methods 
which are used to compute the base flow and 
formulation of eigenvalue problem for the 
determination of critical state are outlined here. 
 
2.1 Base flow computations 
The lattice Boltzmann Bhatnagar-Gross-Krook 
(BGK) two-dimensional nine velocities (D2Q9) 
model [14, 15] is used as the direct numerical solver 
for computing the base flow. The lattice Boltzmann 
method (LBM) is a simulation technique in which 
the discretized Boltzmann’s equation is solved for 
the particle velocity distribution function   if x ,t  
on a regular, uniform Cartesian grid.  
For computing temperature-driven flows, the 
temperature distribution at different time instants are 
found by using the temperature lattice Boltzmann 
equation (TLBE). The TLBE is the set of 
temperature distribution function { 

( ) 0,1,ig x,t | ........,m  } from which the leading-
order solution of the macroscopic temperature is 
obtained[16-20]. 
  
2.2 Formulation of the eigenvalue problem 
The procedure for formulation of the discrete 
eigenvalue problem is described in this section. For 
illustration purposes, the equations governing flow 
past a square cylinder will be considered. For this 
situation, the non-dimensional form of the 
governing equations that describe the flow of an 
incompressible Newtonian fluid are,                      

0.u =  (1) 
21

. p
t Re


     



u
u u u  

(2) 

where  u,vu   is the velocity vector and p is 
pressure.  In two-dimensions, the continuity and 
momentum equations (1) and (2) are transformed to 
vorticity    transport and stream function     
form, given as 

  21
.
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To determine the flow stability, the flow is 
decomposed into a steady  ,  , usually called 
the base state or base flow, and an unsteady or 
perturbed part  ', '   using  

     

     

x,y,t x,y ' x,y,t ,

x,y,t x,y ' x,y,t

  

  

 

 
 

(6) 

where x and y are the space coordinate vectors and   
 is a small number. Substituting into equations 
(4) and (5), subtracting the equations for the base 
flow and dropping higher-order terms the following 
linearized perturbation equation can be obtained for 
the perturbed vorticity and stream function, 

2

' ' ' ' '

t y x y x x y x y

1
'

Re

        



        
   

        

 

 

(7) 

2      (8) 
In this work, we represent the perturbed vorticity 
and stream function in terms of normal modes: 

   ˆ ˆ, , ,t tx y e x y e         (9) 

Here    is the complex growth rate. If    is real, 
the disturbances either grow or decay 
monotonically, with the critical Reynolds number to 
be that at which     . If   is complex, then the 
neutral condition is when the real part of     , and 
the onset of instability is oscillatory with a 
dimensionless frequency of the imaginary part of . 
Substituting (9) into (7) and (8), an eigenvalue 
problem with the growth rate being the eigenvalue 
can be formulated as 

2 2

2 2
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For a structured and uniformly spaced grid as shown 
in Fig. 1, the discretized form of equations (10) and 
(11) with second-order accuracy can be written as  

ˆ ˆ
i, j 1 i, j 1 i 1, j i 1, j
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Equations (12) and (13) can be written in a 
condensed matrix form as 

1 0
0 0

11 12

21 22

ˆ ˆa a

ˆ ˆa a

 


 

     
      

     
 

(14) 

  

 

where coefficients a11, a12, a21, a22 are functions of 
the flow governing parameter associated with the 
base flow. The coefficients to these linear equations 
are determined by computing the base flow whose 
stability is to be established. The eigenvalue 

Figure 1. Typical grid spacing diagram and 
the nomenclature for the distances used. 
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problem represented by equation (14) yields a 
generalized matrix eigenvalue problem of the form,  

σMJx x  (15) 
where x   is an eigenvector that contains the 
unknown values of vorticity ̂  and stream function 
̂ . It can be seen from the differential equations 
that the mass matrix M   is singular, symmetrical 
and real, while the Jacobian matrix J is 
asymmetrical and real. This system of equations is 
solved by inverting the eigenvalue problem to a 
form that does away with the singularity of the mass 
matrix M . Thus, the system is written as 

-1 1
M


J x x  (16) 

B x x  (17) 
where -1B= MJ   and 1 /                        
The size of the Jacobian and mass matrix depends 
on the number of perturbed parts  ,   . For 
implementing and forming the discretized problem 
into eigenvalue problem of the type given by (17), 
the vector storage of perturbed space of solution is 
required. A variable is introduced that stores the 
global count of all grid points that are spanned in the 
discretized domain. The global counts are assigned 
sequentially, starting from one side of the boundary 
and traversing every point. This count variable maps 
the compass notation of the grid to vector storage 
location. In this way, the Jacobian matrix with 
defined locations for the constituting elements in the 
matrix is obtained by the pre-defined global count of 
the respective grid point. The method of assigning 
the Jacobian matrix for grid points shown in Fig. 1 
is given in Table 1.  
 

Table 1. Global count representation of all the 
points on the grid with appropriate neighbors. 

 

To formulate the eigenvalue problem given by (17), 
the partial differential equations are discretized on a 
uniform grid using the finite-difference method. 
Central differences are used for all the interior 
nodes, while forward or backward difference of 
second-order accuracy are used at the boundaries. 
 

 

3 Results and Discussion 
To demonstrate the applicability of the proposed 
discrete linear stability framework, we performed 
numerical simulations for two standard fluid flow 
problems as described below. In both these cases, 
LBM is used for base flow computation, the finite-
difference formulation is used for formation of 
eigenvalue problem, and the simultaneous iteration 
method is used for the solution of the eigenvalue 
problem. 
 
3.1 Uniform flow past a square cylinder 
We first present an analysis of uniform flow past a 
square cylinder to capture the instability leading to 
shedding of vortices from the cylinder surface. The 
controlling parameter in this flow is Reynolds 
number, Re U a   defined in terms of free-
stream velocity U , length of a side of the solid 
cylinder a  and the kinematic viscosity of the fluid  
 . At low Reynolds number  1Re   , no separation 
takes place at bluff body surface because viscous 
forces dominate. Further, on increasing the 
Reynolds number, flow separation starts to appear 
with symmetrical vortex formation. The transition 
of vortex shedding from symmetric to asymmetric 
wake pattern occurs at a critical Reynolds number. 
When this critical Reynolds number is exceeded, the 
well-known Von Karman vortex street is formed 
with vortices shed periodically behind the cylinder.  
The flow around bluff bodies has been studied by 
many groups who primarily focused on circular 
cylinder under free-flow conditions. However, there 
is a wide range of critical Reynolds number that has 
been reported in the literature. These critical values 
have been shown to depend on the blockage ratio, 
defined as the ratio of the cross-stream projection of 
the square (characteristic dimension of the cylinder) 
to the domain width. Kelkar and Patankar [21] 
determined Re = 53 based on numerical linear 
stability analysis of the steady flow at a blockage of 
14.2%, while Davis et al. [22] found the critical 
value of Reynolds number experimentally within the 
range of 47 ± 2 . Sohankar et al. [13] determined the 
critical value of Reynolds number as 51.2 ±1.0   for 
a 5% blockage based on numerical simulations by 
using linearized Stuart-Landau equation and found 
that critical Reynolds number increases with 
increasing blockage.  
In the present study, the focus is on the use of linear 
stability analysis to predict the critical Reynolds 
number for the onset of vortex shedding behind the 
square cylinder that will lead to unsteadiness in the 
flow and to locate the point of bifurcation. This is 

Grid 
point 

Global 
count 

Storage location 
for 1x'  

Storage location 
for 2x'  

i,j m 2m-1 2m 

i-1,j m1 2m1-1 2m1 

i,j-1 m2 2m2-1 2m2 

i+1,j m3 2m3-1 2m3 

i,j+1 m4 2m4-1 2m4 
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attempted by capturing the base flow at steady state 
and using it to determine its stability for various 
values of Re using the method outlined in section 
2.2. The layout of the computational domain used in 
this work along with the location of the fixed square 
cylinder and imposed boundary conditions is shown 
in Fig. 2.  Incompressible flow with constant fluid 
properties is considered. All geometrical lengths are 
scaled with a . The parameter which plays a 
dominant role in finding the critical value of 
Reynolds number is the blockage ratio of the 
domain, defined as B a / H , where H is the 
domain height.  The blockage ratio in this work is 
fixed at 1/ 20B    or 5%.  
The procedure for locating the onset of vortex 
shedding is as follows. Steady solutions were 
obtained at Reynolds number of 45, 50 and 55 on a 
regular grid as fine as 700 × 400Δx Δy . At each of 
the Reynolds numbers, the complex eigenvalue 
spectrum of the mass and sparse Jacobian matrices 
were explored by using simultaneous iteration 
method [23]. Fig. 3 shows part of the eigenvalues 
spectrum at three different Reynolds numbers. 

 

 

The crossing of the eigenvalue pair at Real(σ) = 0 
represents a Hopf bifurcation and marks the onset of 
periodicity in the square cylinder wake. It was found 
that one complex conjugate eigenvalue pair crosses 
the imaginary axis onto a left half plane when 
Reynolds number reached 55. This behavior 
indicates that one Hopf bifurcation from the steady 
solution occurs for Reynolds numbers between 50 
and 55. Further, it is observed that all eigenvalues 
are on right half of imaginary axis at a Reynolds 

number of 51 and no unstable mode is present, 
while unstable patterns start to appear and one 
complex conjugate eigenvalue pair cross the 
imaginary axis onto the left half plane at Reynolds 
number of 52. To obtain a better understanding of 
solutions at different Reynolds numbers, the lift 
coefficient is selected as the raw signal and its 
instantaneous value at 52Re    is plotted in Fig. 4. 
The abscissa is normalized with respect to the 
characteristic timescale t a U . The insets show 
flow patterns at different time instants of the 
simulation. Fig. 4 shows that the instability in the 
flow resulting in the onset of periodic vortex 
shedding manifests due to round-off only after ~
400t  . A more precise determination of the critical 
Re requires a simulation for an even longer time 
duration which sometimes may not be even 
computationally feasible. On the other hand, the 
linear stability analysis method allows the use of a 
seemingly steady-state base flow to be used for 
determining its stability with excellent accuracy. 
The beginning of oscillations in this problem is 
determined at a Reynolds number of 52 which is 
very close to the results obtained by Sohankar et al. 
[13] and Kelkar and Patankar[21]. 
 

 

The eigenvalue analysis also yields complex 
eigenvectors. The spatial form of the eigenvectors at 
the bifurcation point corresponding to Re = 51 is 
shown in Fig. 5. It is clear from Fig. 5 that both 
vorticity and stream function eigenvectors for steady 
flow have reflectional symmetry about the 
horizontal axis. 
 
 

Figure 2. Layout of the computational domain 
with the imposed  

boundary conditions. 

Figure 3. Distribution of smallest eigenvalues 
for normal mode, at Re = 51, 52 and 53. 

 

Figure 4. The onset of vortex shedding at 
Re = 52 
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3.2 Double-glazing problem 
The flow in a double-glazing or a two-dimensional 
air-filled rectangular cavity with differentially 
heated sidewalls and conducting horizontal surfaces 
along with Boussinesq approximation is an excellent 
test case for thermal instability since it is 
challenging to obtain accurate solutions for 
increasing Rayleigh numbers. Winters [10] studied 
the stability of this problem by computing the 
eigenvalues of the Jacobian matrix and mass matrix 
of the corresponding steady flow to determine the 
Hopf bifurcation point. Winters [10] concentrated 
on verification of the measurements published by 
Briggs and Jones [24], who had conducted similar 
experiments on the double-glazing problem by 
maintaining the vertical sidewalls at fixed 
temperatures. The results that Briggs and Jones [24] 
have published give the Rayleigh number regimes in 
which the flow is stable and also the critical 
Rayleigh number at which oscillatory behavior in 
the flow can be observed. 
A pictorial representation of geometry and boundary 
conditions for double glazing problem is shown in 
Fig. 6. For this case study, the non-
dimensionalization of Navier-Stokes and energy 
equations is accomplished by three scales [10]. 
These scales are the temperature scale ST which is 
the temperature difference between the hot and cold 
side walls, the length scale SL being the width of the 
cavity, and the velocity scale  LS Ra  where 

Ra is Rayleigh number and   is the thermal 
diffusivity. The non-dimensional form of continuity, 
momentum and energy equation is written as   

0.u =  (18) 

2Pr 0u u u p u
u v

t x y x Ra

    
    

   
 

(19a) 

2Pr Prv v v p v
u v

t x y y Ra


    
    

   
 

(19b) 

21
.

t Ra


 


   


u  

(20) 

The control parameters, namely the Prandtl number, 
Pr, and the aspect ratio (γ) are set to the values that 
have been used earlier, i.e., Pr = 0.71 and γ=1.0 
[10]. The above equations contain two non-
dimensional groups, the Rayleigh number 

3 /T LRa g S S    and Prandtl number  
Pr   , where g is the acceleration due to 
gravity,   is the coefficient of volumetric 
expansion and   is the kinematic viscosity. 
The base temperature distribution for such problem 
at a particular Rayleigh number and at different time 
instants is found by using the temperature lattice 
Boltzmann equation (TLBE). The grids for both the 
base flow and eigenvalue problems are the same and 
uniform. 

 

The procedure for locating the Hopf bifurcation 
points is as follows. Steady solutions are obtained at 
Rayleigh numbers 6 6 61.0×10 1.5×10 and2.0×10, . 
Subsequently, at each of the Rayleigh numbers, the 
complex eigenvalue spectrum of the mass and 
Jacobian matrix is explored. It is found that one 
complex eigenvalue crosses the imaginary axis onto 
a left half plane at Rayleigh number of 62.0×10 .  
This indicates that one Hopf bifurcation from the 
steady solution occurs for Rayleigh number in the 
range 6 61.5×10 and2.0×10 . It is found that at 

6=1.87×10Ra   the leading eigenvalues are on right 
half of imaginary axis and no unstable mode is 
present. At 6=1.88×10Ra   two complex conjugate 
unstable modes start to appear with the eigenvalue 

Figure 5.  (a) vorticity and (b) stream function 
twenty evenly spaced contours between -0.60 

(blue) and +0.60 (red) for the steady-state 
solution and the real and imaginary parts of the 
eigenvector at critical Reynolds number of 51. 

 

Figure 6. Enclosure geometry and boundary 
conditions and (b) temperature boundary 

condition along the bottom and top walls of 
the square enclosure. 
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pair crossing the imaginary axis onto the left half 
plane. 
Fig. 7(a) shows part of the eigenvalues spectrum at 
four Rayleigh numbers. Only the eigenvalues of the 
positive imaginary part are plotted. The crossing of 
the eigenvalue pair at Real(σ) = 0 represents a Hopf 
bifurcation and marks the onset of oscillations in the 
flow field of the double-glazing problem. 

 

In this problem, the start of oscillations is predicted 
at a Rayleigh number of 61.88×10   which is in good 
agreement with the value 62.109×10  predicted by 
Winters [10]. The comparison of results with 
Winters [10] at Rayleigh number of 62.04×10  is 
shown in Fig. 7(b). 
The steady-state contours and eigenvectors (real and 
imaginary part) of stream function and isotherms at 
Rayleigh number of 61.87×10   are plotted in Fig. 8.  

 

On observing the spatial flow pattern arising near 
the vertical walls the presence of a fixed 
temperature, either high or low, which builds up the 
thermal boundary layer at the vertical walls can be 
easily noticed. It is also apparent that where the 
eigenvectors are much broader, the base temperature 
and momentum boundary layers are narrower. The 
eigenvector plots at Rayleigh number of   have a 
reflectional symmetry about the vertical and 
horizontal axes which pass through the center of the 
cavity. 
 
 
4 Conclusion 
A discrete linear stability analysis framework for 
two-dimensional laminar flows are applied for 
locating Hopf bifurcation in the cases of flow past a 
square cylinder and double-glazing problems. The 
two-dimensional steady base flow around the square 
cylinder at different Reynolds numbers and in 
double glazing problem at different Rayleigh 
number are computed using the lattice Boltzmann 
method and the thermal lattice Boltzmann method, 
respectively. The equations that govern the 
evolution of perturbations in the base flow 
constitute a generalized eigenvalue problem for the 
normal mode growth. The discrete version of this 
eigenvalue problem is first utilized to form the 
Jacobian and sparse mass matrices and then 
simultaneous iteration method is used for computing 
the eigenvalue spectrum. The results indicate that in 
the case of flow past a square cylinder the onset of 
two-dimensional vortex shedding is found at Re=52 
which is in good agreement with earlier reported 
range  47 53Re  . In the case of flow past a 
square cylinder, eigenvector patterns for the steady 
flow is symmetric about the x-axis. In the case of 
double-glazing problem, the onset of instability is 
found at 61.88×10Ra   which is again in good 
agreement with the reported value. In the case of 
flow past a square cylinder, the highest degree of 
freedom used is 51.6×10 , which provides 
satisfactory results for two-dimension computation. 
Further improvement in the accuracy of locating the 
critical parameter requires an increase in the degrees 
of freedom that can be brought about by the 
parallelization of the present numerical analysis. 
The finite-difference method is ideally suited to 
linear stability analysis studies as it is easy to 
modify and to handle complex flows and geometries 
where the mathematics is not tractable. The flow 
past a square cylinder and double-glazing problems 
are only a few from the vast varieties of problems 
where the developed method may find applications. 

      (a)                                           (b) 

Figure 7. (a) Plots of the complex eigenvalues 
spectrum at four critical values of the Rayleigh 

number. Only eigenvalues with a positive 
imaginary part are shown. Dashed lines join 
eigenvalues computed at the same Rayleigh 

number (b) Comparison of results with Winters 
[10]. 

 

Figure 8. (a) Stream function and (b) isotherm 
twenty evenly spaced contours between -0.025 

(blue) and +0.025 (red) for the steady-state 
solution and the real and imaginary parts of the 

eigenvector at critical Rayleigh number of 
61.87×10 .   
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An interesting application of the developed 
framework is to predict the onset of instability due 
to the transition of vortex shedding from symmetric 
to asymmetric that leads to propulsion in a rigid 
wing plunging into a quiescent medium [25]. This 
will be the subject of a future publication. 
 
 
Nomenclature: 

a length of a side of the solid cylinder, [m] 
B blockage ratio of the domain, [-] 
g acceleration due to gravity, [m/s2] 
h domain height, [m] 
J Jacobian matrix, [-] 
M mass matrix, [-] 
p Pressure, [N/m2] 
Pr Prandtl number  

( Pr   ), [-] 
Ra Rayleigh number  

( 3 /T Lg S S  ), [-] 
Re Reynolds number ( U a  ), [-] 
SL length scale, [m] 
ST temperature scale, [K] 
t  characteristic timescale  

( a U ), [s] 
t Time, [s] 
u the velocity vector of the fluid, [m/s]  
U

 free-stream velocity, [m/s] 
x Eigenvector, [-] 
 
Greek letters 
  coefficient of volumetric expansion, [K-1] 
  kinematic viscosity of the fluid, [m2/s] 
  complex growth rate, [-] 
  thermal diffusivity, [m2/s] 
  stream function, [m2/s] 
  vorticity transport, [s-1] 
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